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Ultrafast photoionization dynamics at high laser intensities in the xuv regime
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We study the ionization dynamics in the soft-x-ray regime for high intensities and short pulses for excitations
near the ionization threshold. Using a one-dimensional helium atom model, we compare exact numerical solutions
with time-dependent Hartree-Fock results in order to identify the role of electron-electron correlations. At
moderate intensities but still in the x-ray and short-pulse regime, we find that the Hartree-Fock theory reproduces
well the dynamics of the ground-state occupation, while at high intensities strong correlation effects occur for
excitations close to the threshold. From their characteristic momentum distributions, we can identify contributions
to the double ionization from sequential three-photon and nonsequential or sequential two-photon processes. At
elevated intensities these contributions deviate from their usual intensity scaling due to saturation effects, even
though the total double-ionization probability stays below 10%. Furthermore, analysis of the time evolution of
the momentum distribution reveals signatures of the energy-time uncertainty which indicate a coherent regime
of the dynamics.
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I. INTRODUCTION

The availability of a new generation of free-electron-laser
(FEL) sources, which deliver highly intensive radiation in
the extreme ultraviolet (xuv) or x-ray regime enables studies
of light-matter interaction under so-far-inaccessible extreme
conditions and allows for new kinds of experiments including
the recording of single-shot x-ray diffraction patterns [1,2] and
the structure analysis of nonperiodic structures [3]. Decisive
for the success of such experiments is also the realization of
ultrashort pulses which test the sample on a time scale before
the damage process has significantly progressed [4]. However,
short and intense pulses imply a fast electron dynamics
comparable with the pulse length. In particular, ionization
processes take place on short time scales, and it is expected that
the corresponding changes of the electronic structure will have
a noticeable effect on the measured diffraction patterns [5].
Thus, a detailed knowledge of the dynamics of ionization
processes is of central importance for the interpretation and/or
development of experiments with new physics using the
current FEL sources.

The theoretical description of ionization processes is a
great challenge for theory, in particular when correlations
cannot be ignored, as, e.g., for the nonsequential two-photon
double ionization of helium under xuv and vacuum ultraviolet
(vuv) conditions [6–12]. Correlated two-photon-ionization
processes are commonly found also for other systems such
as, e.g., neon [13–15]. For atoms with more electrons, the
situation is even more complex, and correlations in the form of
a collective electron motion have been discussed as a possible
explanation for the observed highly charged xenon ions (up to
Xe21+) [16]. However, the direct solution of the Schrödinger
equation is impossible for larger systems, unlike helium.
Mostly, ionization processes for atoms with many electrons
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are described by rate equations [17,18] and, depending
on the excitation conditions, often a good agreement with
experiments is achieved. In addition, currently several approx-
imate many-particle approaches, including Green’s function
methods [19], the time-dependent Hartree-Fock approach [20],
multiconfigurational Hartree-Fock theories [21,22], and time-
dependent density-functional theory [23], are being adapted
to the ionization problem. It is therefore of great importance
to identify conditions under which approximate methods give
qualitatively correct results and what types of deviations have
to be expected when correlations dominate that are disregarded
in such theories.

Furthermore, reaching the regime of high intensities and
ultrashort pulses [24] raises many specific questions. Here, a
full account of the nonlinear dynamics beyond leading-order
perturbation theory is required that captures, e.g., saturation
effects [25], multiple multiphoton ionization [16,26,27], and
other nonlinearities in the ionization process that may also
affect the secondary emission seen in diffraction measure-
ments. Also, the use of ultrashort pulses introduces new
perspectives. Recent calculations reveal that, even for photon
energies that are supposed to be in the purely sequential
regime, the two electrons emitted in a double-ionization
process exhibit features that qualitatively deviate from the
standard behavior in this regime [28,29]. In particular, a
predominantly symmetric energy sharing for decreasing pulse
duration is predicted, and the electrons are preferentially
emitted in opposite directions [28]. Moreover, currently it
is unclear how short the pulse durations have to be for
a regime of coherent dynamics to be encountered where
quantum superposition states are important and signatures of
the energy-time uncertainty become noticeable. While often
one process can be identified that dominates the ionization
dynamics for given excitation conditions, when a system
is driven with ultrashort pulses competition and quantum
interference between different pathways, e.g., direct ionization
and Auger-type ionization [30,31], are also conceivable.
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A main focus of this paper is to explore theoretically the
role of correlations due to the electron-electron interaction
in the ionization dynamics for highly intense near-threshold
radiation. To this end it is advantageous to consider a model
where these correlations can be fully taken into account.
A simple model system that can be treated completely is
the one-dimensional (1D) helium atom; this model has been
applied extensively to ionization phenomena in the optical
and infrared regimes [32,33]. Although quantitatively such
models cannot be expected to match full three-dimensional
(3D) calculations in all respects, for many qualitative aspects
physically meaningful results can be anticipated as 1D model
atoms are known to share many properties with real atoms
[34,35]. Here, we solve numerically the Schrödinger equation
for the 1D helium model for intensities up to ≈1016 W/cm2 and
short pulses in the femtosecond regime near the thresholds for
single-photon single-electron ionization and two-photon dou-
ble ionization of helium. We compare these calculations with
results of the time-dependent Hartree Fock theory (TDHF)
which accounts for the electron-electron interaction on the
mean-field level but describes the system at all times by a single
Slater determinant and thus neglects genuine many-particle
correlations. The comparison of numerical complete results
with TDHF calculations allows us to evaluate the importance
of genuine correlations under high-intensity, soft-x-ray, and
short-pulse excitation conditions. From this comparison, we
find that the impact of interaction-induced correlations is
particularly strong in close vicinity to the ionization thresholds
and even affects signals that are dominated by single-ionization
processes.

