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Manipulating the momentum state of a condensate by sequences of standing-wave pulses
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We analyze the effects of sequences of standing-wave pulses on a Bose-Einstein condensate. The experimental
observations are in good agreement with a numerical simulation based on band structure theory in an optical
lattice. We also demonstrate that a coherent control method based on such a sequence of pulses is very efficient
for the experimental design of specific momentum states.
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I. INTRODUCTION

Atomic interferometry is very useful in fundamental studies
of coherence, decoherence, and phase shifts and for practical
precision measurements, for example, gravimeters, gyro-
scopes, and gradiometers [1]. Atomic interferometry based
on Bose-Einstein condensates (BECs) provides high contrasts,
long integration times, and the possible use of small devices
[2–4]. In such atomic interferometry, coherent momentum
manipulation is very effective for splitting and recombining
the condensate [5–7], hence realizing the interference. In some
precision measurements, the accumulated phase is positively
correlated with the atomic velocity, so that the larger is the
atomic momentum, the more precise the measurements can be
if the measuring time is unchanged.

The diffraction of atoms from standing-wave light, which
is usually divided into three regimes, the Bragg, Raman-
Nath, and channeling regimes [8], by the interaction intensity
and duration, is one of the common methods to coherently
manipulate the momentum states of a condensate [9–12].
One-pulse Bragg or Raman-Nath scattering can be applied
for the preparation of momentum states, but those techniques
are then limited by constraints on the pulse properties [8].
A momentum manipulation method by multipulse standing
waves was proposed in [13], where the momentum states can
be designed, but have not been observed yet, and the pulses
are still restricted to the Raman-Nath regime.

In this paper, we apply a method for flexible manipulation of
the atomic momentum states where the standing-wave pulses
are less limited in pulse intensities and durations. Atomic
diffraction from one, two, three, and four standing-wave
pulses is demonstrated in our experiments and systematically
analyzed by the band structure theory of a one-dimensional
optical lattice. With this method, we are able to design and
realize several specific momentum states, which may be
applied in atomic interferometry. In principle, this method
could be used for designing a wide range of possible target
states.

This paper is organized as follows. In Sec. II, a theory
to interpret the scattering process by a sequence of pulses
is presented, where the standing wave is treated as a one-
dimensional optical lattice. We derive a concise expression
for calculating the probability of each momentum state at
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the end of the process. In Sec. III, experiments with one-,
two-, three-, and four-pulse scattering are demonstrated
and compared to theoretical simulations. It is found that a
correction due to momentum dispersion may be introduced
into the theory for a better agreement with the experimental
results. Section IV presents the experimental realization of
several useful momentum states by coherent control. Section V
contains discussion and conclusions.

II. THEORETICAL MODEL

We first consider a noninteracting condensate that is
diffracted by a sequence of square-shaped standing-wave
pulses with successive durations τi (i = 1,2, . . . ,s + 1), sep-
arated by the intervals τf i (i = 1,2, . . . ,s). The standing wave
consists of a pair of laser beams detuned far enough to suppress
spontaneous emission.

The periodic potential (one-dimensional optical lattice)
[14,15] introduced by an ac Stark shift can be described as
V (x) = U0 cos2(kLx), with the trap depth U0 and the laser’s
wave vector kL = 2π/λL (λL is the wavelength of the laser).
The lattice leads to a band structure of the energy spectra,
of which the eigenvalues of the energy En,q and eigenvectors
|n,q〉 (Bloch states) are labeled by the quasimomentum q and
the band index n; they satisfy the equation

Ĥ |n,q〉 = En,q |n,q〉, (1)

where the Hamiltonian Ĥ = p̂2/2M + U0cos2(kLx), with the
atomic momentum p̂ and the atomic mass M . The Bloch
states form a quasimomentum space. In the lattice, the spatial
periodicity of the wave function results in separated peaks
in momentum space, corresponding to the reciprocal lattice
vector 2kL.

When a condensate with an initial momentum pm0 =
h̄(q + 2m0kL) (h̄ is the Plank constant, −kL � q � kL, m0 =
. . . ,−1,0,1, . . .) is abruptly loaded into a lattice, the wave
packet can be described as a superposition of Bloch states:

|�(t = 0)〉 =
∞∑

n=0

|n,q〉〈n,q|pm0〉, (2)

where 〈n,q|pm0〉 = cn,q (m0). The nth Bloch state evolves
independently as e−iEn,q t/h̄, and the total wave function evolves
as

|�(t)〉 =
∞∑

n=0

cn,q(m0)e−iEn,q t/h̄|n,q〉. (3)
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When the incident light is switched off after the duration τ1,
the wave function is projected back to the momentum space
from the quasimomentum space. The coefficient b(m0,m,τ1)
of each |pm〉 state (m = . . . ,−1,0,1, . . .) can be found as

b(m0,m,τ1) =
∞∑

n=0

cn,q(m0)cn,q(m)e−iEn,q τ1/h̄. (4)

