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Anomalous density for Bose gases at finite temperature
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We analyze the behavior of the anomalous density as function of the radial distance at different temperatures
in a variational framework. We show that the temperature dependence of the anomalous density agrees with the
Hartree-Fock-Bogoliubov (HFB) calculations. Comparisons between the normal and anomalous fractions at low
temperature show that the latter remains higher and, consequently, the neglect of the anomalous density may
destabilize the condensate. These results are compatible with those of Yukalov. Surprisingly, the study of the
anomalous density in terms of the interaction parameter shows that the dip in the central density is destroyed for
sufficiently weak interactions. We explain this effect.
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I. INTRODUCTION

The investigation of the Bose-Einstein condensation (BEC)
phenomenon at finite temperature has attracted a great number
of physicists in the recent years. The traditional theories to
describe Bose-Einstein condensation at finite temperature are
based on the Bogoliubov quasiparticle approach, developed
originally for a spatially homogeneous Bose-condensed gas
at T → 0 [1] and employed by Lee and Yang [2] at finite
temperatures. The generalization of the Bogoliubov method
for spatially inhomogeneous systems has been described by
De Gennes [3]. The main idea of Bogoliubov is to separate out
the condensate part in the field operator �(�r) = �(�r) + �̄(�r).
The system may be split into two subcomponents; namely, the
condensate described by its density, nc(r) = |�(r)|2 and the
thermal cloud ñ(�r,�r ′) = 〈�̄†(�r)�̄(�r ′)〉. These two components
have been intensively studied both theoretically and experi-
mentally [4–34]. Similarly, this approximation motivates the
definition of an additional mean-field contribution m̃(�r,�r ′) =
〈�̄(�r)�̄(�r ′)〉. This is often referred to as the pair anomalous
average and bears its name from the fact that there is an unequal
number of creation and annihilation operators being averaged
over. An analogous correlation plays a dominant role in the
BCS theory of superconductivity [3], where fermionic atoms
pair up to form the so-called Cooper pairs. In the case of
Bose-Einstein condensation of neutral bosonic atoms, where
the condensate mean field �(r) is the dominant parameter, the
anomalous average plays a minor role for sufficiently repulsive
interaction atoms in the condensate. However, this contribution
becomes crucial in the presence of attractive interactions and
molecular BECs [35].

Among the theoretical investigations of the anomalous
density, we can cite in particular those of Hutchinson et al. [36]
and Giorgini [37] based on the mean-field HFB-Bogoliubov–
de Gennes (BdG) approximation. To go beyond the mean field,
Fedichev et al. [38] and Proukakis et al. [39,40] developed
a finite-temperature perturbation theory using an HFB basis.
Another kind of approach has been developed by Griffin [41]
based on the Green’s function method to derive an equation
for the condensate and its fluctuations. Yukalov [42] adopted a
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quite different approach by using the notion of representative
statistical ensembles. Recently, Wright et al. [43,44] have used
the classical-field trajectories of the projected Gross-Pitaevskii
equation.

An interesting alternative nonperturbative and nonclassical-
field approach to the finite-temperature Bose gas is provided
by the so-called time-dependent variational principle. This
principle was proposed by Balian and Vénéroni (BV) a long
time ago [45]. The BV variational principle has been applied to
various quantum problems including heavy-ion reactions [46],
quantum fields out of equilibrium [47], and attempts to go
beyond the Gaussian approximation for fermion systems [48].
Therefore, the BV principle has been used to provide the best
approximation to the generating functional for two- and multi-
time correlation functions of a set of bosonic and fermionic
observables [49–52]. More recently, it was used to derive
a set of equations governing the dynamics of trapped Bose
gases [53,54]. The point is that this principle uses the notion of
least-biased state, which is the best ansatz compatible with the
constraints imposed on the system. For our purposes, we use
a Gaussian density operator. The main difference between our
approach and the earlier variational treatments is that, in our
variational theory, we do not minimize only the expectation
values of a single operator such as the free energy in the
variational HF and HFB approximation or the thermodynamics
potential as is done in the variational approach of Bijlsma
and Stoof [24]. Conversely, our variational theory is based
on the minimization of an action in addition to a Gaussian
variational ansatz. The action to minimize involves two types
of variational objects: one related to the observables of interest
and the other that is akin to a density matrix [45,52,53]. This
leads to a set of coupled time-dependent mean-field equations
for the condensate, the noncondensate, and the anomalous
average. We call this approach “time-dependent Hartree-
Fock-Bogoliubov” (TDHFB). The TDHFB equations that we
derive in this paper are quite general and fully consistent
because they do not require any simplifying assumption
for the thermal cloud or the anomalous density. They may
provide in this sense a kind of generalization to the previously
discussed approximations. Moreover, what is important in the
TDHFB approach for Bose systems is that there have been
no assumptions on weak interactions. Therefore, the theory is
valid even for strong interactions.
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In fact, in many approximations, the anomalous density
is always neglected. This is based in the general claim that
its contributions are negligibly small. However, Yukalov [42]
pointed out that, even if it is the case, it is an essential
ingredient for the consistency of the formalism. We will go
further by using our TDHFB formalism to show that the
contribution of the anomalous density is not as small as
claimed. On the other hand, the anomalous density profiles
seem to have no structure at the center of the trap for weak
interactions. This is in contradiction with what was found in
the literature [36,43], where the HFB-BdG approximation and
the classical-field trajectories of the projected Gross-Pitaevskii
equation were used, and where these densities are found to have
a “dip.”