Another goal of the present paper is to separate different
types of double-ionization processes and to follow their
respective dynamics. To this end we discuss the momentum
distributions of the two emitted electrons. We analyze the
competition between sequential three-photon and sequential
and nonsequential two-photon double-ionization processes.
Our results reveal a noticeable influence of the energy-time
uncertainty during the pulse. A separate analysis of the
time evolution of different processes confirms that different
contributions to the double ionization take place on roughly
the same time scale that is completed after the pulse is gone.
From the time traces we also find indications that electrons
which are emitted in the same direction can be recaptured
after they have first traveled more than five atomic Bohr radii
away from the core.

II. MODEL

The basis for our present work is the 1D helium model
described by the Hamiltonian

H =
∑
j=1,2

1

2m
[pj + eA(t)]2 +

∑
j=1,2

Vc(xj ) + Ve(|x1 − x2|),

(1)

where Vc(x) is the core potential and Ve(|x1 − x2|) is the
electron-electron interaction. Due to the restriction to one
dimension, it is necessary to choose a regularized core potential
Vc(x) without singularity. Here, we shall use Vc(x) = − U0

cosh2(x)

which leads to Ve(|x1 − x2|) = U0

N cosh2(x)
with N = 2. If U0 is

set to 3.0 atomic energy units, our model yields a ground-
state energy (E0 = −81 eV) and ionization thresholds (single
ionization I (1)

p = 27 eV, double ionization I (2)
p = 54 eV)

comparable to those of the 3D helium model [6,8]. The single
dimension retained in the model can be identified with the
polarization axis of a linearly polarized radiation field, as in this
direction the strongest field-induced dynamics is expected [6].
The corresponding component of the electrical field E(t) is
related to the vector potential component in the polarization
direction, A(t), by E = −Ȧ. The field is represented as

E(t) = E0 cos[ω(t − t0)] exp

(
− (t − t0)2

2 t2
p

)
. (2)

We assume that the system is initially in the ground state and
choose the center of the pulse as the origin of time, i.e., we
set t0 = 0. The pulse duration is controlled by the parameter
tp. Current FEL sources typically can operate at pulse lengths
down to about 10 fs [36,37]. Recent measurements with the
Linac Coherent Light Source at Stanford have reached pulse
durations in the few-femtosecond region [24,36], thus making
the ultrafast dynamics that is the focus of the present paper
experimentally accessible. For the present study we adjust tp
in such a way that the full width at half maximum of the field
amplitude is 1.6 fs. Exact results for the field-driven dynamics
in this model are easily obtained by direct numerical solution of
the corresponding Schrödinger equation for the two-electron
wave function, which is a spin singlet when the dynamics starts
in the electronic ground state. Here, we have solved the time-
dependent Schrödinger equation in k-space representation.
The direct numerical solution of the Schrödinger equation for
systems with more than two particles is currently out of reach
for 3D systems and is also rather demanding in the 1D limit.
Therefore, approximate approaches like the TDHF theory [20]
are needed for larger systems, and it is important to know
under which circumstances these methods are reliable. The
treatment of ionization problems within the TDHF framework
has a long tradition [20,38,39]. The TDHF theory has been
found to give reasonable excitation and ionization cross
sections under various excitation conditions [20,39]. However,
one should be aware of intrinsic restrictions of the TDHF
theory that apply particularly to ionization processes in small
systems like helium. An often discussed restriction comes
from the fact that, when a two-electron system in a singlett
state is represented as a single Slater determinant, then both
electrons must occupy the same single-particle state [22,40],
i.e., the spatial part of the wave function is a symmetric
product, ψ(r1,r2,t) = ϕ(r1,t)ϕ(r2,t). Expanding ϕ(r,t) in a
complete set of single-particle orbits, it is seen that the
function ψ(r1,r2,t), like the fully correlated wave function,
provides probabilities for single and double ionization as well
as for leaving the system unionized, but the factorized form
of ψ(r1,r2,t) imposes relations between the corresponding
coefficients which will in general not hold for the fully
correlated solution [20]. Whether or not these restrictions
are severe strongly depends on excitation conditions and
the considered signal. For example, for an excitation at
wavelength λ = 780 nm the double-ionization yields of helium
calculated within the TDHF theory deviate strongly from the
results of the full solution of the Schrödinger equation, while
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single-ionization yields are nicely reproduced [32]. At λ =
248 nm the TDHF calculation also gives a reasonable account
of double-ionization yields [32]. To the best of our knowledge,
the validity of the TDHF method has not been systematically
tested for the high frequencies and intensities in the short-pulse
regime that are considered in the present paper.

TDHF results are most easily obtained by following the
time evolution of the reduced density matrix, which is defined
by the expectation value 〈c†k1σ2

ck2σ2〉, where c
†
kσ and ckσ create

or annihilate an electron with wave number k and spin σ .
Setting up Heisenberg equations of motion for these operators
using the Hamiltonian Eq. (1) in second quantization results
in an infinite hierarchy of equations of motion for expectation
values involving an increasing number of operators c

†
kσ or

ckσ . The TDHF theory assumes that the system state can be
approximated at any time by a single Slater determinant. This
assumption leads to a closed set of equations of motion as
all higher-order expectation values factorize. In this way we
obtain

ih̄
d

dt
〈c†k1,σ1

ck2,σ2〉

=
(

h̄2

2m

(
k2

2 − k2
1

) + e

m
A(t)h̄(k2 − k1)