For a zero initial momentum of the condensate, the sub-
script q can be omitted for simplification, and m0 = 0. For
one-pulse scattering, the population of the |pm〉 state is
P (1)

m = |b(0,m,τ1)|2. It can be seen that the probabilities of
the momentum states after one scattering pulse depend on
the lattice depth and the pulse duration. The lattice depth
determines the band structure and is reflected in the terms
cn,q . The pulse duration influences the phase evolution of each
Bloch state as e−iEn,q τ1/h̄.

A multipulse process that consists of a number of single
pulses and intervals can be solved as follows. The wave
function of the condensate after the first pulse τ1 can be derived
from Eq. (4) as

|�(τ1,t)〉 =
∑

m

b(m0,m,τ1)e−iE(m)t/h̄|2mh̄kL〉. (5)

After the first interval τf 1 and the second pulse τ2, the
population of the |pm〉 state is

P (2)
m =

∣∣∣∣∣
∑

m1

b(m0,m1,τ1)e−iE(m1)τf 1/h̄b(m1,m,τ2)

∣∣∣∣∣

2

. (6)

As shown in Eq. (6), the population is affected by the two
pulses, the first one corresponding to b(m0,m1,τ1) and the
second to b(m1,m,τ2). During the interval τf 1, the phase
of the |pm1〉 state evolves through time as e−iE(m1)t/h̄, where
E(m1) = (2m1h̄kL)2/2M = 4m2

1ER is the kinetic energy, and
ER = (h̄kL)2/2M is the single-photon recoil energy. The
interval τf 1 produces a phase shift e−iE(m)τf 1/h̄ and contributes
to the momentum distribution.

In the same way, the population of the |pm〉 state after
(s + 1) pulses is

P (s+1)
m =

∣∣∣∣∣
∑

m1,m2,...,ms

s+1∏

i=1

b(mi−1,mi,τi)
s∏

i=1

e−iE(mi )τfi
/h̄

∣∣∣∣∣

2

(7)

with m0 = 0, and ms+1 = m.
From the analysis above, the momentum distribution after

scattering of a sequence of pulses is influenced by not only
the lattice pulses with the term

∏s+1
i=1 b(mi−1,mi,τi), but

also the intervals among the pulses as reflected in the term∏s
i=1 e−iE(mi )τfi

/h̄. Although the populations of the momentum
states do not change during the intervals, the phase-evolution
rates of the momentum states with different kinetic energies are
not identical. The phase deviations between the states oscillate
from 0 to 2π with the interval, and the heterogeneously
accumulated phases change the distribution of the condensate
in the quasimomentum space.

(a)

(b)

(c)

(d)

FIG. 1. (Color online) (a) A pair of counterpropagating light
beams applied to a condensate in magnetic trap. (b) The scattering
process: a sequence of standing-wave pulses, containing s intervals
with widths τf i (i = 1,2, . . . ,s) and s + 1 light pulses with durations
τi (i = 1,2, . . . ,s + 1). The incident light’s wavelength is 852 nm
and its maximum intensity can reach 120ER . (c) The procedure
for the experiments. The condensate is exposed to a sequence of
standing-wave pulses and then released from the magnetic trap. The
absorption images of the condensate can be observed after the free
fall. (d) A TOF signal obtained in our experiment.

III. EXPERIMENTS WITH STANDING-WAVE
PULSE SEQUENCES

We performed experiments on a condensate in a magnetic
trap (MT) [see Fig. 1(a)] being scattered by a sequence of
standing-wave pulses [see Fig. 1(b)]. As shown in Fig. 1(c),
after precooling, a cigar-shaped 87Rb condensate of 2 × 105

atoms in the 5 2S1/2 |F = 2,MF = 2〉 state was achieved
by radio frequency (rf) cooling in the magnetic trap, of
which the axial frequency is 20 Hz and the radial frequency
220 Hz [16,17]. A pair of counterpropagating laser beams,
of which the durations were controlled by an acousto-optical
modulator and the amplitudes adjusted by the injection current
of a tapered amplifier, were applied to the condensate along
the axial direction. The linearly polarized incident light at
wavelength λL = 852 nm was focused with a waist of 110 μm
to cover the condensate. The trap depth, which was calibrated
experimentally by Kapitza-Dirac scattering, reached 120ER ,
corresponding to a light power of 320 mW. The incident
light and the magnetic trap were simultaneously shut after
the BEC-light interaction. After 30 ms free falling and ballistic
expansion, the atomic gas was pictured by absorption imaging.
Since the minimum gap between different momentum states
is 2h̄k, which is much larger than the momentum width
of a single momentum state, the components with different
momenta will be separated in the time of flight (TOF) signal
[see Fig. 1(d)], and it is possible to read the atomic number
of each momentum state separately as Nm (the momentum
order m = . . . ,−2,−1,0,1,2). The relative population of the
momentum state |2mh̄k〉 can be evaluated as Nm/

∑
Nm.

