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Acceleration of adiabatic quantum dynamics in electromagnetic fields
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We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field
(EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135
(2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates
quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme
is consolidated by describing a way to overcome possible singularities in both the additional phase and driving
potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of
adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result
consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.
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I. INTRODUCTION

The technology to manipulate tiny objects is rapidly
evolving, and nowadays we can control even individual atoms
[1]. Various methods to control quantum states have been
reported in Bose Einstein condensates (BEC) [2–5] in quantum
computing with use of spin states [6] and in many other
fields of applied physics. It would be important to consider
the acceleration of such manipulations of quantum states for
manufacturing purposes and for innovation of technologies.
Earlier we proposed [7] the acceleration of quantum dynamics
with use of the additional phase of wave functions. We can
accelerate a given quantum dynamics and exactly obtain a
target state in any desired short time, where the target state
is defined as the final state in a given standard dynamics.
This kind of acceleration is called fast forward of quantum
dynamics.

One of the most important application of the theory of fast
forward is the acceleration of quantum adiabatic dynamics
presented in our latest work [8], which will hereafter be
referred as our preceding work. The adiabatic process occurs
when the external parameter of the Hamiltonian of the system
is adiabatically changed. Quantum adiabatic theorem [9–11]
states that, if the system is initially in an eigenstate of the
instantaneous Hamiltonian, it remains so during the adiabatic
process [12–19]. The rate of change in the parameter of the
Hamiltonian with respect to time is infinitesimal, so that it
takes infinite time to reach the final state in the adiabatic
process. However, by using our theory [8], the target states
(final adiabatic states) are available in any desired short time.
The infinitesimally slow change in the adiabatic dynamics is
compensated by the infinitely fast forward.

On the other hand, electromagnetic field (EMF) is often
used to control quantum states, for example, in manifestation
of the quantum Hall effect [20] and manipulation of BEC [3].
The acceleration of the adiabatic dynamics in EMF is far from
being trivial, and therefore it is highly desirable to extend
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our theory of the fast forward to systems under EMF. In this
paper we extend the theory of our preceding work [8] to the
system in EMF, and derive a driving field to generate the target
adiabatic state exactly aside from a spatially uniform phase like
dynamical and adiabatic phases [12].

In Sec. II we explain the method of the standard fast for-
warding under EMF. Section III is devoted to the fast forward
of the adiabatic dynamics with EMF. Section IV is concerned
with a technical procedure of removing nontrivial singularities
in both the additional phase and driving potential due to
nodes proper to wave functions under EMF. Examples for
the fast forward of excited Landau states with nonzero angular
momentum are given in Sec.V. Summary and discussion are
given in Sec. VI. The Appendix explains a way to apply the
abstract scheme of transitionless quantum driving to the orbital
dynamics of a charged particle in EMF.

II. STANDARD FAST FORWARD

Before embarking on the fast forward of adiabatic dy-
namics, we shall find the driving field which accelerates the
(nonadiabatic) standard dynamics of wave function under
the electromagnetic field (EMF) and drives wave function
in any desired short time from an initial state to the target
state defined as the final state of the standard dynamics. The
Hamiltonian for the electronic system with EMF is written as
H0 = 1

2m0
(p + e

c
A0)2 + V0. The electric and magnetic fields

are related to the vector potential A0 and scalar potential
V0 as E0 = − dA0

dt
− ∇V0 and B0 = ∇ × A0, respectively. For

simplicity of notation, we shall put e
c

to be 1 hereafter. The
Schrödinger equation is represented as

ih̄
∂�0

∂t
= − h̄2

2m0
∇2�0 − ih̄

2m0
(∇ · A0)�0 − ih̄

m0
A0 · ∇�0

+ A2
0

2m0
�0 + V0�0. (1)

�0 is a known function of space x and time t and is called
a standard state. For any long time T called a standard final
time, we choose �0(t = T ) as a target state that we are going
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to generate. Let �α(x,t) be a virtually fast-forwarded state of
�0(x,t) defined by

|�α(t)〉 = |�0(αt)〉, (2)

where α (>1) is a time-independent magnification factor of
the fast forward.

In general, the magnification factor can be time dependent.
Hereafter α is assumed to be time dependent, α = α(t). In this
case, the virtually fast-forwarded state is defined as

|�α(t)〉 = |�0(�(t))〉, (3)

where

�(t) =
∫ t

0
α(t ′)dt ′. (4)

Since the generation of �α requires an anomalous mass
reduction, we cannot generate �α as it stands [7]. But we
can obtain the target state by considering a fast-forwarded
state �FF = �FF(x,t) which differs from �α by an additional
space-dependent phase, f = f (x,t), as

�FF(t) = eif �α(t) = eif �0(�(t)), (5)

where f = f (x,t) is a real function of space x and time t

and is called the additional phase. Schrödinger equation for
fast-forwarded state �FF is supposed to be given as

ih̄
∂�FF

∂t
= − h̄2

2m0
∇2�FF − ih̄

2m0
(∇ · AFF)�FF

− ih̄

m0
AFF · ∇�FF + A2

FF

2m0
�FF + VFF�FF. (6)

VFF = VFF(x,t) and AFF = AFF(x,t) are called a driving scalar
potential and a driving vector potential, respectively. Driving
EMF is related with VFF and AFF as

EFF = −dAFF

dt
− ∇VFF, (7a)

BFF = ∇ × AFF. (7b)

If we appropriately tune the time dependence of α (the detail
will be shown later), the additional phase can vanish at the
final time of the fast-forward TF , and we can obtain the exact
target state

�FF(TF ) = �0(T ), (8)

where TF is the final time of the fast forward defined by

T =
∫ TF

0
α(t)dt. (9)

Substituting Eqs. (1), (4), and (5) into Eq. (6) and taking its
real and imaginary parts, we obtain a pair of equations

∇ ·
(

∇f − αA0 − AFF

h̄

)
+ 2 Re[∇�0/�0]