)
〈c†k1,σ1

ck2,σ2〉

−
∑

q

Ṽc(q)
[〈c†k1+q,σ1

ck2,σ2〉 − 〈c†k1,σ1
ck2+q,σ2〉

]
+

∑
k′,q
σ ′

Ṽe(q)
[〈c†k1,σ1

cq+k2,σ2〉〈c†k′,σ ′c−q+k′,σ ′ 〉

− 〈c†k1,σ1
c−q+k′,σ ′ 〉〈c†k′,σ ′cq+k2,σ2〉

]
−

∑
k′,q
σ ′

Ṽe(q)
[〈c†q+k1,σ1

ck2,σ2〉〈c†−q+k′,σ ′ck′,σ ′ 〉

− 〈c†q+k1,σ1
ck′,σ ′ 〉〈c†−q+k′,σ ′ck2,σ2〉

]
, (3)

where Ṽc(q) and Ṽe(q) are the Fourier transforms of the core
potential Vc(x) and the electron-electron interaction Ve(x),
respectively. The initial values of 〈c†k1,σ1

ck2,σ2〉 are determined
from a static self-consistent calculation of the Hartree-Fock
ground state, which yields a stationary solution of Eq. (3). The
time evolution of 〈c†k1,σ1

ck2,σ2〉 is then obtained by iterating
Eq. (3) in time.

III. DYNAMICS OF THE GROUND STATE

An important quantity of interest is the occupation proba-
bility of the ground state P0 as it reflects the total ionization
yield. Furthermore, it has a strong influence on x-ray scattering
patterns. P0 can easily be extracted from the wave function or
the reduced density matrix by projecting on the ground state.

In Fig. 1 we have plotted the limiting value of P0 for
long times after the interaction with the radiation as a
function of photon energy for two excitation intensities I1 =
3.5 × 1014 W/cm2 and I2 = 5.6 × 1013 W/cm2. We compare
the numerically exact solution with the results of TDHF
theory. The threshold for one-photon single ionization is in
both cases at h̄ω ≈ 27 eV, which results in a sharp decrease
of the ground-state occupation for higher photon energies.
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FIG. 1. (Color online) Occupation probability of the ground state
P0 as a function of the photon energy for the two intensities I1 =
3.5 × 1014 W/cm2 and I2 = 5.6 × 1013 W/cm2.

Below this threshold we observe a weak ionization which
results from multiphoton processes. All four curves exhibit
a sharp minimum above the threshold, and as expected the
total ionization decreases when the intensity is reduced. In the
Hartree-Fock approximation the minimum is less pronounced
and shifts to higher energies with rising intensity, while
in the exact calculation its position is almost independent
of the intensity. The two calculations become more similar
the lower the intensity. For photon energies above 40 eV
the Hartree-Fock curves essentially coincide with the exact
results. In order to understand the origin of the differences
between Hartree-Fock and Schrödinger equation calculations,
it is instructive to look at the time evolution of P0, which is
shown in Fig. 2 for the higher intensity from Fig. 1 and for two
photon energies.

Let us first concentrate on the results for an excitation at
h̄ω = 38 eV [Fig. 2(a)] which for both levels of the theory
is above the minimum in the ground-state occupation. Here,
the Hartree-Fock result agrees qualitatively well with the full

0.4

0.6

0.8

1

-0.2

-0.1

0

0.1

0.2

P
0

E (
t)

[a
.u

.]

(a)

ω = 38 eV

0.4

0.6

0.8

1

-2 -1 0 1 2

-0.2

-0.1

0

0.1

0.2

P
0

E(
t)

[a
.u

.](b)

ω = 33 eV

time [fs]

Hartree Fock
exact sol.

Hartree Fock
exact sol.

FIG. 2. (Color online) Time evolution of the ground-state occu-
pation P0 for excitations with an intensity I1 = 3.5 × 1014 W/cm2

and two photon energies: (a) h̄ω = 38 eV and (b) h̄ω = 33 eV. The
red filled area represents the envelope of the electrical field E .
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FIG. 3. (Color online) Time dependence of the lowest Hartree-
Fock eigenvalues obtained by diagonlizing the mean-field Hamilto-
nian at each time step for the two intensities I1 = 3.5 × 1014 W/cm2

and I2 = 5.6 × 1013 W/cm2. The arrow represents the energy of a
single photon, h̄ω = 33 eV.

calculation. The occupation probability of the ground state
decreases monotonically during the laser pulse and after the
pulse stays at a value of about ∼60%.

In contrast, a nonmonotonic time evolution of P0 is found
in the Hartree-Fock calculation for an excitation closely above
the single-ionization threshold [Fig. 2(b)]. In comparison to the
exact solution, the atom is ionized faster in the Hartree-Fock
calculation until the ground state is populated with only ∼34%
probability. Then the ionization stops and a recombination is
observed even though the pulse is still driving the system.
In order to understand this feature of the Hartree-Fock
approach we have diagonalized the Hartree-Fock Hamiltonian
at each time step. Note that the Hartree-Fock solution is
in our case equivalent to a mean-field treatment of the
Hamiltonian Eq. (1), and thus the Hartree-Fock Hamiltonian
depends parametrically on the time-dependent values of the
reduced density matrix. Consequently, the energy eigenvalues
obtained by the diagonalization depend on time. These values
effectively determine the ionization threshold. Figure 3 shows
the time evolution of the lowest eigenvalue for an excitation
energy of h̄ω = 33 eV for the two intensities from Fig. 1. With
ongoing ionization the lowest eigenvalue decreases because
the screening of the core potential by the mean field of the
electrons is reduced and thus the binding of the remaining
charges is enhanced. At higher intensity the binding energy is
larger than the photon energy. Once it lies sufficiently above
this energy, single-photon processes are significantly sup-
pressed and the ionization stops even though the pulse is still
driving the system. From this time on the pulse generates only
transient virtual excitations which disappear after the pulse.
This is seen as the recovery of the ground-state occupation in
Fig. 2(b).

