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Quantum control of electron wave packets in bound molecules by trains of half-cycle pulses
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We investigate protocols for transient localization of electrons in homodiatomic molecules, as well as permanent
localization via population inversion in polar molecules. By examining three different model systems with one
electronic and one nuclear degree of freedom, we identify mechanisms leading to control over the localization
of the electronic wave packets. We show that electronic states dressed by the quasi-dc component of the train of
half-cycle pulses steer the combined electronic and nuclear motion toward the targeted state.
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I. INTRODUCTION

In the last two decades, many different quantum control
protocols have been developed and implemented with the goal
to steer the quantum system toward a selected target state [1,2].
Most of the applications focus on controlling the nuclear
dynamics, accessible on the femtosecond time scale [3–7].
Extending these concepts from the regime of femtosecond
molecular chemistry to the realm of electronic dynamics on
the attosecond scale has remained a challenge and is still
in its infancy. Since the controlling pulse is in many cases
of attosecond duration, its spectrum extends into the XUV
domain leading, almost inevitably, to ionization.

Quantum control schemes to steer the dynamics of ionized
(“free”) electrons have been suggested, using either intense
two-color laser fields [8,9] or, alternatively, the ellipticity
[10,11] of a single-color laser field. For bound electrons,
different approaches to obtain control over the electronic
dynamics have been proposed. In atoms, selective population
of field-dressed states has been implemented experimentally
[12] as well as stimulated Raman adiabatic passage and its
relatives [13]. In molecular systems, the exertion of control
of electronic dynamics can be mainly divided into two
classes: to (i) “shape” (field-dressed) electronic states (bound
or dissociative) to indirectly control the nuclear dynamics
[14,15], or to (ii) steer the localization dynamics of an electron
upon dissociation [16–26]). The latter works mainly employed
the control over the carrier-envelope phase of the intense
few-cycle laser pulses, or over the timing of the controlling
laser pulse [18,20,21]. In another approach by Gräfe and
Engel [27], a quantum control algorithm is applied to the
coupled nuclear-electronic dynamics of a model system with
bound electronic states by phase and amplitude shaping the
electric field directly.

Linearly polarized, single-color laser pulses containing a
large number of cycles are inversion symmetric relative to
the laser polarization axis. This inversion symmetry poses
limitations on control schemes since target states with broken
inversion symmetry are out of reach. Carrier-envelope phase
stabilized, few-cycle infrared pulses break the inversion
symmetry resulting in a large asymmetry in the yield of
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electrons from atoms [28–30] and in the dissociation fragments
from small molecules [16]. Alternatively, if both odd and even
harmonics of the fundamental driving field are present, inver-
sion symmetry of the field can be broken. Combining several
harmonics with phase-locked colors, a train of unidirectional
half-cycle pulses (HCPs) can be generated. Half-cycle pulses
and trains of half-cycle pulses have proven to be useful tools
in quantum control. They steer dissociation dynamics [31,32],
isomerization reactions [17,33], and orient rotational wave
packets [34,35]. On longer time scales, trains of HCPs have
been applied to control the dynamics of Rydberg wave packets
in atoms [36–39]. Very recently, we have shown that trains of
HCPs can control the coupled nuclear-electronic dissociation
dynamics of H+

2 [25] and a high degree of asymmetry of
dissociation can be reached.

In this work, we address the more challenging goal of
controlling electron localization in bound rather than disso-
ciating molecular systems by trains of HCPs. The conceptual
difficulty with steering electronic wave packets in systems
that remain bound originates from the fact that the electronic
motion cannot be easily arrested (or “frozen out”) as it happens
in a dissociating molecule. Localization of the electronic wave
packet is therefore either transient in symmetric potentials or
can be made permanent if the electron is steered toward a
strongly polarized stationary state in asymmetric potentials.