The paper is organized as follows: In Sec. II, we review
the main steps used to derive the TDHFB equations from
the Balian-Vénéroni variational principle. In Sec. III, the
TDHFB equations are applied to a trapped Bose gas to derive
a coupled dynamics of the condensate, the noncondensate,
and the anomalous densities. We then restrict ourselves to the
local densities and discuss the properties of the underlying
equations, their relevance to the finite-temperature case, as
well as their relations with other known approximations
such as the mean-field Bogoliubov-de Gennes equations. In
Sec. IV, we study the behavior of the TDFHB equations
in homogeneous Bose gases; in particular, we discuss some
properties of the normal and anomalous densities as functions
of the temperature. Section V is devoted to presenting the static
equations and the physical boundary conditions relevant to the
trapped Bose gas. We analyze the profiles of the anomalous
density for different temperatures both for large and small
values of the interaction parameter. We confront our results
with the HFB-BdG predictions. Furthermore, we focus on the
comparison between the normal and anomalous fractions at
low, intermediate, and high temperatures. Our conclusions are
drawn in Sec. 6.

II. THE VARIATIONAL TDHFB EQUATIONS

The time-dependent variational principle of Balian and
Vénéroni requires first the choice of a trial density operator.
In our case, we will consider a Gaussian time-dependent
density operator. This ansatz, which belongs to the class
of the generalized coherent states, allows us to perform the
calculations since there exists Wick’s theorem, while retaining
some fundamental aspects such as the pairing between atoms.

The Gaussian density operator D (t) is completely
characterized by the partition function Z(t) = TrD (t),
the one-boson field expectation value 〈�〉(�r,t) ≡ �(�r,t) =
Tr�(�r)D (t)/Z(t) and the single-particle density matrix
ρ(�r,�r ′,t) defined as

ρ(�r,�r ′,t) =
(

〈�̄†(�r ′)�̄(�r)〉 −〈�̄(�r ′)�̄(�r)〉
〈�̄†(�r ′)�̄†(�r)〉 −〈�̄(�r)�̄†(�r ′)〉

)
. (2.1)

In the preceding definitions, �(�r) and �†(�r) are the boson
destruction and creation field operators (in the Schrödinger
representation), respectively, satisfying the usual canonical
commutation rules

[�(�r),�†(�r ′)] = δ(�r − �r ′), (2.2)

and
�̄(�r) = �(�r) − 〈�(�r)〉.

Upon introducing these variational parameters into the BV
principle, one obtains dynamical equations for the expectation
values of the one- and two-boson field operators:

i
∂〈�〉
∂t

(�r,t) = ∂E

∂〈�†〉 (�r,t) , i
∂〈�†〉

∂t
(�r,t) = − ∂E

∂〈�〉 (�r,t) ,

i
∂ρ

∂t

(�r,�r ′,t
) = −2

[
ρ,

∂E

∂ρ

]
(�r,�r ′,t), (2.3)

where E = 〈H 〉 is the mean-field energy. We may notice
at this point that the system (2.3) is closed and does not
require any further ingredients. The truncation of the full
hierarchy is no longer brutally performed but rather obtained
by softly restricting the full Hilbert space to the single-particle
one.