For high enough photon energies, this stopping of the
ionization does not take place as the binding is never larger
than the photon energy. This is the case in Fig. 2(a) where also
the Hartree-Fock curve falls monotonically. The same holds
for the lower intensities used in Figs. 1 and 3. This continuous
descent of the threshold is not found in the exact solution,
because instead of a mean-field charge distribution at the core
the two electrons are treated as quantized charges. So either
two electrons or one are at the core and a continuous transition
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FIG. 4. (Color online) Time evolution of the electron probability
density in k space for an excitation with intensity I1 = 3.5 ×
1014 W/cm2 at a photon energy of h̄ω = 33 eV: (a) and (b) for the
exact solution and (c) for the Hartree Fock approach. (b) displays the
result for a time t = 4.9tp after the pulse maximum on a logarithmic
scale. The dashed lines in (c) indicate the k values corresponding to the
single-particle excess energies calculated using the time-dependent
energies from Fig. 3.

between the first and the second ionization thresholds does
not take place. This interpretation is supported by looking
at the time evolution of the k-space distributions shown in
Fig. 4. The exact solution [Fig. 4(a)] is strongly peaked at two
k values of approximately ±0.6 atomic units, corresponding
to a kinetic energy h̄2k2

2m
of the released electron of 5 eV.

These peaks result from the single-photon ionization starting
from the fully occupied ground state. Ionization processes
starting from the singly ionized state with one electron at the
core are not seen on this scale because the photon energy is
below the corresponding threshold. Figure 4(b) displays the
k distribution taken at t = 4.9tp after the pulse maximum
on a logarithmic scale. The figure reveals two additional
weak peaks at ∼±1.7 atomic units, reflecting the ionization
where one electron is released after absorbing two photons. In
contrast, the k-space distribution resulting from the Hartree-
Fock calculation [Fig. 4(c)] shows that with progressing time
electrons are released with decreasing momenta, reflecting the
decreasing excess energies (dashed lines) that correspond to
the rising binding energies shown in Fig. 3. As in the exact cal-
culation the Hartree-Fock theory also predicts weaker peaks at
higher momenta that are caused by two-photon single-electron
processes. It has to be expected that the differences between
the Hartree-Fock approximation and the exact theory are most
pronounced in the two-electron system considered here. This
is because, first, for larger electron numbers a mean field
can build up more effectively as the contribution of a single
given electron is less important, as in the two-electron case,
and, second, because the difference between the ionization
thresholds for single-photon ionization starting either from the
ground state or from the singly ionized ion are largest in our
case.
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IV. MOMENTUM DISTRIBUTION FOR DOUBLE
IONIZATION

In order to get more insight into the role of different ion-
ization processes, it is worthwhile to analyze the momentum
distribution of the emitted electrons, as different processes
can be discriminated by corresponding characteristic k-space
patterns. Such distributions can be accessed by kinetically

complete experiments that have recently been performed for
neon under the excitation conditions for observing sequential
double ionization using a reaction microscope [41]. Here,
we shall concentrate on double-ionization processes. The
double-ionization probability can be extracted by transforming
the wave function into real space, where parts corresponding
to neutral, singly, and doubly ionized helium can be identified
according to

�He(x1,x2) =
{

�(x1,x2) for |x1| < a, |x2| < a,

0 else,
(4a)

�He+
(x1,x2) =

{
�(x1,x2) for |x1| < a, |x2| > a or |x1| > a, |x2| < a,

0 else,
(4b)

�He2+
(x1,x2) =

{
�(x1,x2) for |x1| > a, |x2| > a,

0 else,
(4c)

where an electron is considered free when it is found at a
distance larger than the threshold a from the core. Here, we
chose a = 5 a.u. By transforming �He2+

(x1,x2) back to the
k space the momentum distribution |�He2+

(k1,k2)|2 of two
electrons emitted from the core is found.

All double-ionization processes have to fulfill energy
conservation. This implies for a helium atom in the ground
state with energy E0 which absorbs n photons and ejects two
electrons with the kinetic energies E

(1)
kin and E

(2)
kin the relation

E1
kin + E2

kin = E0 − nh̄ω (5a)

⇒ h̄2k2
1

2m
+ h̄2k2

2

2m
= E0 − nh̄ω. (5b)

Hence the electrons that take part in a double-ionization
process are distributed on circles in k space. This is seen in
Fig. 5 where we have plotted the distribution |�He2+

(k1,k2)|2
over the corresponding momenta k1 and k2 for three represen-
tative photon energies at a time when the pulse is essentially
gone (4.9tp after the pulse maximum). Our results at long times
are in qualitatively good agreement with previous calculations
of the energy distribution of the two released electrons that
were performed using a 3D model [6–8,42].

With a photon energy of 60 eV [Fig. 5(a)] it is possible
to remove both electrons by sequential single-photon absorp-
tions. For sequential double ionization the allowed values for
k1 and k2 are fully determined by the first and second ionization
potentials due to energy conservation. Consequently, the
characteristic trace of a sequential ionization process is a
momentum distribution that is sharply peaked at discrete points
on a circle [6,42]. It is clearly seen from Fig. 5 that this process
indeed dominates the double ionization at 60 eV, as expected.