The ultimate goal of bound-state electron steering is a light-
wave controlled electron current, e.g., along a chain molecule,
or the transient spatial localization to induce detachment of
a targeted functional group. As a first step in this direction,
we explore steering of electronic wave packets in diatomic
molecules. We consider three different model potentials rep-
resenting diatomic molecules where the two lowest electronic
states are bound: (I) a homonuclear case with a very small
gap between two bound electronic states, (II) a homonuclear
case with a large gap, and (III) a model for an asymmetric
potential, where either the nuclear charges or masses differ.
We explore the mechanism underlying electron localization in
bound systems and show the limitations. In molecules with a
small energy gap between the two electronic states, efficient
transient localization can be obtained. For molecular model
systems with a larger energy gap, only limited localization can
be found; however, population inversion could be obtained in
these systems. In asymmetric potentials, population inversion
is analogous to electron localization and can be obtained very
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efficiently. While detection of localization in heterodiatomic
molecules can be accomplished by spectroscopic methods,
probing transient localization requires ultrafast pump-probe
techniques, e.g., by applying an attosecond XUV pulse at
variable delay times during the interaction with the driving
HCP train, and measuring the forward-backward asymmetry
in the energy-resolved photoelectron distribution [40].

The paper is organized as follows: Sec. II briefly describes
the model systems representing molecules with nondissocia-
tive excited electronic states. In Sec. III the numerical results
for quantum control of electronic localization dynamics in
bound systems are presented, together with a description of
the underlying physical mechanism. Finally, Sec. IV contains
a brief summary and conclusions.

II. BRIEF DESCRIPTION OF THE THEORETICAL
METHODS

A. Model for bound molecular systems

As a model system, we consider the coupled nuclear-
electronic dynamics of prototype model systems representing
simple diatomic molecular ions. These model systems are
parameterized such that the two lowest lying electronic states
of the model system are bound states with even and odd
symmetry. We consider both homonuclear and heteronuclear
molecules (Fig. 1). The model potentials are constructed
by one-dimensional soft-core potentials with a smoothing
function α(R) depending on the nuclear degree of freedom
R applied. The Hamiltonian of this system with one electronic
degree of freedom (−∞ < x < ∞) and one nuclear degree of
freedom (0 � R < ∞) is given by the sum of kinetic T̂ and
potential V terms and the interaction with the external field
E(t):

Ĥ = T̂x + T̂R + V (x,R) + xE(t), (1)

V (x,R) = + 1

R
+ V+(x,R) + V−(x,R),

V±(x,R) = − 1√
(x ± R/2)2 + α±(R)

. (2)

Variation of the smoothing function α±(R) allows us to
control the equilibrium internuclear distance, the energy gap
between the electronic states, and the ionization potential.

(b)(a)

ϕg(x) ϕ0(x)

ϕu(x) ϕ1(x)

Φr(x)

Φl(x)

R

FIG. 1. (Color online) Electronic model potentials V (x,R̄) and
eigenfunctions at fixed internuclear distances R̄ = 2 Å for (a)
symmetric and (b) asymmetric potentials.

For homonuclear molecules, α+ = α− = α (Fig. 1), while
the two functions differ for the asymmetric case where the
nuclei have different charges. We have also examined the
possibility to control electron localization in heteronuclear
systems, where the masses but not the charges of the two
nuclei differ (m1 �= m2; m1 + m2 = mtot). Such molecules are
represented in the center of mass frame by the following
potential

V (x,R) = + 1

R
− 1√(

x − m1
mtot

R
)2 + α(R)

− 1√(
x + m2

mtot
R

)2 + α(R)
. (3)

The dipole interaction term in Eq. (1) becomes

+
(

x − m2 − m1

mtot
R

)
E(t). (4)

The particular choice of smoothing function α(R) will be given
below. Certainly, within this reduced dimensionality model
some physical problems such as the dependence on the relative
orientation between the internuclear axis and the external field
axis cannot be addressed. However, for linearly polarized fields
and dynamics developing mainly along the molecular axis,
the relevant features can be extracted from a one-dimensional
description. A full three-dimensional calculation might yield
different absolute values for the absolute asymmetry but
would most likely not fundamentally alter the underlying
mechanisms.

We solve the time-dependent Schrödinger equation (TDSE)
for the coupled electronic and nuclear coordinate

i
∂

∂t
�(x,R,t) = Ĥ�(x,R,t), (5)

subject to the initial conditions

� (x,R,t = 0) = ϕg(x; R) χ0(R). (6)

In Eq. (6), ϕg(x; R) is the gerade electronic eigenstate
(ground state), and χ0(R) the vibrational ground state. The
calculations are performed on a two-dimensional grid, using
the split-operator technique [41] with typical grid parameters
as follows: a total number of 512 points in R and 1024 in x,
where the grid in R is defined from 0.1 to 32 a.u., and the grid
in x from −100 to 100 a.u.