One of the most noticeable properties of the TDHFB
equations (2.3) is the unitary evolution of the single-particle
density matrix ρ, which means that the eigenvalues of ρ are
conserved. This implies, in particular, the conservation of the
von Neumann entropy S = −Tr(D) ln D and the fact that an
initially pure state, satisfyingρ (ρ ln + 1) = 0, remains pure
during the evolution. This property also leads to conservation
of the Heisenberg parameter [52]

I (�r,�r ′) =
∫

d�r ′′[〈�̄†(�r)�̄(�r ′′)〉〈�̄(�r ′′)�̄†(�r ′)〉

− 〈�̄†(�r)�̄†(�r ′′)〉〈�̄(�r ′′)�̄(�r ′)〉]. (2.4)

III. APPLICATION OF THE TDHFB FORMALISM
TO TRAPPED BOSE GASES

Let us apply the previous equations (2.3) to a system of
trapped bosons interacting via a two-body potential. The grand
canonical Hamiltonian may be written in the form

H =
∫

d�r�†(�r)

[
− h̄2

2M
� + Vext(�r) − μ

]
�(�r)

+ 1

2

∫
d�rd�r ′�†(�r)�†(�r ′)V (�r,�r ′)�(�r ′)�(�r), (3.1)

where V (�r,�r ′) is the interaction potential, Vext(�r) is the external
confining field, and μ is the chemical potential. For the sake
of clarity, we will omit the time dependence whenever they
are obvious. Next, we introduce the order parameter �(�r) =
〈�(�r)〉 and the nonlocal densities

ñ(�r,�r ′) ≡ ñ∗(�r,�r ′) = 〈�†(�r)�(�r ′)〉 − �∗(�r)�(�r ′),
m̃(�r,�r ′) ≡ m̃(�r ′,�r) = 〈�(�r)�(�r ′)〉 − �(�r)�(�r ′). (3.2)

where we note that ñ(�r,�r) ≡ ñ(�r) and m̃(�r,�r) ≡ m̃(�r) are
respectively the noncondensate and the anomalous densities.
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The energy may be readily computed to yield

E =
∫

d�rhsp(�r)[ñ (�r,�r) + �(�r)�∗(�r)] +
∫

d�rd�r ′V (�r,�r ′)|�(�r)|2|�(�r ′)|2

+ 1

2

∫
d�rd�r ′V (�r,�r ′)[m̃∗(�r,�r ′)m̃(�r,�r ′) + ñ(�r,�r ′)ñ(�r ′,�r) + ñ(�r,�r)ñ(�r ′,�r ′)]

+ 1

2

∫
d�rd�r ′V (�r,�r ′)[ñ(�r,�r ′)�(�r)�∗(�r ′) + ñ(�r ′,�r)�∗(�r)�(�r ′) + ñ(�r,�r)�(�r ′)�(�r ′) + ñ(�r ′,�r ′)�(�r)�(�r)]

+ 1

2

∫
d�rd�r ′V (�r,�r ′)[m̃∗(�r,�r ′)�(�r)�(�r ′) + m̃(�r,�r ′)�∗(�r)�∗(�r ′)]. (3.3)

In Eq. (3.3), hsp = − h̄2

2M
� + Vext(�r) − μ is the single

particle Hamiltonian.

Now one inserts the expression (3.3) in the general
equations of motion (2.3) to get the explicit form of the TDHFB
equations for a trapped Bose gas:

ih̄�̇(�r) = hsp(�r)�(�r) +
∫

d�r ′V (�r,�r ′)[|�(�r ′)|2�(�r) + �∗(�r ′)m̃(�r,�r ′) + �(�r ′)ñ(�r,�r ′) + �(�r)ñ(�r ′,�r ′)], (3.4a)

ih̄ ˙̃n(�r,�r ′) = [hsp(�r) − hsp(�r ′)]ñ(�r,�r ′) +
∫

d�r ′′V (�r ′,�r ′′)[a(�r ′′,�r ′)ñ(�r,�r ′′) + a(�r ′′,�r ′′)ñ(�r,�r ′) + b(�r ′,�r ′′)m̃(�r ′′,�r)]