The photon energy of 52 eV [Fig. 5(b)] is just below
the second ionization threshold at I (2)

p = 54 eV, and thus the
sequential two-photon double ionization is suppressed. The
main process contributing to the double ionization in this case
is the nonsequential two-photon double ionization, where both
electrons are released together from the core, absorbing the
energy of two photons. This process is known to lead to a
continuous distribution of the momenta over the corresponding
circle [6]. In contrast to the sequential ionization, the electrons
here leave the core region preferentially in opposite directions,
due to their mutual Coulomb repulsion that acts during their
common escape. Also typical is the tendency that it is most
likely that one electron gets nearly all the energy while
the other escapes with rather low velocity [43]. All these
characteristic features are seen in Fig. 5(b), confirming the

(a) ω = 60 eV (b) ω = 52 eV (c) ω = 44 eV
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FIG. 5. (Color online) Absolute square of the two-electron wave function restricted to doubly ionized helium |�He2+
(k1,k2)|2 at a time

t = 4.9tp after the pulse maximum for an excitation intensity of I1 = 3.5 × 1014 W/cm2 and photon energies (a) 60 eV, (b) 52 eV, and
(c) 44 eV.
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expectation that by tuning the photon energy it is possible
to switch between sequential and nonsequential ionization
processes.

Interestingly, on lowering the photon energy further to
44 eV, we find a coexistence between sequential and non-
sequential processes as seen in Fig. 5(c) by looking at the
characteristic k distributions. The inner ring corresponds to
nonsequential two-photon absorption while the outer ring
reflects the sequential three-photon double-ionization process
where first a single photon removes one electron and then the
remaining electron is ripped off the core by a two-photon
absorption. Looking closely at the outer ring in Fig. 5(c)
it is striking that the peaks of electrons emitted in opposite
directions (quadrants 2 and 4 in the figure) are much sharper
than those corresponding to an emission in the same direction
(quadrants 1 and 3 in the figure), which are noticeably
smeared out around the circle. This is caused by the stronger
influence of the Coulomb interaction when electrons fly side
by side with similar velocities as compared to a situation
where they fly apart and are thus largely separated. It is
clear that a coexistence of two rings as seen in Fig. 5(c)
can be observed only at high enough intensities. For low
intensities the two-photon process always dominates over the
three-photon process and thus only the inner ring is seen. To
make this argument more quantitative, we have integrated the
distribution |�He2+

(k1,k2)|2 separately over the inner and outer
rings in Fig. 5(c) in order to get a measure for the strengths
of the corresponding processes. The results are presented in
Fig. 6. As expected, at low intensities the signal rises with
the square of the intensity for the two-photon process while
for the three-photon process the dependence is cubic. For
intensities above ∼1015 W/cm2 both signals start to saturate
even though the double-ionization probability is still below
10%. At high enough intensities the single ionization even
after a short, femtosecond, pulse is almost complete and leads
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FIG. 6. (Color online) Dependence of the two- and three-photon
contributions and the total double ionization probability (with and
without volume averaging) on the intensity I for a photon energy of
h̄ω = 44 eV [cf. Fig. 5(c)] together with fits of the form I n to the
two- and three-photon curves in the region I < 1014 W/cm2. The fit
gives n = 2 and n = 3 for the two- and three-photon contributions
respectively. The inset shows the slope of the volume averaged total
double ionization curve.

to the saturation of the double-ionization signals seen in the
figure.

Experimentally, the intensity scaling of ionization yields
is often used to identify different pathways of the ionization
process. For example, in Ref. [44] a measured scaling ∼I 2

of the double-ionization yield of helium has been taken as
evidence for a dominance of direct two-photon ionization in
this experiment. The scaling in this example coincides with
the prediction obtained from lowest-order perturbation theory.
At elevated intensities the situation is more complex [45], as
can also be seen, e.g., from recent experiments with neon,
where the intensity dependence of the total double-ionization
yield has been analyzed [46]. At low intensities a quadratic
scaling has been found, while at elevated intensities the
exponent is between 2 and 3. This finding has been taken
as an indication for a mixture between direct two-photon and
sequential three-photon double-ionization processes occurring
at elevated intensities.

In the following we shall discuss the intensity dependence
of the total double-ionization yield that results from our 1D
helium model (green crosses in Fig. 6). In order to make closer
contact with experimentally accessible quantities, we have
performed an average over the spatial laser profile (volume
averaging), assuming a Gaussian profile with a full width at
half maximum of 15 μm (black solid line in Fig. 6), which is
an assumption typical for current experiments [47]. Assuming
that the total volume-averaged double-ionization probability
follows a power law of the form I n, the slope in a logarithmic
plot should give the exponent n. This slope is plotted in the inset
of Fig. 6. As is clearly seen, the exponent first changes con-
tinuously from 2 to 2.6 until at higher intensities it drops even
below 2. Obviously, for intensities above ∼5 × 1014 W/cm2,
an exponent between 2 and 3 does not indicate a competition
between two- and three-photon processes of roughly equal
strength. Instead, the three-photon process clearly dominates
even though the total yield does not show a cubic intensity
scaling due to the saturation of the signal.

V. TIME DEPENDENCE OF THE DOUBLE IONIZATION

Advancing the available radiation sources to ever shorter
pulse durations makes the temporal evolution of ionization
processes a new focus of interest. First xuv-pump xuv-probe
experiments [13] analyzing the fragmentation dynamics of N2

may pave the way toward fully time-resolved measurements of
ultrafast ionization processes. For excitations with short-pulse
excitations, it is expected theoretically that on short times
during or shortly after the pulse the dynamics should evolve
coherently through coherent superposition states. This is in
contrast to a time evolution described by incoherent transition
rates. If the rates are not introduced phenomenologically, they
are usually calculated using a golden-rule-type formula which
involves a strict energy conservation between initial and final
states. However, it is clear from standard textbook derivations
of the golden rule that the energy-conserving δ function builds
up in time. On short time scales deviations from this behavior
should occur due to the energy-time uncertainty, which allows
transitions in a wider energy range. Indeed, signatures of
energy-time uncertainty that result from femtosecond laser
excitations of semiconductors have recently been theoretically
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FIG. 7. (Color online) Momentum distribution of electrons emit-
ted in opposite directions |�He2+