The lattice in our experiments is quite deep, so we concen-
trate on the short-pulse diffractions to avoid the decoherence
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and heating effects of long pulses relevant for Bragg scattering.
However, for more flexible momentum manipulation, our
pulses are not so short as the Raman-Nath pulses [18] used
in previous works.

A brief introduction to the Raman-Nath regime is given in
the following for comparison. In the scattering process, the
evolution during the free-evolution intervals is analyzed as in
the previous section, while the effect of the lattice with ade-
quately short duration τ can be analytically solved by use of the
Schrödinger equation ih̄∂ |�(t)〉 /∂t = Ĥ |�(t)〉, after omis-
sion of the atomic kinetic energy term p̂2/2M in the Hamilto-
nian. This approximation can be made when the displacement
of the scattered atoms during the interaction time is much
smaller than the spatial period of the standing wave. Equiv-
alently, the standing-wave duration τ and the single-photon
recoil frequency ωr = h̄k2

L/2M have to satisfy τ � 1/ωr . The
pulse is able to split a stationary condensate into components
with symmetrical momenta pn = 2nh̄kL (n = 0,±1,±2, . . .),
with corresponding populations Pn = J 2

n (U0τ/2h̄), where
Jn(z) are Bessel functions of the first kind.

First we demonstrate a one-pulse scattering experiment. A
condensate is exposed to a standing-wave pulse with depth
100ER and duration varying from 0 to 30 μs. The relative
populations of the condensates with momenta 0h̄k, ±2h̄k,
±4h̄k, and ±6h̄k, corresponding to Figs. 2(a)–2(d), respec-
tively, are measured and theoretically analyzed. In addition,
the theoretical analysis with the Raman-Nath approximation
is also shown in the figure for comparison. It can be seen
that within 3 μs the theoretical analysis with the Raman-Nath
approximation (blue solid line) is close to the experimental
results (black dots), and so is the theoretical analysis with
band structure theory (red dashed line). When the pulse
duration exceeds 3 μs, the analysis with the Raman-Nath
approximation gradually goes far away from the experimental
results, while the numerical simulation with band structure
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FIG. 2. (Color online) Single-pulse scattering of condensate: The
black dots represent the experiment results. The blue solid line is the
theoretical analysis with the Raman-Nath approximation. The red
dashed line is the numerical simulation with band structure theory.
(a)–(d) correspond to relative populations of the condensates with
momenta 0h̄k, ±2h̄k, ±4h̄k, and ±6h̄k, respectively.

theory still agrees with the experimental results throughout the
entire time scale. As shown in Fig. 2, the probability of each
momentum state oscillates with the pulse duration as described
by the band structure theory. It is clear that, in the single-pulse
scattering process, the band structure theory works well not
only for the short pulse but also for the longer pulse, because
the atomic motion has been taken into account. So the atomic
diffraction by a single standing-wave pulse can be predicted in
a wider range of pulse duration with the band structure theory.

Then we increase the number of pulses in the experiments
to explore the extra factors influencing the momentum dis-
tributions. Two groups of experiments are carried out, one
consisting in two two-pulse sequences and the other using
a train of three or four pulses. In every sequence, all the
pulses are the same and all the intervals are identical to make
the experiments more convenient to carry out. For further
comparison between the band structure theory and the analysis
in the Raman-Nath regime, every single pulse is made short
enough for the Raman-Nath approximation.