−
∫

d�r ′′V (�r ′,�r ′′)[a(�r,�r ′′)ñ(�r ′′,�r) + a(�r ′′,�r ′′)ñ(�r,�r ′) + b(�r,�r ′)m̃(�r ′′,�r ′)], (3.4b)

ih̄ ˙̃m(�r,�r ′) = [hsp(�r) + hsp(�r ′)]m̃(�r,�r ′) +
∫

d�r ′′V (�r ′,�r ′′){a(�r ′′,�r ′)m̃(�r,�r ′′) + a(�r ′′,�r ′′)m̃(�r,�r ′) + b(�r ′,�r ′)[ñ∗(�r,�r ′′) + δ(�r − �r ′′)]}

+
∫

d�r ′′V (�r ′,�r ′′)[a(�r ′′,�r)m̃(�r ′,�r ′′) + a(�r ′′,�r ′′)m̃(�r,�r ′) + b(�r,�r ′′)ñ(�r ′′,�r ′)]. (3.4c)

In the Eqs. (3.4), the dots denote time derivatives and we
have introduced the quantities

a(�r,�r ′) = ñ(�r,�r ′)+�∗(�r)�(�r ′),
(3.5)

b(�r,�r ′) = m̃(�r,�r ′)+�(�r)�(�r ′).

It is worth noticing that similar equations have been derived
elsewhere using quite different approaches. For instance,
Stoof [24] used a variational plus perturbative effective action,
Proukakis [35,39] used truncation of the Heisenberg equations,
and Chernyak et al. [55] used the generalized coherent state
representation. The latter approach yields equations very close
to ours, but the authors did not pursue further their analysis.

For contact potential V (�r,�r ′) = gδ(�r − �r ′), where g is
related to the s-wave scattering length a byg = 4πh̄2a/M .
This implies that the integrations in Eqs (3.4) are removed:

ih̄�̇(r) = [hsp + gnc(r) + 2gñ(r)]�(r) + gm̃(r)�∗(r),

(3.6a)

The equations of motion for ñ(r,r ′)and m̃(r,r ′) may be
written in the compact form

ih̄
dρ

dt
= 	ρ − ρ	+, (3.6b)

where we have defined the 2 × 2 matrices

	(r,r ′) =
(

h(r,r ′) �(r ′,r ′)
−�∗(r,r) −h∗(r,r ′)

)
,

ρ(r,r ′) =
(

ñ(r,r ′) m̃(r,r ′)
m̃∗(r,r ′) ñ∗(r,r ′) + 1

)

and

h(r,r ′) = hsp(r) + 2ga(r ′,r ′), �(r,r) = gb(r,r).

Equations (3.6) constitute the TDHFB equations for the
contact interaction potential approximation in real space.

It is well known that, in the HFB theory, the issues of the
ultraviolet (uv) divergence of the anomalous density arise from
the zero-point occupation of quasiparticle modes [36]. In our
case, the diverging term appears in Eq. (3.4c) and becomes
highly nontrivial when one considers the contact potential.
This is precisely the term which leads to uv divergences in the
anomalous density in HFB theory [36]. Having identified the
origin of this divergence, we can habitually eliminate it from
the problem, by regularizing the anomalous average. This is
achieved by following the method of Refs. [56,57].

Equations (3.6) remain complicated even for the contact
potential where the noncondensate and anomalous densities
are nonlocal functions of two spatial points ñ

(
r,r ′) and

m̃
(
r,r ′). To proceed further and to investigate the behavior of
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the various density profiles both for homogeneous and trapped
gases, we consider in this article only the quantities for r = r ′
since these are the most physically accessible.

IV. ANOMALOUS DENSITY FOR HOMOGENEOUS
BOSE GAS

In the uniform case [Vext(r) = 0] and for a thermal
distribution at equilibrium, the relation (2.4) may rewritten
as

Ip = (2ñp + 1)2 − 4|m̃p|2 = coth2[εp/(2kT )], (4.1)

where εpis the Bogoliubov energy spectrum defined by the
expression

εp = [(Ep + 2gn − μ)2 − g2(nc + m̃)2]1/2, (4.2)

with Ep = p2/(2m) being the energy of a free particle.
Note that the expression (4.2) can be derived by computing

the random-phase approximation (RPA) modes from (3.6a). It
is well known that, to satisfy the Goldstone or the Hugenholtz-
Pines [58] theorem, the spectrum (4.2) should be gapless in
the long-wavelength limit. This is indeed satisfied provided