×
(

∇f − αA0 − AFF

h̄

)
− (α − 1)Im[∇2�0/�0] = 0

(10)

and

VFF

h̄
= −∂f

∂t
− (α − 1)

h̄

2m0
Re[∇2�0/�0]

− h̄

m0

(
∇f − αA0 − AFF

h̄

)
· Im[∇�0/�0]

− h̄

2m0
(∇f )2 + h̄

2m0

αA2
0 − A2

FF

h̄2

− h̄

m0

AFF

h̄
· ∇f + α

V0

h̄
, (11)

where f (x,t), �0(x,�(t)), α(t), A0(x,�(t)), AFF(x,t), and
VFF(x,t) are abbreviated by f , �0, α, A0, AFF, and VFF,
respectively. The same abbreviation will be used throughout
in this section. We can take the driving scalar potential from
Eq. (11) and the additional phase f which is a solution
of Eq. (10).

A. Additional phase and driving field

In order to determine the driving field, we should first
calculate the additional phase in Eq. (10). Here we derive
a general solution of Eq. (10) from the continuity equation for
�0 and �FF. With use of Eq. (1), we have a continuity equation
for �0,

∂

∂t
|�0|2 = h̄

m0
∇ ·

(
Im[�0∇�∗

0 ] − A0

h̄
|�0|2

)
, (12)

and by using Eqs. (5) and (6), the continuity equation for �FF

is

∂

∂t
|�FF|2

= h̄

m0
∇ ·

(
−∇f |�0|2 + Im[�0∇�∗

0 ] − AFF

h̄
|�0|2

)
,

(13)

where �FF(x,t) is abbreviated by �FF. From Eq. (5), which
is the definition of �FF, we have a relation between time
derivatives of �0 and �FF as

∂

∂t
|�FF|2 = α

∂

∂t
|�0|2. (14)

Combining Eqs. (12), (13), and (14), we have the gradient of
the additional phase

∇f (x,t) = (α − 1)Im[∇�0/�0] +
(

α
A0

h̄
− AFF

h̄

)
. (15)

Noting the equivalence of gauges for A0 and AFF due to the
initial condition [A0(t = 0) = AFF(t = 0)], we can take the
gradient of the additional phase and AFF as

∇f = (α − 1)Im[∇�0/�0], (16)

AFF = αA0. (17)

It is easily confirmed that Eqs. (16) and (17) satisfy Eq. (10).
Equation (17) implies that MF should be magnified by α times,
that is,

BFF(x,t) = α(t)B0(x,�(t)), (18)
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where B0 = ∇ × A0 and BFF = ∇ × AFF. When the standard
state �0 is expressed in terms of its real amplitude �̃0 and
phase η as

�0(x,t) = �̃0(x,t)eiη(x,t), (19)

Eq. (16) leads to the expression for the additional phase and
its gradient as

∇f (x,t) = (α − 1)∇η(x,�(t)), (20a)

f (x,t) = (α − 1)η(x,�(t)). (20b)

In Eq. (20b) a space-independent constant term was neglected.
Substitution of Eq. (17) into Eq. (11) gives

VFF

h̄
= −∂f

∂t
− (α − 1)

h̄

2m0
Re[∇2�0/�0]

− h̄

m0
∇f · Im[∇�0/�0] − h̄

2m0
(∇f )2

− h̄

m0

αA0

h̄
· ∇f − h̄

2m0
α(α − 1)

A2
0

h̄2 + α
V0

h̄
. (21)

Using Eq. (19) in Eq. (1) we have

− h̄

2m0
Re

[∇2�0

�0

]
= −∂η

∂t
− h̄

m0

A0

h̄
· ∇η − h̄

2m0

A2
0

h̄2 − V0

h̄
.

(22)

Substituting Eqs. (20) and (22) into Eq. (21) we obtain the
driving scalar potential as

VFF

h̄
= −dα

dt
η − 2(α − 1)

∂η

∂t

− h̄

2m0
(α2 − 1)

(
∇η + A0

h̄

)2

+ V0

h̄
. (23)

Therefore, once we have �0 and A0, the driving field can
be obtained from Eq. (7) with use of Eqs. (17) and (23). By
applying EFF and BFF against the initial standard state, we can
generate the target state in any short time TF related to the
standard final time T through Eq. (9).

III. FAST FORWARD OF ADIABATIC DYNAMICS

So far we presented the fast forward of the standard
dynamics in EMF which enables us to generate the target state
in any desired short time. Now we shall investigate the fast
forward of adiabatic dynamics of wave function under EMF
in a manner as employed in the preceding work [8]. Here we
cannot directly apply the issue in the previous section, and it
should be noted: (i) the adiabatic states are merely energy
eigenstates of the instantaneous Hamiltonian and are not
suitable as a standard state to be accelerated and (ii) since we
shall use an infinitely large α to compensate the infinitesimally
slow dynamics, the expressions for f in Eq. (20) and VFF in
Eq. (23) should diverge as they stand. Hence we first need
to regularize the adiabatic state so that it should satisfy the
time-dependent Schrödinger equation with an adiabatically
time-changing parameter.