While the exact grid-based numerical solution does not
involve Born-Oppenheimer (BO) states, it is, nevertheless,
instructive to perform calculations within the basis expansion
of the two lowest Born-Oppenheimer states, the gerade and
ungerade states, resulting in the nuclear Schrödinger equation

i
∂

∂t

(
χg(R,t)

χu(R,t)

)
= Ĥnucl

(
χg(R,t)

χu(R,t)

)
, (7)

with the nuclear Hamiltonian

Ĥnucl =
[
− 1

2 M

∂2

∂R2
I +

(
Vg(R) −μgu(R)E(t)

−μgu(R)E(t) Vu(R)

)]
.

(8)
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Here, M is the reduced nuclear mass, I is the unit matrix, and
μgu(R) is the transition dipole between the ground and the
upper electronic states. The potential curves Vg(R) and Vu(R)
are the electronic eigenenergies, parametrically depending
on R. The calculations within the Born-Oppenheimer basis
expansion are implemented primarily for time-consuming
scans in the multidimensional control parameter space. The
control fields obtained serve then as an input for the subsequent
analysis within the full numerical solution of the TDSE.

Moreover, for analysis the wave functions resulting from
the full calculations are expanded into the basis of Born-
Oppenheimer states,

�(x,R) =
∑

i

ci ϕi(x; R) χi(R), (9)

where the ϕi(x; R) are the electronic eigenstates, and the χi(R)
are the nuclear wave functions. Observables to be extracted in-
clude the time-dependent populations Pg,u(t) = |〈ϕg,u|�(t)〉|2
of the gerade and ungerade states, the bond length expectation
values 〈R(t)〉 = 〈�(t)|R|�(t)〉, and—in the context of local-
ization dynamics in homonuclear systems—the projections
onto the “left” (l) and “right” (r) coherent superposition states,
Pr,l(t) = |〈�r,l|�(t)〉|2, with

�r (x,R) = 1√
2

[ϕg(x,R) + ϕu(x,R)], (10)

�l(x,R) = 1√
2

[ϕg(x,R) − ϕu(x,R)]. (11)

For large R, these superposition states converge to the localized
atomic wave functions in the right or left potential well, i.e.,
the two dissociation limits X+ + X and X + X+. We quantify
the degree of localization by the (time-dependent) asymmetry
coefficient

A(t) = Pl(t) − Pr (t)

Pl(t) + Pr (t)
. (12)

The domain of the asymmetry function extends from −1 to +1,
where the sign indicates the direction in which the electron is
preferentially localized. Localization in the direction of the
force exerted by the unipolar peak field of the HCP train
(positive fields) yields localization in the left potential well,
i.e., A > 0. As we consider bound states and the molecule is
not dissociating, localization—as defined by Eq. (11)—can be
permanent for heterodiatomic and polar molecules but only
transient for homonuclear molecules. We will maximize A via
the application of a genetic algorithm to optimize the control
parameters of the pulse train.

B. Half-cycle pulses

Trains of HCPs consist of a sequence of ultrashort unipolar
electric field “spikes.” Propagating electromagnetic fields must
satisfy the requirement

∫
E(t)dt = 0. Therefore, the peak field

in one direction (“kicks”), E+(t), is accompanied by a low-
amplitude quasi-dc offset field in the opposite direction, E−(t).

Such pulses can be generated by techniques based on
harmonic generation [42,43], promising HCP trains down to
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FIG. 2. (Color online) Formation of unidirectional half-cycle
pulse trains by superposing harmonic colors nω to the fundamental
frequency ω with appropriate phase φn and amplitude En = E0θ (6 −
n) (left panel). In general, |En| → 0 as n → ∞. In addition, the
envelope function f (t) can be optimized. An example of a HCP used
in localization protocols is shown in the right panel.

the attosecond regime [25]. The HCP train can be synthesized
by the superposition of harmonic colors

E(t) = E0 f (t)

(∑
n

En cos(nωt + φn)