Two experiments with two-pulse scattering are demon-
strated in Fig. 3, in which the relative populations of the
stationary condensate P0h̄k are shown versus the varied
intervals τ . The parameters of the scattering pulses used in
different sequences are chosen to be the same products of
the lattice depth and the pulse duration, so that each pulse
affects the condensate equivalently. As shown in the figure,
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FIG. 3. (Color online) Two-pulse scattering of the condensate:
The relative populations of the stationary condensate, P0h̄k , versus
the varied intervals τf . The parameters of the experiments are
described above each figure. The black dots are the experimental
results. The blue dashed line is the analysis with the Raman-Nath
approximation. The magenta dotted line is the numerical simulation
with band structure theory. The red solid line is a numerical simulation
taking into account the momentum dispersion. (c) A demonstration
of momentum expansion introduced by s-wave scattering. The TOF
signal (i) corresponds to the dashed curve and pictures the momentum
distribution before the lattice pulse. The signal (ii) corresponds to the
solid curve and shows the momentum distribution after the pulse.
The momentum width along the Z direction (the lattice direction) is
evaluated based on the parts in the dashed boxes which include the
momenta from −h̄k to h̄k.
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the intervals actually affect the final momentum distribution,
and the theoretical analysis with the band structure theory and
Raman-Nath approximation both picture well the evolution
of the atomic distributions versus the interval between the two
pulses. The results for two-pulse scattering can be explained as
follows: Since the phase shift accumulated during the interval
varies harmonically from 0 to 2π , the probability of the
stationary condensate oscillates between the minimum and
the maximum. When the phase shift is 2π with the interval
πh̄/2ER (around 80 μs), the wave function is little affected by
the interval and the two pulses diffract the condensate as one
combined pulse to make the probability P0h̄k the minimum.
When the phase shift is π with the interval πh̄/4ER (about
40 μs), the second pulse produces an effect opposite to that
of the first one, diffracting the nonstationary components of
the condensate back to the stationary one and making the
probability P0h̄k the maximum.

It also can be seen from Fig. 3 that the numerical simulation
with band structure theory is much closer to the experimental
results than the analytical solution with the Raman-Nath
approximation. It is conjectured that the phase evolution
during the scattering process makes the difference. The phase
evolution in the scattering process is neglected in the Raman-
Nath approximation, but not in the numerical simulation with
band structure theory. Although the duration of the scattering
process is short, the phase shifts in the scattering process still
increase. The phase shift in the scattering process needs to
be taken into account and influences the final momentum
distribution. As a result, the longer is the scattering pulse,
the larger is the difference. Although the maximum of the
probability P0h̄k corresponds to the interval πh̄/4ER , the
two-pulse experiments in Fig. 3 clearly show that the longer
pulse leads to a larger difference. In Fig. 3(a), the pulse duration
is 6 μs, and the probability P0h̄k reaches a maximum with the
interval 34 μs. In Fig. 3(b), the pulse duration is 2 μs, the
probability P0h̄k gets to its maximum with the interval 38 μs.

Nevertheless, there is still some obvious deviation between
the simulation and the experimental results. It is observed
that the momentum width has expanded after the previous
pulse [see Fig. 3(c)], because of the s-wave scattering between
the different momentum states. Consequently, this dispersion
process is approximated to an initial momentum width of
∼0.1h̄kL on average to optimize the numerical simulation.
Unlike the analysis without momentum width, the phase
evolution is different for different initial momenta and this
results in a phase dispersion. The quasimomentum modes
obtained at the end of the diffraction process result from the
linear superposition of final states obtained after time evolution
of the different momenta populating the initial BEC. It can be
seen from Fig. 3 that the approximation is effective.

As discussed in [19], the maximum of the probability P0h̄k

will never reach 1 thanks to the imperfect optical lattice. In
our case, the momentum expansion is an explanation of the
similar situation as shown in Fig. 3. Since the momentum
width is considered, the phase shift is populated around π

with a certain width, instead of a definite π , with the interval
πh̄/4ER . In other words, there is no interval that accumulates a
phase shift exactly equal to π , so with any interval, the second
standing-wave pulse is not able to diffract all the condensates
back to the stationary part.
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FIG. 4. (Color online) Three-pulse and four-pulse scattering of
the condensate: The relative populations of the stationary condensate
P0h̄k versus the varied total intervals

∑
τf i . The parameters of the

experiments are described above each figure. The black dots are the
experimental results. The red solid line is a numerical simulation
taking into account the momentum dispersion.

The experiments with one three-pulse and one four-pulse
scattering are demonstrated in Fig. 4, where the relative
populations of the stationary condensate P0h̄k are shown versus
the varied total intervals

∑
τf i . In each experiment, the total in-

teraction intensity
∑

U0τ is the same, with different numbers
of pulses. These two experiments show that, although the total
interactions and intervals are the same, the different processes
of phase accumulation in the two kinds of pulse sequence result
in distinct momentum distributions. We directly apply the band
structure theory with momentum dispersion to analyze the
experiments in Fig. 4, and the corrected simulations agree
with the experiments quite well.