Let us consider �0 under E0 and B0 corresponding to
the vector potential A0 = A0(x,R(t)) and the scalar potential

V0 = V0(x,R(t)) which adiabatically change through a param-
eter R = R(t) defined by

R(t) = R0 + εt. (24)

The constant value ε is the rate of adiabatic change in R(t)
with respect to time and is infinitesimally small, that is,

dR(t)

dt
= ε, (25)

ε � 1. (26)

The Hamiltonian of the system is represented as

H0 = [p + A0(x,R(t))]2

2m0
+ V0[x,R(t)], (27)

and Schrödinger equation for �0 is given as

ih̄
∂�0

∂t
= − h̄2

2m0
∇2�0 − ih̄

2m0
(∇ · A0)�0 − ih̄

m0
A0 · ∇�0

+ A2
0

2m0
�0 + V0�0. (28)

If a system is in the nth energy eigenstate at the initial time,
the adiabatic theorem guarantees that, in the limit ε → 0,
�0 remains in the nth energy eigenstate of the instantaneous
Hamiltonian throughout the time evolution. Then �0 is written
as

�0(x,t,R(t)) = φn(x,R(t))e− i
h̄

∫ t

0 En(R(t ′))dt ′ei	(t), (29)

where En = En(R) and φn = φn(x,R) are the nth energy
eigenvalue and eigenstate corresponding to the parameter R,
respectively, and 	 = 	(t) is the adiabatic phase given by

	(t) = i

∫ t

0

∫ ∞

−∞
dxdtφ∗

n

d

dt
φn, (30)

which is independent of space coordinates. φn fulfills

∂φn

∂t
= 0, (31)

− h̄2

2m0
∇2φn − ih̄

2m0
(∇ · A0)φn − ih̄

m0
A0 · ∇φn

+ A2
0

2m0
φn + V0φn = Enφn. (32)

The second and the third factors of the right-hand side of
Eq. (29) are space-independent dynamical and adiabatic phase
factors, respectively, which we will not intend to realize in the
fast forwarding. The adiabatic dynamics in the limit ε → 0
takes infinitely long time until we obtain an aimed adiabatic
state (target state).

For the fast forward of the adiabatic dynamics, we should
first choose an appropriate standard state and Hamiltonian. The
original adiabatic state is not appropriate as the standard state.
Quantum dynamics in Eq. (28) with small but finite ε inevitably
induces nonadiabatic transition, but �0 in Eq. (29) ignores
such transition. To overcome this difficulty, we regularize the
standard state and Hamiltonian corresponding to the adiabatic
dynamics [8], so that the following two conditions are satisfied.

(1) A regularized standard Hamiltonian and state used for
the fast forward should agree with H0 and �0 except for space-
independent phase, respectively, in the limit ε → 0.
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(2) The regularized standard state should satisfy the time-
dependent Schrödinger equation corresponding to the reg-
ularized standard Hamiltonian up to O(ε) with small but
finite ε.

Hereafter �
(reg)
0 and H

(reg)
0 denote the regularized standard

state and Hamiltonian, respectively, which fulfill the condi-
tions 1 and 2. In the fast forward we take the limit ε → 0,
α → ∞, and αε ∼ 1. Applying this regularization procedure
in advance, the adiabatic dynamics φn(R(0)) → φn(R(T )) can
be accelerated and the target state φn(R(T )) is realized in any
desired short time, where T is a standard final time which is
taken to be O(1/ε).

A. Regularization of standard state

Let us regularize the standard state so that it can be fast
forwarded with infinitely large magnification factor. Let us
consider a regularized Hamiltonian H

(reg)
0 ,

H
(reg)
0 = (p + A(reg))2

2m0
+ V

(reg)
0 . (33)

The scalar potential V
(reg)

0 in the regularized Hamiltonian is
given as

V
(reg)

0 (x,t) = V0(x,R(t)) + εṼ (x,t). (34)

Ṽ is a real function of x and t to be determined a posteriori,
which is introduced to incorporate the effect of nonadiabatic
transitions. On the other hand, for the vector potential we put
A(reg)(x,t) = A0(x,t). It is obvious that H

(reg)
0 agrees with H0

in the limit ε → 0, that is,

lim
ε→0

H
(reg)
0 (x,t) = H0(x,R(t)). (35)

The standard state in the adiabatic dynamics should
fulfill Schrödinger equation up to O(ε). We suppose that a
regularized standard state is given by

�
(reg)
0 = φne

− i
h̄

∫ t

0 En(R(t ′))dt ′eiεθ , (36)

where θ = θ (x,t) is real, and φn = φn(x,R(t)) and En =
En(R(t)) are the nth energy eigenstate and eigenvalue of
the original Hamiltonian H0, respectively. φn satisfies the
instantaneous eigenvalue problem in Eq. (32). The Schrödinger
equation for regularized standard system is represented as

ih̄
∂�

(reg)
0

∂t
= − h̄2

2m0
∇2�

(reg)
0 − ih̄

2m0
(∇ · A0)�(reg)

0

− ih̄

m0
A0 · ∇�

(reg)
0 + A2

0

2m0
�

(reg)
0

+V0�
(reg)
0 + εṼ �

(reg)
0 . (37)

Substituting Eq. (36) into Eq. (37) and eliminating the equation
of O(1) with use of Eq. (32), we find the equation for O(ε):

ih̄
∂φn

∂R
− h̄

dθ

dt
φn = − h̄2

2m0
[2i∇θ · ∇φn + i(∇2θ )φn]

+Ṽ φn + h̄

m0
A0 · (∇θ )φn. (38)

Multiplying Eq. (38) by i
h̄
φ∗

n and taking the real and imaginary
parts of the resultant equation, we have

∇2θ + 2Re[∇φn/φn] · ∇θ + 2m0

h̄
Re

[
∂φn

∂R

/
φn

]
= 0, (39)

Ṽ

h̄
= −Im

[
∂φn

∂R

/
φn

]
− h̄

m0
Im[∇φn/φn] · ∇θ

− h̄

m0

[
A0

h̄
· ∇θ

]
. (40)

From Eq. (39), θ turns out to be dependent on t only through
R(t). Therefore the minor term dθ/dt(= ε ∂θ

∂R
) was suppressed

in Eq. (40). Equations (39) and (40) give θ and Ṽ , respectively.
It is worth noting that θ is not explicitly affected by EMF.