)
, (13)

where f (t) is the normalized envelope function, E0 the overall
field strength, and En the amplitude of the harmonics with
phase φn. Mixing the fundamental frequency ω1 with several
higher (even and odd) harmonics and choosing the phases φn

properly, a unidirectional HCP train can be formed (Fig. 2).
In our simulations, we mixed six harmonic colors (thereby
defining the width of the kicks to be 0.2 periods) and chose a
flat-top envelope function with a smoothed ramp-on and -off.
Accordingly, the offset field E−(t) is given by

E−(t) = −E0 f (t)/2 . (14)

Trains of HCP’s have, indeed, been generated experimen-
tally very recently; see, e.g., [44,45]. Novel light sources in
the far infrared with higher power promise to pave the way
toward subfemtosecond half-cycle pulse trains as used in the
following.

III. NUMERICAL RESULTS

The objective is to find optimally shaped pulse trains which
in the diatomic molecules induce the highest possible degree
of electron localization in one potential well. We consider
both inversion-symmetric electronic potentials [Fig. 1(a)] rep-
resenting homonuclear molecules and asymmetric potentials
[Fig. 1(b)]. The asymmetric potentials we consider consist
of two nuclei with the same mass but different charges.
We have also analyzed heteronuclear molecules where the
nuclear masses differ. The unidirectional HCP train with a
predefined direction of force should induce localization of
the electronic wave packet near one of the two potential
wells. Unlike for dissociative systems, where degenerate

043421-3



EMIL PERSSON et al. PHYSICAL REVIEW A 84, 043421 (2011)

dissociative states of opposite inversion symmetry exist and,
thus, asymmetric and localized final states can be formed [25],
the quest for localization of wave packets in bound molecules is
fundamentally different. For asymmetric potentials [Fig. 1(b)],
localization entails stepwise the wave packet toward a targeted
(in general, excited) electronic eigenstate with the desired
localization properties. For inversion-symmetric potentials
[Fig. 1(a)], on the other hand, localization will be transient
and persists only as long as the symmetry-breaking HCP is
present. The physical significance of transient localization lies
in the fact that it can trigger the formation or breaking of bonds,
e.g., of functional groups attached to chain molecules.

The pulse train we are searching for will in most cases
induce localization in the direction of the force of the HCPs.
However, localization in the opposite direction along the
direction of the quasistatic dc field is possible as well, as will
be shown below. The parameters of the HCP train optimized
by the genetic algorithm are the fundamental frequency ω,
the field strength E0, the absolute phase of the generating
fundamental pulse φabs, and the rise time τ , corresponding to
the time needed to reach the maximum value of the flat-top
envelope [Fig. 2(b)]. The length of the pulses is kept constant,
and the width of the kicks was fixed to 0.2T .

All results presented are obtained from the fully coupled
nuclear-electronic system. Only the search for optimal values
of the control parameters with the genetic algorithm are
performed within the framework of the BO expansion for
reasons of computational efficiency.

A. Inversion-symmetric potential

We consider first the case of an inversion-symmetric po-
tential. All electronic eigenstates have well-defined inversion
symmetry. Symmetry breaking localization is therefore only
possible in the presence of an HCP. The efficiency in forming
a transiently localized wave packet obviously depends on
the energy gap between two nearby eigenstates of opposite
inversion symmetry. We therefore consider first a model
potential, referred to as potential (I), for which the excitation
gap to the first excited state is very small and the equilibrium
internuclear distances in those two states are very similar (in
this simulation we set the mass equal to the proton mass).
The smoothing function α(R) entering the nuclear-electron
potential [Eq. (1)] is parameterized as follows:

α(R) =
{

ae−(R−r1)2/a2
1 , R < Rc

b + c

1+e−(R−r2)/a2
, R � Rc .

(15)

The potentials in Fig. 3 result from the following choice
of parameters: a = 0.6055, r1 = 5, a1 = 4.24, b = 0.6, c =
0.825, r2 = 6.75, Rc = 5, and a2 = 0.35. A measure for the
size of the excitation gap is the ratio of zero-field spacing
|Vu(Req) − Vg(Req)| at the equilibrium distance Req to the
energy shift induced by the dressing by the weak quasi-dc
component of the HCP. In the present case, this ratio is of the
order of unity.