μ = g(n + ñ − m̃), (4.3)

where n = nc + ñ is the total density.
Moreover, at zero temperature, the relation (4.1) becomes

|m̃p|2 = ñp(ñp + 1). (4.4)

Equation (4.4) constitutes an explicit relationship between
the normal and the anomalous densities at zero temperature
and indicates that the anomalous density and the thermal
cloud density are of the same order of magnitude at low
temperatures, which leads to the fact that neglecting m̃ while
maintaining ñ is a quite hazardous approximation. Finally, as
a technical remark, note that the dependence of ñ and m̃ at
zero temperature allows us to eliminate the noncondensate
density from the TDHFB equations, thereby reducing the
dimensionality of the problem and simplifying the numerical
solution.

A straightforward calculation using Eq. (4.1) leads to a
novel form of the normal and anomalous densities as a function
of

√
Ip:

ñp = 1

2

[
Ep + g (nc + m̃)

εp

√
Ip − 1

]
,

m̃p = −g (nc + m̃)

2εp

√
Ip, (4.5)

where
√

Ip = coth[εp/(2kT )].
It is worth noticing that Eqs. (4.5) together with (3.6a)

constitute the generalized HFB equations at finite temperature.
This shows that our formalism can be reproduced easily by the
full HFB equations both at finite and zero temperatures [see
Eqs. (4.6)].

It is convenient now to analyze the asymptotic behavior of
Eqs. (4.5) with respect to temperature.

At low temperature ñp and m̃p behave as

ñp = 1

2

[
Ep + g (nc + m̃)

εp

− 1

]
(T → 0) ,

(4.6)

m̃p = −g (nc + m̃)

2εp

(T → 0) .

At high temperature we can use the asymptotic form
√

Ip
∼=

2kT /εp. Then, ñp and m̃p take the form

ñp = Ep + g (nc + m̃)

εp

(
kT

εp

)
− 1

2
(T → Tc) ,

m̃p = −g (nc + m̃)

εp

(
kT

εp

)
(T → Tc) . (4.7)

To illustrate comparatively the behavior of the nor-
mal and anomalous densities as functions of temperature
for a uniform Bose gas, it is useful to introduce the
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FIG. 1. Absolute value of the anomalous density m̃(η) (solid line)
and the noncondensate density ñ(η) (dashed line) vs the temperature
τ for different values of η.
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dimensionless variables η = εp/[g(nc + m̃)] and τ =
kT /[g(nc + m̃)]. Equations (4.5) become

ñ(η) =
√

1 + η2

2η

√
I (η) − 1

2
,

m̃(η) = − 1

2η

√
I (η), (4.8)

where
√

I (η) = coth [η/(2τ )].
In Fig. 1 we show that the absolute value of the anomalous

density is always larger than the noncondensed value for
small values of η = 0.1 at low temperature. Moreover, the
absolute value of the anomalous density is comparable with
the noncondensed density for η = 1 (|m̃| ≈ ñ for τ ≈ 1.2).
However, at high temperatures, the anomalous density be-
comes much smaller than the noncondensed density. As can
be seen from these figures, the behavior of the normal and
anomalous densities found here is in good agreement with the
recent theoretical results of Refs. [59–61].

Finally, we can check that omitting the anomalous density,
while keeping the normal one, is mathematically inappro-
priate; this is clearly shown in (4.4). From these facts, it is
understandable now that neglecting the anomalous density
at low temperature for a homogeneous Bose gas as one
habitually does in the literature is principally an unjustified
approximation. Let us turn now to analyze the situation for a
trapped Bose gas.

V. ANOMALOUS DENSITY FOR TRAPPED BOSE GAS

The static TDHFB equations are obtained by setting to
zero the right-hand sides of Eqs. (3.6) in their local form.
For numerical purposes, it is convenient to start our treatment
with the dimensionless form of the set (3.6). Let us consider a
spherical trap with frequency ω, Vext(r) = 1

2mω2r2and use the
harmonic oscillator length aHO = √

h̄/(mω), as well as a−3
HO

and h̄ω as units of length, density, and energy respectively.
The dimensionless radial distance is q = r/aHO. The dimen-
sionless condensed, noncondensed, and anomalous densities

are, respectively, n̂c = a3
HOnc, ˆ̃n = a3

HOñ, and ˆ̃m = a3
HOm̃.