B. Additional phase and driving field for fast forward
of adiabatic dynamics

Putting φn = φ̃ne
iη with the real amplitude φ̃n and phase η,

the regularized standard state in Eq. (36) is rewritten as

�
(reg)
0 = φ̃ne

i(η+εθ)e− i
h̄

∫ t

0 Endt . (41)

With use of �
(reg)
0 in Eq. (41) instead of �0 in Eq. (10), we

have

φ̃2
n∇ ·

(
∇f − αA0 − AFF

h̄

)
+2[φ̃n∇φ̃n]

(
∇f − αA0−AFF

h̄

)
− (α − 1)

[
2φ̃n∇(η + εθ ) · ∇φ̃n + φ̃2

n∇2(η + εθ )
] = 0,

(42)

where φ̃n(x,R(�(t))), f (x,t), A0(x,R(�(t))), AFF (x,t),
η(x,R(�(t))), and θ (x,R(�(t))) are abbreviated by φ̃n, f , A0,
AFF, η, and θ , respectively, and the same abbreviations will be
taken hereafter in this section.

Multiplying φ∗
n on both sides of Eq. (32) and taking its

imaginary part with use of φn = φ̃ne
iη, we have

[
2φ̃n∇η · ∇φ̃n+∇2ηφ̃2

n

] +
[
∇ · A0

h̄
φ̃2

n + 2φ̃n∇φ̃n · A0

h̄

]
= 0.

(43)

By eliminating η between Eqs. (42) and (43), it follows:

φ̃2
n∇ ·

(
∇f − A0 − AFF

h̄

)
+2[φ̃n∇φ̃n]

(
∇f − A0 − AFF

h̄

)
− (α − 1)ε

[
2φ̃n∇θ · ∇φ̃n + φ̃2

n∇2θ
] = 0. (44)

We can easily confirm that

∇f − A0 − AFF

h̄
= (α − 1)ε∇θ (45)

satisfies Eq. (44). Noting AFF(t = 0) = A0(t = 0), we have
the vector potential AFF and gradient of the additional phase
from Eq. (45) as

AFF(t) = A0(�(t)), (46)

∇f = (α − 1)ε∇θ, (47)

which should be compared with the result in Eqs. (17) and
(20) in the case of the standard fast forward. It is noteworthy
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that we do not have to magnify the MF in the fast forward
of adiabatic dynamics, while, in the fast forward of standard
dynamics, we need to magnify the MF by α times as shown
in Eq. (17). The result in Eq. (45) is also obtained from the
continuity equation.

By using �
(reg)
0 and V

(reg)
0 instead of �0 and V0, respectively,

and noting Eqs. (32), (40), (46), (47), and (11) leads to the
driving scalar potential as

VFF

h̄
= (α − 1)

En

h̄
− dα

dt
εθ − α2ε2 ∂θ

∂R
− h̄

2m0
α2ε2(∇θ )2

− h̄

m0
αε

A0

h̄
· ∇θ − αε Im

[
∂φn

∂R

/
φn

]

−αε
h̄

m0
Im

[∇φn

φn

]
· ∇θ + V0

h̄
, (48)

where we omitted a term of O(ε). While the first term diverges
with infinitely large α, it concerns only a spatially uniform
phase of wave function, which we do not care about in the
fast forward and can be omitted. Consequently, we have the
driving scalar potential

VFF

h̄
= −dα

dt
εθ − α2ε2 ∂θ

∂R
− h̄

2m0
α2ε2(∇θ )2

− h̄

m0
αε

A0

h̄
· ∇θ − αε Im

[
∂φn

∂R

/
φn

]

−αε
h̄

m0
Im

[∇φn

φn

]
· ∇θ + V0

h̄
. (49)

The driving field can be obtained from Eqs. (7), (46), and
(49). Thus, for the regularized state, one can generate the
fast-forwarded state �FF which agrees with φn at the initial
and final time:

�FF(t) = φn(R(�(t)))eiα(t)εθ(R(�(t))), (50)

where R(t) = R0 + εt and �(t) = ∫ t

0 α(t ′)dt ′. Here, because
of αε = O(1), R(�(t)) varies within a finite time range.

The idea of the acceleration of adiabatic dynamics was
also proposed by Berry [21] and by Muga et al. [22]. The
former presented an algorithm of the transitionless quantum
driving (TLQD) by applying Kato’s tool [10] used in proof of
the adiabatic theorem. The latter showed the driving of wave
function in a tunable harmonic trap with use of the invariants of
motion [23] and inverse engineering techniques [24], finding
a promising time dependence of the trapping frequency in the
linear case [25,26] and the nonlinear case [22]. And recently
Torrontegui et al. proposed the fast atomic transport without
vibrational heating [27]. These approaches are concerned
with a direct acceleration of the adiabatic states. Contrary
to those works the present theory combines opposite ideas
of the infinitely fast forward and infinitesimally slow adiabatic
dynamics. Furthermore, with use of a suitable space-dependent
additional phase, this theory enables us to accelerate adiabatic
dynamics of wave function in any potential and EMF against
any time dependence of the magnification factor (which begins
from and ends at unity) of the fast forward.

IV. SOLUTIONS FOR θ

In the fast forward of adiabatic dynamics, we need to
solve Eq. (39) to obtain the additional phase θ and thereby
to determine the driving potential VFF in Eq. (49). However,
both Eqs. (39) and (49) seem to suggest the divergence of θ and
VFF at the nodes of wave function where φn = 0. In fact, as φn

is an eigenfunction of the Hamiltonian with the magnetic field,
it is typically complex. Then the nodal set of a complex-valued
wave function is of codimension two. That is, the nodal set of a
two-dimensional complex wave function is made up of points;
of a three-dimensional wave function, of curves, etc. Here, by
solving Eq. (39) for prototype adiabatic dynamics like dilation
and translation of wave function which may have nodes, we
shall show that actually there appears no divergence in both θ

and VFF. In the case of general nodes, we shall suggest a way
to remove such divergence as well.