The optimal pulse train maximizing the asymmetry A(t)
found after less than 50 generations has a field strength of E0 =
0.012 a.u., a rise time τ of two optical cycles, a wavelength
of 949 nm, and phase φabs = 0 (i.e., one HCP spike lies
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FIG. 3. (Color online) Two lowest lying Born-Oppenheimer
potential curves for potential (I) with a small excitation gap with
and without a dc field of strength 0.012 a.u. present. Inset: smoothing
function α(R).

directly at the position where the ramp-on of the envelope
has reached its maximum); see Fig. 4, upper panel. The
electronic density distribution [Fig. 4, lower panel] develops
already during the ramp-on a pronounced asymmetry with
charge displacement in the direction of the force exerted
by the HCP “kicks.” Thus, localization persists while the
HCP train continues. Counterintuitively, during the periodic
kicks a small fraction of the electronic density can be found
on the opposite site of the molecule. After the end of the
pulse train, localization of the charge density is replaced by
oscillations. Concurrently, with the excitation of the electronic
wave packet, also a vibrational (nuclear) wave packet, starting
from the ground state, is initiated (Fig. 5). The fact that
the bond-length expectation value exhibits oscillations with a
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FIG. 4. (Color online) Model potential (I): electronic density
�(x,t) = ∫ |�(x,R,t)|2dR of system (I) in the presence of the HCP
field (lower panel). The upper panel displays the HCP field found by
the genetic algorithm when optimizing for localization.
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well-defined frequency is an obvious consequence of the very
similar shape of the two adiabatic potential curves giving rise
to oscillations in 〈Rg(t)〉 and 〈Ru(t)〉 closely mirroring each
other. While significant population transfer occurs between the
lowest two electronic states, excitation to high-lying states or
ionization is negligible (< 0.6%). Consequently, the two-state
Born-Oppenheimer basis expansion [Eq. (7)] is well justified
in this case. A high degree of localization can be achieved:
more than 80% of the population can be driven into the state
�l(x,R), corresponding to A ≈ 0.6 [Fig. 6(b)]. Moreover, on
top of the localization dynamics, a modulation with a time scale
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FIG. 7. (Color online) (a) Evolution of system (I) driven by a
slowly varying quasi-dc field of strength 0.012 a.u.: (b) population
transfer dynamics and (c) localization dynamics.

of 18 fs can be observed, signifying the vibrational dynamics
of the nuclear wave packet.

The origin of the efficient localization lies in the interplay
between the kicks and the quasi-dc field pointing in opposing
directions. To highlight the latter, we first repeated the
simulation switching off the negative offset component of
the field. While population transfer and nuclear wave packet
dynamics persist, the electron localization disappears. We have
then taken the opposite limit and followed the dynamics within
the framework of field-dressed states, taking into account the
quasi-dc offset field only. Since this field is only slowly varying
in time, we can consider the system as adiabatically moving
in the field-dressed states of the offset field, while the kicks
almost impulsively drive transitions between the field-dressed
states. A similar picture was found useful to explain the
electron localization in the dissociative dynamics of H+

2 [25].
The field-dressed states are the eigenstates of the Hamiltonian

Hdc = T̂x + T̂R + V (x,R) + xE−(t). (16)

The resulting adiabatic electronic eigenenergies are also
displayed in Fig. 3. Repeating the time-dependent simulation
with the slowly varying offset component, keeping other
parameters fixed, results in very efficient localization with
up to 90% of the electronic density now in the right rather
than the left potential well, see Fig. 7. Increasing the field
strength and increasing the length of the ramp-on and -off,
close to 100% in the superposition state �r can be reached
(figure not shown). The electron is driven adiabatically by
the offset field into the right potential well, which is not an
eigenstate of the field-free system. Therefore, as soon as the
field is switched off, the electron density will revert to ϕg . The
time scale of the envelope function f (t) which governs the
offset field [Eq. (14)] would correspond to a half cycle of a
terahertz pulse. Such a field can be considered as unidirectional
on the natural time scale of a small molecule, thereby inducing
transient localization of the electron. Clearly, by a multicycle
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FIG. 8. (Color online) Energy of field-dressed vibronic states
with quantum number νdc as a function of field strength. The color
indicates the degree and direction of polarization.

terahertz pulse the charge density could be periodically driven
between different centers of localization.