Therefore, n̂ = n̂c + ˆ̃n is the dimensionless total density. The
static TDHFB equations can be solved numerically. The
numerical method divides into two parts: The first part consists
of finding the solutions of the static TDHFB equations that
satisfies the boundary conditions summarized as follows: since
the full wave function and the normal and anomalous averages
must vanish as q → ∞, the nonlinear term inside Eq. (3.6a)
becomes negligible compared to the other terms. Therefore, the
two equations of �̂ and ˆ̃m have the same approximate form
�̂ ≈ ˆ̃m ≈ q−3/2 exp(−q2/4) for q → ∞. The second part is
used to propagate the solutions of the static TDHFB equations
with an adaptable numerical method.

To illustrate our finite temperature formalism, we consider
the 87Rb gas with the following parameters [30,62]: a =
5.82 × 10−9 m, aH0 = 7.62 × 10−7 m and h̄ω = 1.32 × 10−31

J. A convenient dimensionless parameter describing the
effective strength of the interactions is γ = Na/aH0 [20,63].
We begin by plotting the anomalous density as functions
of the radial distance for several values of temperatures for
N = 20 000 atoms, i.e., γ = 153.

Figure 2(a) depicts the anomalous density for varying
condensation fraction and for γ = 153. We notice that, by
decreasing Nc/N , m̃ begins to increase in absolute value
then decreases when Nc/N approaches 50%. This overall
behavior has also been obtained in [36,43]. The anomalous
density remains real and negative whatever the temperature
and position. The presence of effective repulsive atomic
interactions between the atoms, and thus also between the
condensate and the thermal cloud, leads to the appearance of
a local dip in the anomalous density at the center of the trap.

In Fig. 2(b) we show that, for a small value of the interaction
parameter (γ = 1.53), the shape of the anomalous density is
surprisingly modified. In particular, we observe that the dip in
the neighborhood of the center of the trap disappears and the
curve takes a Gaussian form. The central anomalous density is
lowered for weak interactions. Such a result can be justified by
the effect of interactions (i.e., for a small number of particles
or a small value of γ ). The interactions between the atoms

FIG. 2. Anomalous density profiles for various condensate fractions.
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FIG. 3. Normal and anomalous fractions vs reduced temperature
for γ = 153.

of the condensate and the thermal cloud are lowered, which
leads automatically to the correlations becoming weak which is
why the anomalous density remains small and takes a Gaussian
shape together with the thermal and the condensate density. We
note that the effect of interactions on the anomalous density
was studied theoretically earlier by many authors, but no one
looked at how the shape of this quantity varies as a function of
the interactions.

We now turn our attention to analyze more obviously
the temperature-dependent behavior of the noncondensate
and the anomalous fractions defined, respectively, as ñ/N

and |M̃/N | where Ñ = ∫
d�rñ(r) and M̃ = ∫

d�rm̃(r) are the
integrated values of the noncondensate and the anomalous
densities.

In Fig. 3, we plot the noncondensate and the absolute value
of anomalous fractions as function of the reduce temperature
T/Tc for γ = 153 (where we follow the method outlined in
[36]). It can be seen that Ñ/N is increasing significantly with
increasing temperature, which is why Ñ reaches a maximum
value close to the BEC transition temperature. Furthermore,
it is quite interesting to observe that the absolute value of the
anomalous fraction |M̃/N | becomes small as the temperature
approaches zero or Tc. It reaches a maximum at intermediate
temperatures (T ≈ 0.5Tc).

On the other hand, a careful observation of Fig. 3 shows that
|M̃/N | is larger than Ñ/N at low temperature (T � 0.5Tc),
which is justified mathematically by our relation (4.4). This
result is in disagreement with what is given in the literature
[36]. In fact, the authors of this Ref. [36] were still based on
the idea that the anomalous fraction is always smaller than the
normal fraction for any range of temperature, even at low tem-
peratures, without any physical or mathematical justifications.
Second, when the temperature approaches its critical value, the
fraction of noncondensed particles approaches unity. That’s
why at T ∼= Tc the anomalous fraction simultaneously with
the condensate fraction become much smaller than the normal
fraction. Such a feature is well understood and explained in
the literature [36,42,43,61], although the absolute value of
the anomalous and normal fractions are of the same order

at intermediate temperatures. It is worth noticing that this
behavior persists even for γ = 1.53 with a small change in
the amplitudes of these fractions. Hence, we may infer from
these results that the anomalous fraction plays a central role at
low temperatures. It is therefore highly unlikely to neglect it
for T < Tc.