(k, − k)|2 with equal kinetic energies
for different times specified in the figure.

predicted and later measured [48]. Typically, as a result of
the energy-time uncertainty, carrier distributions generated in
the conduction band of a semiconductor by short laser pulses
are found to be much broader directly after or during the
pulse than at longer times. To quantify such effects for our
system, we have plotted in Fig. 7 the momentum distribution
|�He2+

(k1,k2)|2 for different times for a photon energy of 52 eV
along the line k = k1 = −k2, i.e., for the preferred emission
of electrons with opposite momenta. From Fig. 5(b) we see
that along the line k = k1 = −k2 two peaks occur that are
symmetric around k = 0. In Fig. 7 we concentrate on the peak
for positive k values. The curves have been normalized to
their respective maxima in order to facilitate the comparison.
As seen from the figure, at early times while the pulse is
starting to rise, the width of the k distribution is more than
twice the value found for times when the pulse has vanished.
This is the characteristic signature of energy-time uncertainty.
At long times the width approaches a finite value which
is determined by the finite spectral width of the incoming
radiation. Interestingly, the distribution in Fig. 7 is strongly
asymmetric at early times, with more weight at higher k

values. This may be explained by recalling that the threshold
for single-electron ionization affects the double-ionization
probability because singly ionized states appear as virtual
intermediate states. This should provide a double-resonance
structure near k = k1 = −k2 = 1.3 a.u. With strictly energy-
conserving processes this resonance cannot be reached for our
excitation conditions. At short times, however, the energy-time
uncertainty allows some excitations close to this threshold.
The usual resonant enhancement near the threshold of these
excitation tails explains the enhanced distribution at higher k

values in Fig. 7.
In order to learn more about the interplay of different ion-

ization processes, it is desirable to follow their time evolution
separately. To this end we recall that different processes yield
characteristic traces in the k-space distribution. For example,
two- and three-photon processes can be separated because
they result in momenta distributed over rings with different
radii (cf. Fig. 5). We can further distinguish processes where
electrons are emitted in the same or in opposite directions by
looking at the momentum distribution restricted to either the
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FIG. 8. (Color online) Time evolution of different contributions
to the double ionization: two-photon process with electrons emitted
in the same (2h̄ω ↑↑) or in opposite (2h̄ω ↑↓) directions and the
three-photon double ionization (3h̄ω) for an excitation with intensity
I1 = 3.5 × 1014 W/cm2 and photon energy h̄ω = 52 eV. The signals
are normalized to their long-time values. The red filled area represents
the envelope of the electrical field E .

first and third or to the second and fourth quadrants in the
k1-k2 plane. Note that sequential processes emit electrons with
equal probability in the same as in opposite directions [cf., e.g.,
Fig. 5(a)], while in a direct process the electrons are emitted
preferentially in opposite directions [cf., e.g., Fig. 5(b)].

By integrating over the respective areas in the k1-k2 plane,
we can obtain a measure for the corresponding processes.
These integrated quantities are shown in Fig. 8 as functions
of time for an excitation intensity of 3.5 × 1014 W/cm2 and a
photon energy h̄ω = 52 eV. For better comparison all curves
have been scaled to their long-time values. In contrast to
the decrease of the ground-state occupation (cf. Fig. 2), the
rise of all contributions in Fig. 8 sets in essentially only
after the pulse has reached its maximum. This delay reflects
the time taken by electrons to travel a sufficient distance
from the core to be counted as emitted [cf. Eq. (4c)]. The
amplitudes of two-photon emission in the opposite direction
and three-photon double ionizations rise monotonically on
essentially the same time scale. In contrast, emissions of two
electrons in the same direction start slightly earlier and exhibit
a nonmonotonic time dependence. A possible explanation for
this nonmonotonic behavior is the fact that electrons emitted
in the same direction repel each other, and thus there is a
certain probability that one of the electrons returns to the
core area after it has first left this region. In a previous
study for excitations far below the second ionization threshold,
the almost complete suppression of two-electron emission in
the same direction, which is typically found at long times
for these excitation conditions, has been attributed to this
recapture process [9]. Our results in Fig. 8 indicate that
recapture processes are still noticeable but much weaker in the
regime slightly below the second ionization threshold studied
here.

VI. CONCLUSIONS

We have studied the near-K-shell ionization dynamics in
the presence of an ultrashort intense vuv pulse. Concentrating
on a 1D helium model allows us to identify signatures of
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correlated electron dynamics by comparing time-dependent
Hartree-Fock calculations with the full numerical solution of
the corresponding Schrödinger equation. For not too high
intensities the Hartree-Fock approximation reproduces well
the numerically complete solution for the dynamics of the
ground state, which reflects the progress of the ionization and
is dominated by the single-ionization process. Both the full
and approximate solutions also predict for resonant excitation
of the K edge a strong depopulation of the ground state during
the pulse. This indicates a massive change of the electronic
structure already before the pulse reaches its maximum,
which should also affect diffracted signals that are generated
on the same time scale. However, the Hartree-Fock theory
predicts a continuous flow of charge away from the core
that is accompanied by a gradual increase of the binding
of the remaining charges. This picture is not supported by
the full theory, where the ionization process is quantized
and the transition between electrons experiencing the first or
the second ionization potential is abrupt. The Hartree-Fock
approach strongly deviates from the Schrödinger theory even
with respect to quantities dominated by single-ionization
processes whenever the intensity is so high that the time-
dependent Hartree-Fock binding energy of the remaining
electron falls below the single-photon energy.