In order to analyze the mechanism for transient localization
by the HCP train, i.e., in the presence of both the slowly
varying offset field and the kicks, we follow the dynamics in
terms of the offset field-dressed vibronic Born-Oppenheimer
states evaluated at the instantaneous field strength (Fig. 8).
States oriented in the direction of the kicks are energetically
disfavored while those states oriented in the direction of the
offset component are energetically lowered. The population
dynamics (Fig. 9) illustrates the interplay between adiabatic
following and sudden kick-induced transitions. After initial
polarization in the direction of the quasi-dc field during the
ramp-on pulse, a kick at t = 3 fs transfers close to 100% of the
population to very few high-lying states around vibrational
quantum number νdc = 9, polarized in the direction of the
kicks. At t = 6 fs the driving field has reached its full strength.
Subsequently, the kick has twice the amplitude compared to
the kick at t = 3 fs. This and all following kicks are no longer
efficient in transferring significant amounts of the population
into other states. The system remains predominantly in the
single field-dressed vibronic state νdc = 9. This state is not
only the one which is lowest lying field-dressed state for a
field polarized in the direction of the kicks, but also the one
matching the dynamical time scale in the upper potential well.
As only a few vibrational states are populated, the nuclear

wave packet dephases only slowly and remains well localized
over several vibrational periods.

The physical process uncovered by the genetic algorithm
can be summarized as follows. One kick is placed at the
optimal time for an almost perfect sudden transfer from the
lower to the upper offset-field dressed states. The transfer
occurs for internuclear distances R confined to a relatively
narrow interval 2.5Å � R � 3Å. Within this interval, the
characteristic parameters of the dressed electronic potential
curves involved, the energy spacing, and their gradient remain
unchanged. Moreover, as the vibrational wave packets in both
states are moving synchronously, transient localization can
be very efficient for long times, covering many vibrational
periods.

The same localization dynamics with nearly the same
efficiency is observed when varying the reduced nuclear
mass. We expect this mechanism to be operative for diatomic
molecular systems, where the two lowest lying electronic
states with opposite symmetry have closely aligned equi-
librium internuclear distances such that field dressing can
simultaneously adjust the shape of both potentials, thereby
synchronizing the nuclear dynamics. The ratio of zero-field
spacing |Vu(Req) − Vg(Req)| at the equilibrium distance Req to
the energy shift induced by the dressing by the weak quasi-dc
component of the HCP is of the order of unity.

The strong dependence of the transient localization dy-
namics on the properties of the electronic potential curves
is highlighted by a simulation for a homodiatomic system
with a larger energy spacing between the two lowest-lying
states of opposite inversion symmetry, referred to in the
following as model system (II). We chose potential curves
and masses to resemble the oxygen molecular ion, O+

2 . We
use the functional form Eq. (15) for the smoothing functions
with parameters a = 1.017, r1 = 3.95, rC = 3.95, a1 = 4.24,
b = 1.0, c = 0.925, r2 = 6.35, and a2 = 0.6. The resulting
Born-Oppenheimer potential curves (Fig. 10) feature not only
a larger energy spacing but also significant displacement of
the equilibrium internuclear distance for the two electronic
states. This immediately suggests that the nuclear dynamics
is not easily synchronized in those potential wells in the
presence of the realistic (moderate) field strength of the HCP
train. Indeed, running the genetic algorithm within the two-
state Born-Oppenheimer approximation yields similar strong
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FIG. 9. (Color online) Population dynamics in the basis of offset field-dressed vibronic states: in the early stage (left panel), the kick near
t = 3 fs transfers population into the field-dressed state νdc = 9, where it remains during the further interaction with the HCP train almost
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and without a dc field of strength 0.015 a.u. present. Inset: smoothing
function α(R).

electron localization only at significantly higher field strengths.
However, in the full nuclear-electronic calculation, substantial
ionization as well as significant population transfer to higher-
lying electronic states occurs, excluding such pulses from
further consideration. Restricting the range of the permitted
field strengths within the genetic algorithm leads to less
successful optimization, an example of which is shown in
Fig. 11.