A. Fast forward of adiabatic dilation

In this case, the position vector is scaled as

x′ = λ(R)x, (51)

where λ(R) is a real scalar function of the adiabatic parameter
R = R(t) and stands for the spatial scaling. With use of
the normalized eigenstate φ(0)

n (x) for λ[R(t = 0)] = 1, the
adiabatically expanded or contracted state for λ(R(t))( 	= 1)
is given by

φn(x) = λd/2(R(t))φ(0)
n (x′), (52)

where d is the spatial dimension and the factor λd/2 is required
to satisfy the normalization condition,∫

|φn(x)|2ddx =
∫ ∣∣φ(0)

n (x′)
∣∣2

ddx′ = 1. (53)

Then we see

∂φn(x)

∂R

/
φn(x) = d

2

dλ

dR

/
λ + ∇x′φ(0)

n (x′)

φ
(0)
n (x′)

· dλ

dR
x (54)

and

∇xφn(x)

φn(x)
= λ

∇x′φ(0)
n (x′)

φ
(0)
n (x′)

. (55)

Using Eqs. (54) and (55) in Eq. (39), we find the equation for
θ :

∇2
xθ + 2

(
λ∇xθ + m0

h̄

dλ

dR
x
)

· Re

[∇x′φ(0)
n (x′)

φ
(0)
n (x′)

]

+ m0d

h̄

dλ

dR

/
λ = 0. (56)

Irrespective of the presence or absence of nodes of wave
function [φ(0)

n (x′)], Eq. (56) has the solution

θ = −m0

h̄

dλ

dR

x2

2λ
, (57)

which makes the second term in Eq. (56) vanishing and
guarantees the equality for the remaining terms.
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On the other hand, two apparently divergent terms in
Eq. (49) can now be rewritten as

−αε Im

[
∂φn

∂R

/
φn

]
− αε

h̄

m0
Im

[∇xφn

φn

]
· ∇xθ

= −αε

(
h̄

m0
λ∇xθ + dλ

dR
x
)

· Im

[∇x′φ(0)
n (x′)

φ
(0)
n (x′)

]
= 0. (58)

In obtaining the final equation in Eq. (58), we employed

the solution in Eq. (57). Thus, even if ∇x′φ(0)
n (x′)

φ
(0)
n (x′)

would have

singularities at nodes of wave function, both θ and VFF are free
from such singularity. A concrete example of the isotropic
dilation in the case of λ = (R(t))1/2 will be given in Sec. V.

While we have investigated the isotropic dilation, the result
can be generalized to the case of anisotropic dilation defined
by

x ′
j = λj (R)xj (j = 1, . . . ,d), (59)

where {x ′
j } and {xj } are orthogonal space coordinates. Follow-

ing Eq. (52), the general adiabatic state is given by

φn({xj }) =
d∏

j=1

λ
1/2
j φ(0)

n ({x ′
j }) (60)

with use of the eigenstate φ(0)
n ({xj }) for λj [R(t = 0)] = 1

(j = 1, . . . ,d).
Applying the same procedure as in Eqs. (54)–(56), we

obtain

θ = −m0

h̄

d∑
j=1

(
dλj

dR

/
λj

)
x2

j

2
, (61)

which satisfies Eq. (39). Equation (61) reduces to Eq. (57) in
the limit of isotropic dilation.

B. Fast forward of adiabatic translation

We then investigate the translation of wave function by
introducing the displacement

x′ = x − G(R), (62)

where G(R) is a real (coordinate) vector function of the
adiabatic parameter R = R(t). The adiabatically translated
state is now given by

φn(x) = φ(0)
n (x′) (63)

with φ(0)
n the eigenstate for G[R(t = 0)] = 0.

As before, we see

∂φn(x)

∂R

/
φn(x) = −dG

dR
· ∇x′φ(0)

n (x′)

φ
(0)
n (x′)

(64)

and

∇xφn(x)

φn(x)
= ∇x′φ(0)

n (x′)

φ
(0)
n (x′)

. (65)

Using Eqs. (64) and (65) in Eq. (39), we find

∇2
xθ + 2

(
∇xθ − m0

h̄

dG
dR

)
· Re

[∇x′φ(0)
n (x′)

φ
(0)
n (x′)

]
= 0, (66)

which has the solution

θ = m0

h̄

dG
dR

· x. (67)

For this solution, the apparently divergent terms in Eq. (49)
becomes

−αε

(
∇xθ − m0

h̄

dG
dR

)
· Im

[∇xφ
(0)
n (x′)

φ
(0)
n (x′)

]
= 0. (68)

Therefore, again, we see that both θ and VFF are free from
singularities. A concrete example in the case of G = (R(t),0,0)
is given in Sec. V.

In this way, for other prototype of adiabatic dynamics such
as rotations and boosts, one can show that the solutions θ and
VFF can be available analytically and be free from singularities.

C. The cases of general nodes

Sometimes the adiabatic states cannot be expressed in terms
of the simple transformations described in Secs. IV A and IV B
and both θ and VFF should be solved numerically. In such
cases, wave function can also have nodes. In the vicinity of
each node, wave function is given by the first-order term in
Taylor expansion of φn around it as

� =
d∑

j=1

Wj (R)[xj − Xj (R)], (69)

where Wj (R) ≡ ∂φ
(0)
n

∂xj
|xj =Xj (R)(j = 1,2, . . . ,d) are complex

coefficients, and Xj (R) stand for the location of the node. The
expression in Eq. (69) indicates a combination of anisotropic
complex scaling and translations investigated so far.

In the vicinity of the above node, one can obtain θ and
VFF which are free from the singularity. Below we shall give a
proof in the case

d ln Wj (R)

dR
= real (j = 1,2, . . . ,d) (70)

which still keeps a complex nature of {Wj }. Equation (70)
corresponds to a widely applicable case that arg(Wj ) is
arbitrary but remains unchanged against a small change
of R.