IV. MANIPULATION OF THE MOMENTUM
STATES AS DESIGN

The experiments and numerical simulations above have
shown the possibility and feasibility of the manipulation of a
condensate’s momentum states. We managed to design several
two-pulse sequences to achieve high-contrast momentum
states such as |±2h̄k〉, |±4h̄k〉, and |±6h̄k〉, which may be
useful in atomic interferometry [20,21]. For each state, we ap-
ply two totally different two-pulse sequences to show the flex-
ibility of the method. The general method to achieve
the target states is to find the condition of the minimum of the
square deviation �2 = ∑+∞

m=−∞ (P g
m − Pm)

2
, where P

g
m is the

probability of |2mh̄kL〉 in the goal state, and Pm is that
generated by the sequence. A second method, as the target is
to obtain the highest population of some particular momentum
state, consists in scanning the set of initial conditions and
choosing the one corresponding to the maximum value of
the desired population. We apply the two methods above sepa-
rately and obtain the same pulse sequences. As shown in Fig. 5,
the experimental results (the black circles) agree well with the
expectations of the designs (the blue diamonds), whether the
pulses are in the Raman-Nath regime [see Fig. 5(b)] or not (see
the other panels in Fig. 5). When the momentum dispersion is
being considered, the expected momentum distributions (the
red squares) get closer to the experimental values; note that
the figures only display the relative populations of the target
states and omit the others for clarity.
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FIG. 5. (Color online) Experimental realization of designed momentum states. The expected momentum state is ±2h̄kL [(a) and (b)],
±4h̄kL [(c) and (d)], and ±6h̄kL [(e) and (f)]. The pulse sequences are shown above each figure. The black circles are experimental results. The
blue diamonds are the expectations based on the design. The red squares are the modified design with momentum width included, which agree
better with the experiments.

It can be seen from Fig. 5 that the momentum width
correction can improve the precision of prediction with our
method. The average relative deviation between the experi-
mental results and the expected values without inclusion of the
momentum width is 25.03%, while the deviation is decreased
to 13.15% with the correction.

An asymmetry of the momenta can be observed in Fig. 5,
and it may be ascribed to the following factors. Besides the
measurement error, there is an imperfection of the standing
wave, brought forth by the unbalanced intensity of the laser

beams. External field fluctuations (as in the magnetic trap)
during the scattering process may also affect the momentum
distribution.

V. DISCUSSION AND CONCLUSIONS

Band structure theory is a global method to deal with
standing-wave scattering by a condensate, while Bragg and
Raman-Nath scattering are two special situations which can
be analytically solved with their respective approximations.
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In the Bragg regime, the potential height introduced by the
standing wave is restrained below 4ER and that leads to a
difficulty in generating higher-order momentum states. In the
Raman-Nath regime, the intensity of the standing wave is not
limited so that higher-order momentum states can be generated
symmetrically [22,23]. However, the pulse duration has to be
short enough for the atomic motion to be neglected, so the
momentum states cannot be predicted in this regime if the
pulse duration is slightly longer. In our work, the scattering
can be well explained and numerically analyzed within a much
wider range of pulse intensity and duration. So it is natural that
more momentum states can be generated.

In our paper, we compared the scattering by one pulse and
that by a train of pulses. Some valuable states, such as |±2h̄k〉,
|±4h̄k〉, and |±6h̄k〉 states with high contrast, cannot be
realized by single-pulse scattering, while they can be realized
by a sequence of standing-wave pulses. A sequence of lattice
pulses is a more effective and flexible tool for momentum
manipulation. It can generate many useful momentum states,
in addition to the ones demonstrated in our work. In the future,
more parameters could be changed to obtain better results in
design of states.

Although the numerical simulation is corrected to take into
account the momentum dispersion, some deviations between
the experiments and the simulation still exist. The inaccuracy
of the lattice-depth calibration, which is 5% at least, is one of

the reasons. The phase shift introduced by the magnetic trap
is another one, although its influence is estimated to be within
0.03%, which is below the experimental uncertainty. The
heating and momentum exchange during the s-wave scattering
may also lead to some differences, which need further study.

In conclusion, we developed a method for more flexible
manipulation of the condensate’s momentum states, where
the momentum states can be controlled by standing-wave
pulses in a wider range of pulse intensity, duration, or quantity.
Experiments in which a condensate is scattered by a sequence
of standing-wave pulses are demonstrated. A global theory,
treating the standing wave as an optical lattice, is applied to
explain the experiments. With this theory, we are able to design
pulse sequences for realizing states such as |±2h̄k〉, |±4h̄k〉,
and |±6h̄k〉 and experimentally realize them, which may be
applied in atomic interferometry to improve measurement
precision.
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