Moderate levels of localization are accomplished, however,
at the price of significant ionization (≈30%). One key
difference to case (I) with a small excitation gap is the
reduced efficiency in reaching population inversion. While
in the previous case, population inversion is achieved by
the first two kicks, due to the much larger gap between the
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FIG. 11. (Color online) (a) Evolution of system (II) driven by
the HCP field: (b) population transfer dynamics and (c) localization
dynamics. The dashed line displays the norm

∫ |�(t)|2dx dR of the
wave function.

electronic states, population transfer requires either higher
field strengths or a stepwise population transfer. The problem
with such a stepwise excitation is that with each step, a
new nuclear wave packet in the upper state is created and
thereby the phases between the electronic wave functions in the
two electronic states [φg(x,R) ± φu(x,R)] cannot be locked.
Thus, population transfer can be achieved, but localization
cannot. The algorithm is forced to higher field strengths, where
population transfer to the upper state occurs on short time
scales (driven by the third harmonic color of the driving field,
which is almost resonant with the energy gap) and similar
nuclear dynamics in both electronic states can proceed. At
t = 40 fs, both wave packets are located at similar internuclear
distances around the outer turning point (R = 3Å), where the
electronic gap is smaller, and localization is obtained.

An alternative strategy would be to employ the slowly-
varying offset field corresponding to half-cycle terahertz pulse.
In this case, ionization is strongly suppressed even though
the fields strength of the quasi-dc component is increased
by a factor of 2 compared to that of the HCP train. The
highest degree of localization is observed at larger times, when
the nuclei have reached the outer turning point. Again, after
the pulse is over, virtually no population is transfered to the
ungerade electronic state.

To summarize the findings for model system (II): because
of the large excitation gap, transient localization by a HCP
train requires field strengths that lead to strong ionization. As
a viable alternative, near-adiabatic polarization in the presence
of a terahertz half-cycle pulse emerges which, however, leaves
the system in its ground state after the interaction with the
pulse.

B. Model System (III)—Broken inversion symmetry

In asymmetric potentials the inversion symmetry is broken
in the absence of the field. Consequently, electronic and
vibrational states are inherently polarized. We consider two
types of asymmetric potentials; the first class are homonuclear
diatomics, where one nucleus has a different charge than
the other, and the second class are heterodiatomics with two
different masses. The ground state in asymmetric potentials
is polarized in the direction of the deeper well while the
upper one is polarized in the opposite direction of the
shallower well (Fig. 12). Hence, excitation to the upper state
is equivalent to reversing the localization of the electron.
Therefore, the genetic algorithm searches for an efficient
strategy to transfer population to the upper state [maximize
P1(t → ∞)], reversing the direction of polarization.

We simulate polar diatomic molecules by setting α+(R) =
α−(R) − 0.3 (Fig. 12). The atomic mass is kept at 16 amu.,
and α(R) is chosen to be the same as for model system
(II). This represents systems where one of the nuclei has a
higher effective charge than the other. Intuitively, one expects
that population transfer into a predefined potential well is
now mitigated by a polarized driving field. As the initial
vibronic states are already polarized, the direction of the
driving field pushes the wave packet either in the “right” or
the “wrong” direction. Consequently, reversing the polarity of
the previously optimized HCP will not induce any significant
population transfer. The resulting electron dynamics (Fig. 13)
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FIG. 12. (Color online) Born-Oppenheimer potential curves of
the polar model system (III) with broken inversion symmetry. The
inset shows a cut of the full electronic potential for a fixed value
of the internuclear distance R = 2Å with the two lowest electronic
eigenfunctions.

in the HCP field found by the genetic algorithm displays
population inversion and, hence, localization on the other
nucleus. The population transfer proceeds in a stepwise
manner [46,47]. Overall, the population inversion is very
efficient; over 90% of the population is transferred to the upper
electronic state without substantial losses to other electronic
states or ionization. The field strength of the optimal field is
very low, as dipole coupling to the field is very strong and the
states are easily polarizable.