We start from a general adiabatic state as before:

φ =
⎛
⎝ d∏

j=1

Wj

⎞
⎠

1/2

�. (71)

We see

dφ

dR

/
φ = 1

2

d∑
j=1

dWj

dR

/
Wj +

⎧⎨
⎩

d∑
j=1

∂Wj

∂R
[xj − Xj (R)]

−
d∑

j=1

Wj (R)
dXj

dR

⎫⎬
⎭

/
� (72)

and

∂φ

∂xj

/
φ = Wj (R)

�
. (73)
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Using Eqs. (72) and (73) in Eq. (39), we find the equation for
θ , which can be solved in the case of Eq. (70) as

θ = m0

h̄

⎡
⎣−

d∑
j=1

(
dWj

dR

/
Wj

)
(xj − Xj )2

2
+

d∑
j=1

dXj

dR
xj

⎤
⎦ .

(74)

This solution makes two divergent terms in Eq. (49) vanishing.
While one should numerically solve θ and VFF in areas other
than the vicinity of nodes, the analytical expression in Eq. (74)
can be used in their vicinity and is useful to see the absence of
the divergence in θ and VFF. In the case of a nodal set made
up of curves, xj = Xj (τ,R) (j = 1,2, . . . ,d) give a parametric
representation of the nodal curve; of surfaces, xj = Xj (κ,τ,R)
(j = 1,2, . . . ,d) give the nodal surface, etc., where τ with κ

are suitable parameters characterizing the nodal set. Then one
can as well apply the argument from Eq. (69) through Eq. (74).
In other cases when arg(Wj ) changes with R, the proof in this
subsection is not justified, and the problem of removing the
singularity remains unsolved.

V. SOME EXPLICIT EXAMPLES

Section IV elucidated how the space x and parameter
R derivatives of adiabatic eigenstates are interrelated and
therefore sweep away the problem of singularities. Now we
shall show prototype examples of the fast forward of adiabatic
dynamics in EMF. As adiabatic states we choose the excited
states of the Landau states with nonzero angular momentum in
the uniform magnetic field which have nodal points with the
phase singularity. Then we investigate the acceleration of the
adiabatic dilation (expansion or contraction) and the adiabatic
transport of wave function and see that θ and VFF are free from
singularities.

A. Acceleration of adiabatic dilation in EMF

We consider the fast forward of adiabatic-isotropic dilation
of wave function. Suppose cϕn(x) is energy eigenstate under
vector potential A(x) and scalar potential V (x). c is a normal-
ization constant. Let φn(x) to be an energy eigenstate which
represents adiabatic expansion or contraction. The normalized
state is given by

φn = C(R)ϕn(
√

Rx), (75)

with the adiabatic parameter R and the normalization constant
C(R) = cRd/4, where d is the space dimension. Then, the
rescaled wave function φn is an energy eigenstate of Hamilto-
nian with

A0(x) =
√

RA(
√

Rx), (76)

V0(x) = RV (
√

Rx). (77)

The corresponding energy is represented as En(R) =
REn(R = 1), where En(R = 1) is equal to the energy of ϕn(x).
(Here we see no problem of anomalous mass scaling.) The
additional phase θ is now obtained by putting λ = √

R in the
formula in Eq. (57) as

θ = − m0

4h̄R
x2. (78)

In a similar way the driving scalar potential is expressed as

VFF

h̄
=

(
dα

dt
ε

m0

4h̄R
− α2ε2 3m0

8h̄R2

)
x2 + αε

2R

A0

h̄
· x + V0

h̄
.

(79)

As an example we consider an adiabatically squeezed
wave function in two dimensions (xy plane) under the MF
in z direction adiabatically increasing as Bz = R(t), where
R(t) = R0 + εt as given in Eq. (24). The vector potential
corresponding to the MF can be taken as

A0 = B

[
−R(t)y

2
,
R(t)x

2

]
. (80)

In this example the scalar potential V0 is put to zero. Energy
eigenstates of the instantaneous Hamiltonian, which satisfies
� → 0 at |x| → ∞, are represented in polar coordinates as

�N,M (r,θ ) = 1√
2π

exp(iMθ )φN,M (r), (81)

with

φN,M (r) =
√

N !

(N + |M|)!
1

l

(
r√
2l

)|M|

× exp

(
− r2

4l2

)
L

(|M|)
N

(
r2

2l2

)
(82)

with integers N and M . N is equal or greater than 0, while
M can be negative. L

(|M|)
N (r) is the generalized Laguerre

polynomials. l is defined by l ≡ √
h̄/BR. The eigenenergy of

the eigenstate in Eq. (81) is given by EN,M = (N + |M|−M

2 +
1
2 )h̄ωc with ωc = BR/m. We choose the eigenstate in Eq. (81)
as a squeezed state, which is squeezed when MF is increased.
We accelerate the manipulation which controls the width of
wave function. The driving scalar potential is obtained from
Eq. (79) as

VFF

h̄
=

(
dα

dt
ε

m0

4h̄R
− α2ε2 3m0

8h̄R2

)
r2, (83)

where we omitted a spatially uniform term concerned with
the spatially uniform phase. The driving EMF can be obtained
from Eqs. (7a) and (7b) with the use of Eqs. (46) and (83). The
driving potential in (83) does not show divergence while there
is a singularity in the phase of wave function in (81) at r = 0.