We have analyzed the momentum distribution of the
electrons emitted in a double-ionization process. In qualitative
agreement with 3D calculations, we find sequential two-
photon double ionization for excitations above the second
ionization potential and nonsequential double ionization close
below this threshold. With further lowering of the photon
energy for the same intensity a competition between non-
sequential two-photon and sequential three-photon double

ionization occurs. It turns out that only for low intensities
do the respective signals for two- and three-photon processes
scale quadratically or cubically with intensity, while at higher
intensities saturation effects take place even though the total
double-ionization probability is lower than 10%. On increasing
the intensity beyond the point where both processes have equal
weight, the three-photon process clearly dominates although
the total signal follows a power law with an exponent that
can be far below 3. An analysis of the time evolution of the
two-electron momentum distribution reveals that at short times
during the excitation the distribution is asymmetric and more
than twice the width at long times. The broadening reflects
the influence of the energy-time uncertainty, which is a strong
indication for a coherent regime that occurs in the dynamics
for sufficiently short excitations. The asymmetry may be
attributed to the vicinity to a virtual resonance. Separation
of the time evolution of different double-ionization processes
reveals that the two-photon process with the emission of both
electrons in opposite directions shows practically the same
time dependence as the three-photon process. In contrast, the
two-photon double ionization where the electrons are emitted
in the same direction is affected by recapture processes that
lead to a nonmonotonic time dependence of the corresponding
yield.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support by
the Bundesministerium für Bildung und Forschung BMBF
through Grants No. 05K10WCA and No. 05K10PSB. We also
acknowledge stimulating discussions with I. D. Feranchuk and
D. Hochstuhl.

[1] H. N. Chapman et al., Nature Phys. 2, 839 (2006).
[2] B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814

(2010).
[3] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu,

Nature (London) 406, 752 (2000).
[4] S. P. Hau-Riege, R. A. London, H. N. Chapman, and M. Bergh,

Phys. Rev. E 76, 046403 (2007).
[5] S. P. Hau-Riege, Phys. Rev. A 76, 042511 (2007).
[6] X. Guan, K. Bartschat, and B. I. Schneider, Phys. Rev. A 77,

043421 (2008).
[7] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schneider,

L. A. Collins, and J. Burgdörfer, Phys. Rev. A 77, 043420 (2008).
[8] A. Palacios, T. N. Rescigno, and C. W. McCurdy, Phys. Rev. A

79, 033402 (2009).
[9] E. Foumouo, A. Hamido, P. Antoine, B. Piraux, H. Bachau, and

R. Shakeshaft, J. Phys. B 43, 091001 (2010).
[10] J. S. Parker, L. R. Moore, K. J. Meharg, D. Dundas, and K. T.

Taylor, J. Phys. B 34, L69 (2001).
[11] I. A. Ivanov and A. S. Kheifets, Phys. Rev. A 75, 033411 (2007).
[12] R. Shakeshaft, Phys. Rev. A 76, 063405 (2007).
[13] A. Rudenko et al., J. Phys. B 43, 194004 (2010).
[14] S. Fritzsche, A. N. Grum-Grzhimailo, E. V. Gryzlova, and N. M.

Kabachnik, J. Phys. B 41, 165601 (2008).
[15] A. S. Kheifets, J. Phys. B 42, 134016 (2009).

[16] M. Richter, M. Y. Amusia, S. V. Bobashev, T. Feigl, P. N. Juranic,
M. Martins, A. A. Sorokin, and K. Tiedtke, Phys. Rev. Lett. 102,
163002 (2009).

[17] N. Rohringer and R. Santra, Phys. Rev. A 76, 033416 (2007).
[18] M. G. Makris, P. Lambropoulos, and A. Mihelic, Phys. Rev. Lett.

102, 033002 (2009).
[19] K. Balzer, S. Bauch, and M. Bonitz, Phys. Rev. A 82, 033427

(2010).
[20] K. C. Kulander, Phys. Rev. A 36, 2726 (1987).
[21] D. Hochstuhl and M. Bonitz, J. Chem. Phys. 134, 084106

(2011).
[22] J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, and

A. Scrinzi, Phys. Rev. A 71, 012712 (2005).
[23] J. J. Carrera and Shih-I. Chu, Phys. Rev. A 79, 063410

(2009).
[24] Y. Ding et al., Phys. Rev. Lett. 102, 254801 (2009).
[25] B. Nagler et al., Nature Physics 5, 693 (2009).
[26] A. A. Sorokin, S. V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz,

and M. Richter, Phys. Rev. Lett. 99, 213002 (2007).
[27] M. Richter, S. V. Bobashev, A. A. Sorokin, and K. Tiedtke,