It is well known that the anomalous density is proportional
to the s-wave scattering length (i.e., the interactions between
atoms). In fact, m̃(�r,�r ′) = 〈�̄(�r)�̄(�r ′)〉 = 0 for the ideal
Bose gas. Indeed, the anomalous average appears in all
calculations for a Bose system with broken gauge symme-
try. Its importance will be highlighted if we compare the
expressions, derived with and without taking into account the
anomalous averages, with measured quantities, thus measuring
the contributions from the anomalous averages. In some cases,
the difference is drastic. For instance, the BEC transition
is of first order when the anomalous average is not taken
into account, while it is second order when we take it into
account. Another example is the fact that the compressibility
becomes infinite, implying that the system is unstable if
the anomalous averages are absent. Moreover, the superfluid
transition does not occur if the anomalous averages are
omitted [61].

Since the presence of anomalous average means that
particles in the system are correlated, it is important for the
current experiments with ultracold atoms to find new methods
of characterizing the correlated many-body states, such as
systems near the Feshbach resonance, rotating condensates,
atoms in optical lattices, and low-dimensional systems [64].
An interesting question to ask is whether the anomalous
averages can be measured experimentally. In their recent
papers, Polkovnikov et al. [65,66] argued that this can be
done by using interference experiments with two independent
condensates for any geometry. Nevertheless this technique is
not applicable for a single condensate as in our case where
there are correlations between the atoms of the condensate
and the thermal cloud. To this point, as far as we know, there is
no experimental technique to directly measure the anomalous
density itself. Experimental data about the anomalous density
remain a great challenge for experimentalists.

VI. CONCLUSIONS

By using a Gaussian density operator, we derive from
the time-dependent Balian-Vénéroni variational principle a
set of coupled equations of motion for a self-interacting
trapped Bose gas. These equations govern in a self-consistent
way the dynamics of the condensate, the thermal cloud,
and the anomalous average. Our time-dependent Hartree-
Fock-Bogoliubov (TDHFB) equations generalize in a nat-
ural way many of the famous approximations found in
the literature such as the Bogoliubov, the Gross-Pitaevskii
[67,68], the Popov [69], the Beliaev [70], the Bogoliubov-de
Gennes [36], Zaremba-Nikuni-Griffin (ZNG) equations [22],
and others.

The comparison between the normal and anomalous den-
sities at different temperatures is analyzed for a homoge-
neous Bose gas. This analysis shows the significance of the
anomalous density compared to the normal density at low
temperature [42].
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To better understand the advantages of our approach and
owing to the importance of accounting for many-body effects,
we analyzed the behavior of the anomalous density for trapped
Bose gases. We solve numerically the static TDHFB equations
in the local limit and for a contact potential. The outcomes
of our numerical explorations are numerous. First of all,
the numerical resolution of our equations is relatively easy
and is not as time-consuming as the HFB-BdG calculations,
especially for large atom numbers. For instance, the latter
cannot be handled correctly as soon as N ∼ 104 to 105. By
contrast, there are no such limitations in our case. We recover
a well-known theoretical prediction of HFB-BdG [36] since
m̃ increases with the temperature and then decreases as one
approaches the transition. Furthermore, we found that the dip
of the anomalous density is destroyed for sufficiently weak
interactions. Moreover, we show that, at low temperatures, the
anomalous fraction is larger than the noncondensate fraction.

The former necessarily plays a major role in the Bose-
Einstein condensation phenomenon. Any approach neglecting
the anomalous fraction at low temperatures will inevitably lead
to inconsistencies.

The dynamics of the anomalous density will be the goal of
our next work with the aim of understanding how this quantity
evolves in time. Furthermore, to examine more carefully our
TDHFB formalism we will focus in the future on the behavior
of the anomalous density in dipolar Bose-Einstein condensates
at finite temperature both in the static and the dynamic cases.
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