For numerical calculation we choose a first excited state

�1,1(r,θ ) = 1

2
√

2π

r

l2
exp(iθ ) exp

(
− r2

4l2

)
L

(1)
1

(
r2

2l2

)
(84)

with N = M = 1. The magnification factor is chosen (for 0 �
t � TF ) in the form

α(t)ε = v̄

[
1 − cos

(
2π

TF

t

)]
, (85)

where v̄ is time average of α(t)ε during the fast forwarding,
and the final time of the fast forward TF is related to the
standard final time T with v̄ as TF = εT /v̄ [see Eq. (9)].
εT and TF are taken as any finite value, although ε is
infinitesimal and T is infinitely large. Namely we aim to
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FIG. 1. (Color online) Wave function profile |�FF| before (upper
figure) and after (lower figure) the squeezing. Space coordinates and
time are scaled by L = 10−2× the linear dimension of a device
and τ = 10−2× the phase coherent time, respectively. The param-
eters are taken as m0

h̄
= 1.0(×τL−2), TF = 1.0(×τ ), v̄ = 1.0(×τ−1),

B = 1.0(×m1/2
e τ−1L−1/2) and R0 = 1.0 (dimensionless).

generate the target state in finite time, while the state is
supposed to be obtained after infinitely long time T in
the original adiabatic dynamics. αε starts from zero, takes
time-dependent value of O(1), and comes back to zero at the
end of the fast forward. With the use of typical space and time
scales like L = 10−2× the linear dimension of a device and
τ = 10−2× the phase coherent time, the parameters are chosen
as m0

h̄
= 1.0(×τL−2), TF = 1.0(×τ ), v̄ = 1.0(×τ−1), B =

1.0(×m
1/2
e τ−1L−1/2), and R0 = 1.0(dimensionless), where me

is the mass of an electron. The wave function profile is shown in
Fig. 1 at the initial (upper figure) and final (lower figure) time of
the fast forward. It can be seen the wave function is squeezed
successfully. To check the accuracy of the acceleration we
evaluated the fidelity which is defined by

F = |〈�FF (t)|�0(�(t))〉|, (86)

that is, the overlap between the fast-forwarded state �FF(t)
and the corresponding standard one �0(�(t)). It is unity
when �FF(t) = �0(�(t)). We confirmed that the fidelity first
decreases from unity due to the additional phase f of the
fast-forwarded state, but at the final time it becomes unity
again (see Fig. 2), which means the exact fast forward of the
adiabatic state aside from the spatially uniform phase factor.

0.2

1

Fi
de
lit
y

t0 FT  FT  

FIG. 2. Time dependence of fidelity F defined by Eq. (86). The
fidelity is calculated during the acceleration of squeezing of wave
function of which initial and final wave function distributions are
shown in Fig. 1. The time is scaled by τ = 10−2× the phase coherent
time. The same prescription is also employed in Fig. 4.

The result given here may also be obtained by applying the
method of transitionless quantum driving (TLQD) [21]. The
details are given in the Appendix. As already emphasized at
the end of Sec. III, however, the method of TLQD is limited to
a direct acceleration of the adiabatic states. And sometimes the
formal result [see Eq. (A2)] leads to unrealistic Hamiltonians
with time-dependent mass, which cannot be accepted exper-
imentally. By contrast, the present theory combines opposite
ideas of the infinitely fast forward and infinitesimally slow
adiabatic dynamics, and against any time dependence of the
magnification factor α(t)ε, gives the realistic driving potential
by having recourse to a space-dependent additional phase.
Therefore the present scheme is much more flexible than the
method of TLQD.

B. Acceleration of adiabatic transport in EMF

Then we shall investigate another prototype, that is, the fast
forward of adiabatic transport of wave function under EMF,
without leaving any disturbance on the wave function at the
end of the transport.

The wave function takes a form ψ(x)e− i
h̄
Ent , which is

stationary except for the spatially uniform phase, in the
presence of vector potential A(x,y,z) and scalar potential
U (x,y,z) at the initial time. The EMF is adiabatically shifted
with infinitesimal velocity ε in x direction. The shifted vector
potential A0(x,t) and scalar potential V0(x,t) are represented
with use of A and U as

A0 = A(x − εt,y,z), (87a)

V0 = U (x − εt,y,z), (87b)

respectively. The nth energy eigenstate of the instantaneous
Hamiltonian is written as

φn = ψ(x − εt,y,z) = ψ[x − R(t),y,z]. (88)

R(t) which characterizes the position of wave function in
x direction is adiabatically changed as R(t) = R0 + εt with
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ε � 1 and R0 = 0. Using G = (R,0,0) in the formula in
Eq. (67), we obtain the additional phase as

θ = m0

h̄
x. (89)

Similarly the driving scalar potential is given by

VFF(x,y,z,t) = −m0
dα

dt
εx − αεAx + U [x − R(�(t)),y,z].

(90)

The driving MF is obtained from the vector potential deter-
mined from Eq. (46) as

AFF(x,y,z,t) = A[x − R(�(t)),y,z]. (91)

The driving electric field is given by

EFF(x,y,z,t) = εα

(
∂A
∂R

)
− ∇VFF. (92)

It should be emphasized that since we have derived θ

without giving any specific profile on φn, the formulas for
the driving scalar potential in Eq. (90) and the driving vector
potential in Eq. (91) are independent of the profile of wave
function and are free from the problem of divergence. The
resultant electric field due to the second term in Eq. (90) and
the time derivative of AFF can be interpreted as balancing with
Lorenz force perpendicular to the transport.

As a concrete example of the fast forward of adiabatic
transport, we consider a wave function in two dimensions (xy

plane) under uniform MF Bz = B without the original scalar
potential (V0 = U = 0). We choose the vector potential as

A0 =
[
−By

2
,
B(x − εt)

2

]
, (93)

which leads to Bz and electric field of O(ε) in y direction:

E0 = −dA0

dt
=

(
0,

εB

2

)
. (94)

From Eqs. (91) and (93) it is obvious that we do not have to
change MF for the fast forward. A first excited state of the
instantaneous Hamiltonian with energy E0 = 3h̄B

2m0
is given as

�1,1(x,y) = 1

2h̄

√
1

2π
B[(x − R) + iy]

× exp

{
− B

4h̄
[(x − R)2 + y2]

}

×L
(1)
1

(
B[(x − R)2 + y2]

2h̄

)
. (95)

Note that φn in Eq. (95) is a stationary state with an
instantaneous value of R. We transport this state by the driving
field. In this case, the driving scalar potential in Eq. (90) is
represented as

VFF(x,y,z,t) = −m0
dα

dt
εx + αεBy

2
. (96)