J. Phys. B 43, 194005 (2010).
[28] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schneider,

L. A. Collins, and J. Burgdörfer, Phys. Rev. Lett. 103, 063002
(2009).

043431-8

http://dx.doi.org/10.1038/nphys461
http://dx.doi.org/10.1038/nphoton.2010.239
http://dx.doi.org/10.1038/nphoton.2010.239
http://dx.doi.org/10.1038/35021099
http://dx.doi.org/10.1103/PhysRevE.76.046403
http://dx.doi.org/10.1103/PhysRevA.76.042511
http://dx.doi.org/10.1103/PhysRevA.77.043421
http://dx.doi.org/10.1103/PhysRevA.77.043421
http://dx.doi.org/10.1103/PhysRevA.77.043420
http://dx.doi.org/10.1103/PhysRevA.79.033402
http://dx.doi.org/10.1103/PhysRevA.79.033402
http://dx.doi.org/10.1088/0953-4075/43/9/091001
http://dx.doi.org/10.1088/0953-4075/34/3/103
http://dx.doi.org/10.1103/PhysRevA.75.033411
http://dx.doi.org/10.1103/PhysRevA.76.063405
http://dx.doi.org/10.1088/0953-4075/43/19/194004
http://dx.doi.org/10.1088/0953-4075/41/16/165601
http://dx.doi.org/10.1088/0953-4075/42/13/134016
http://dx.doi.org/10.1103/PhysRevLett.102.163002
http://dx.doi.org/10.1103/PhysRevLett.102.163002
http://dx.doi.org/10.1103/PhysRevA.76.033416
http://dx.doi.org/10.1103/PhysRevLett.102.033002
http://dx.doi.org/10.1103/PhysRevLett.102.033002
http://dx.doi.org/10.1103/PhysRevA.82.033427
http://dx.doi.org/10.1103/PhysRevA.82.033427
http://dx.doi.org/10.1103/PhysRevA.36.2726
http://dx.doi.org/10.1063/1.3553176
http://dx.doi.org/10.1063/1.3553176
http://dx.doi.org/10.1103/PhysRevA.71.012712
http://dx.doi.org/10.1103/PhysRevA.79.063410
http://dx.doi.org/10.1103/PhysRevA.79.063410
http://dx.doi.org/10.1103/PhysRevLett.102.254801
http://dx.doi.org/10.1038/nphys1341
http://dx.doi.org/10.1103/PhysRevLett.99.213002
http://dx.doi.org/10.1088/0953-4075/43/19/194005
http://dx.doi.org/10.1103/PhysRevLett.103.063002
http://dx.doi.org/10.1103/PhysRevLett.103.063002


ULTRAFAST PHOTOIONIZATION DYNAMICS AT HIGH . . . PHYSICAL REVIEW A 84, 043431 (2011)

[29] B. Piraux, J. Bauer, S. Laulan, and H. Bachau, Eur. Phys. J. D
26, 7 (2003).

[30] M. Meyer et al., Phys. Rev. Lett. 104, 213001 (2010).
[31] L. Young et al., Nature 466, 56 (2010).
[32] D. G. Lappas and R. van Leeuwen, J. Phys. B 31, L249 (1998).
[33] M. Lein, E. K. U. Gross, and V. Engel, Phys. Rev. Lett. 85, 4707

(2000).
[34] R. Grobe and J. H. Eberly, Phys. Rev. Lett. 68, 2905 (1992).
[35] Q. Su and J. H. Eberly, Phys. Rev. A 44, 5997 (1991).
[36] P. Emma et al., Nature Photonics 4, 641 (2010).
[37] W. Ackermann et al., Nature Photonics 1, 336 (2007).
[38] M. S. Pindzola, D. C. Griffin, and C. Bottcher, Phys. Rev. Lett.

66, 2305 (1991).
[39] P. Maragakis and P. Lambropoulos, Laser Physics 7, 679 (1997).

[40] N. E. Dahlen and R. van Leeuwen, Phys. Rev. A 64, 023405
(2001).

[41] M. Kurka et al., New J. Phys. 12, 073035 (2010).
[42] K. L. Ishikawa and K. Midorikawa, Phys. Rev. A 72, 013407

(2005).
[43] D. A. Horner, C. W. McCurdy, and T. N. Rescigno, Phys. Rev.

A 78, 043416 (2008).
[44] Y. Nabekawa, H. Hasegawa, E. J. Takahashi, and K. Midorikawa,

Phys. Rev. Lett. 94, 043001 (2005).
[45] L. A. A. Nikolopoulos and P. Lambropoulos, Phys. Rev. Lett.

97, 169301 (2006).
[46] R. Moshammer et al., Phys. Rev. Lett. 98, 203001 (2007).
[47] A. A. Sorokin et al., Appl. Phys. Lett. 89, 221114 (2006).
[48] V. M. Axt and T. Kuhn, Rep. Prog. Phys. 67, 433 (2004).

043431-9

http://dx.doi.org/10.1140/epjd/e2003-00063-3
http://dx.doi.org/10.1140/epjd/e2003-00063-3
http://dx.doi.org/10.1103/PhysRevLett.104.213001
http://dx.doi.org/10.1038/nature09177
http://dx.doi.org/10.1088/0953-4075/31/6/001
http://dx.doi.org/10.1103/PhysRevLett.85.4707
http://dx.doi.org/10.1103/PhysRevLett.85.4707
http://dx.doi.org/10.1103/PhysRevLett.68.2905
http://dx.doi.org/10.1103/PhysRevA.44.5997
http://dx.doi.org/10.1038/nphoton.2010.176
http://dx.doi.org/10.1038/nphoton.2007.76
http://dx.doi.org/10.1103/PhysRevLett.66.2305
http://dx.doi.org/10.1103/PhysRevLett.66.2305
http://dx.doi.org/10.1103/PhysRevA.64.023405
http://dx.doi.org/10.1103/PhysRevA.64.023405
http://dx.doi.org/10.1088/1367-2630/12/7/073035
http://dx.doi.org/10.1103/PhysRevA.72.013407
http://dx.doi.org/10.1103/PhysRevA.72.013407
http://dx.doi.org/10.1103/PhysRevA.78.043416
http://dx.doi.org/10.1103/PhysRevA.78.043416
http://dx.doi.org/10.1103/PhysRevLett.94.043001
http://dx.doi.org/10.1103/PhysRevLett.97.169301
http://dx.doi.org/10.1103/PhysRevLett.97.169301
http://dx.doi.org/10.1103/PhysRevLett.98.203001
http://dx.doi.org/10.1063/1.2397561
http://dx.doi.org/10.1088/0034-4885/67/4/R01