In the numerical calculation α(t)ε is chosen as in Eq. (85)
and the parameters are chosen as m0

h̄
= 1.0(×τL−2), TF =

1.0(×τ ), v̄ = 8.0(×Lτ−1), B = 2.0(×m
1/2
e τ−1L−1/2), and

R0 = −4(×L). By applying the driving potential in Eq. (96),

5

-5

y

-9 9x

0.12

0

x

0.12

0
-9 9

5

-5

y

FIG. 3. (Color online) Wave function profile |�FF| at initial
(upper figure) and final (lower figure) time of the fast forward.
The parameters are taken as m0

h̄
= 1.0(×τL−2), TF = 1.0(×τ ),

v̄ = 8.0(×Lτ−1), B = 2.0(×m1/2
e τ−1L−1/2), and R0 = −4(×L).

we accelerate wave function. In Fig. 3 the wave function
profile |�FF| is shown at the initial and final time of the
fast forward. The wave function is transported by distance
8.0(×L) in time 1.0(×τ ) and becomes stationary at the end.
We confirmed that wave function is moved without changing
its amplitude profile during the acceleration. We evaluated the
fidelity defined by Eq. (86) and confirmed that it becomes
back to unity at the end of the fast forward (see Fig. 4). Thus
we have obtained the adiabatically accessible target state in a
finite time TF = 1.0(×τ ).

    0
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FIG. 4. Time dependence of fidelity F defined by Eq. (86). The
fidelity is calculated during the acceleration of transport of wave
function of which initial and final wave function distributions are
shown in Fig. 3.
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VI. CONCLUSION

We have presented the theory of the fast forward of
quantum adiabatic dynamics in electromagnetic field (EMF)
by developing our preceding work. We combined opposite
ideas of the infinitely fast forward and infinitesimally slow
adiabatic dynamics. We derived the driving force which
accelerates the adiabatic dynamics and enables us to obtain the
final adiabatic states aside from the spatially uniform phase in
any desired short time, while the final state is accessible after
infinite time in the original adiabatic dynamics. For the fast
forward of adiabatic dynamics in EMF, we must control the
driving field, but there is no need to magnify the magnetic
field, while in the standard fast forward, the magnification of
the magnetic field is inevitable. The scheme is consolidated
by elucidating a way to overcome possible singularities in
both the additional phase and driving potential due to nodes
of wave functions proper to systems under EMF. As typical
examples we showed fast forward of adiabatic squeezing
and transport of the excited Landau states which have phase
singularities around the nodes. The issue of the present
work is consistent with the scheme of transitionless quantum
driving applied to the orbital dynamics of a charged particle
in EMF.
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APPENDIX: TRANSITIONLESS QUANTUM DRIVING
APPLIED TO THE ORBITAL DYNAMICS

IN ELECTROMAGNETIC FIELD

The driving field in Eq. (79) may also be obtained
by applying the scheme of transitionless quantum driving
(TLQD) proposed by Berry [21]. In this Appendix we
shall closely follow the scheme of TLQD, and construct
the driving Hamiltonian H̃FF so that the fast-forwarded
adiabatic state should satisfy the time-dependent Schrödinger
equation. Let |φ〉 ≡ e− i

h̄
Ent |φn〉 denote a stationary state with

En and |φn〉 the eigenvalue and eigenstate of the time-
independent electronic Hamiltonian H = (p + e

c
A0)2/2m0 +

V0, respectively. With prescription e = c = 1, we then
consider

|�(t)〉 = U (t)|φ〉, (A1)

where U (t) is a unitary operator generating a fast-forwarded
state. |�(t)〉 satisfies the time-dependent Schrödinger equation

with Hamiltonian

H̃FF(t) = ih̄U̇ (t)U †(t) + U (t)HU †(t). (A2)

For simplicity, we tune the origin of energy and assume En to
be zero, that is,

H |φ〉 = 0. (A3)

Then the second term on the right-hand side of Eq. (A2)
becomes vanishing, and H̃FF(t) can be rewritten in a more
general form as

H̃FF(t) = ih̄U̇ (t)U †(t) + β(t)U (t)HU †(t), (A4)

where β(t) is an arbitrary dimensionless scalar function of
time. Now we shall obtain the driving potential for the fast
forward of adiabatic dilation. This can be done by having
recourse to the unitary operator U (t) generating dilations that
were originally cultivated in the context of the expanding or
contracting cavity (see, e.g., [28]):

U (t) = exp

[
i

4h̄
ln R(t)(x · p + p · x)

]
, (A5)

with

β(t) = R(t) = R0 + ε

∫ t

0
α(t ′)dt ′. (A6)

Straightforward calculation of Eq. (A4) gives

H̃FF(t) = 1

2m0
[p + ÃFF(x,t)]2 + ṼFF(x,t), (A7)

where

ÃFF(x,t) =
√

RA0(
√

Rx) − m0Ṙ

2R
x, (A8)

ṼFF(x,t) = RV0(
√

Rx) + Ṙ

2R
x · A0(

√
Rx) − m0Ṙ

2

8R2
|x|2.

(A9)

Finally we make a time-dependent gauge transformation

�(x,t) → �FF = exp

(
− i

m0

h̄

Ṙ

4R
|x|2

)
�(x,t). (A10)

This gauge transformation removes the second term from
Eq. (A8) and adds to Eq. (A9) an extra potential m0[(R̈R −
Ṙ2)/(4R2)]x2. Then noting that Ṙ = α(t)ε, we recover the
fast-forward potential in Eq. (79). The phase in Eq. (A10)
coincides with the additional phase of the fast-forwarded state
�FF in Eq. (50) with θ given in Eq. (78). Thus the argument
here justifies our predictions in the case of the fast forward
of adiabatic dilation of wave function in EMF. In the case of
more general fast forwarding, however, the invention of the
unitary operator U (t) is far from being easy and one must
have recourse to our theoretical scheme in the main text.
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