It is also of interest to compare the control achieved with
the train of HCPs with that of the offset field only. Using
the same strength of the offset field as present for the HCP
train (i.e., E− = −0.0125 a.u.; see Fig. 13) leads to less than
1% population transfer into the upper state. Increasing the
field strength, more population can be transferred. For the
offset field, both the reversal of localization and the population
transfer to the upper state are transient. The population reverts
to the ground state as E− is adiabatically switched off. We
note that the control of the population transfer by the HCP
(Fig. 13) can be extended to a selective population of vibronic
states on the electronically excited state. This can be realized
by adding an additional constraint to the genetic algorithm
to selectively populate the vibrational ground state or one of
the low-lying excited vibrational state in the upper electronic
state. In contrast, steering toward high-lying vibronic states is
less successful.

We note that this population inversion in asymmetric
potentials is also very efficient when only two colors form
a HCP-like train, substantially simplifying possible experi-
mental realizations.

The second class of systems with broken inversion sym-
metry are heterodiatomic molecules, where one nucleus has
a larger mass than the other, thereby featuring a permanent
dipole moment. Heteronuclear molecules are given by the
potential in Eq. (3). First, we have repeated the calculation
for model system (I) with the small gap but doubled the mass
of one of the nuclei. Applying the same control field as in
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FIG. 13. (Color online) (a) Evolution of the polar molecule driven
by the optimized HCP train: (b) population transfer dynamics and (c)
electronic density �(x,t).

Fig. 4, almost identical localization dynamics can be obtained
(see Fig. 14). The modulation on top of the electronic dynamics
due to the vibrational motion is, of course, different as both
systems have a different reduced mass.

Following our earlier investigations on the control of
electron localization in the course of dissociation of H+

2 [25],
we have also investigated the possibility to control electron
localization in dissociative systems with different masses.
We have compared the electronic dynamics in H+

2 with the
isotopes HD+ and DH+. Here, too, despite the fact that the
heterodiatomic systems have a different dipole interaction term
[see Eq. (4)], the same HCP field, which was able to induce
electron localization in H+

2 , also steers the electronic dynamics
in the isotopic heteronuclear systems with almost the same
efficiency (Fig. 14).

C. Localization in a model system with four nuclei

As a first step toward controlling electronic dynamics in
chainlike molecules, we examine localization dynamics in
a potential mimicking a four-atomic linear molecule. For
demonstration purposes, we restrict ourselves to a simplified
test system with frozen nuclear coordinates. The one-electron
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FIG. 14. (Color online) Comparison of the electron expectation
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Hamiltonian is given by

H = T̂x − 1√
(x ± R/2)2 + α

− 2√
(x ± 3R/2)2 + α

. (17)

The internuclear distance is fixed to R = 4 a.u., and the screen-
ing parameter α is set to 1. The electronic potential, as well as
the lowest electronic eigenstates and eigen energies are shown
in Fig. 15 (left panel). In Fig. 15, the HCP train pushes the
electron density being initially localized mainly in the outer,
deeper potential wells over the internuclear barrier to the left
potential well. During interaction, the lowest electronic states
are excited. From Fig. 15 it can be gathered that after the end
of the pulse train, the system is in a superposition state of the
lowest electronics eigenstates. The electron density is mainly
localized in the left outer (deeper) potential well, with clearly
visible oscillations in between the two middle potential wells.

While this reduced system does not fully describe the charge
transfer dynamics in chainlike molecules as the vibrational
motion is not included, the example suggests that controlled
charge migration in larger systems is possible and proceeds
under similar conditions as we have analyzed for the diatomic
molecules.

IV. SUMMARY AND CONCLUSION

Motivated by the recent experimental advances in the
production of strong multicycle laser fields breaking inversion
symmetry, we investigated the prospects of using such fields
to control bound state dynamics in small molecules. Two
types of unidirectional fields have been considered. One
type is trains of unidirectional half-cycle pulses on the few
femtosecond scale. Such trains consist of narrow “spikes” in
one direction and a weak offset field in the opposite direction.
For comparison, we considered the dynamics induced by the
offset field only. Such a pulse can be considered as a half
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FIG. 15. (Color online) Upper left panel: electronic potential and
lowest eigenstates of a model system with four nuclei. Middle panel:
electronic density �(x,t), driven by an optimized pulse train (solid
line) in the lower panel. The lower panel also displays the asymmetry
A(t) (thin dashed line). The pulse train leaves the system in a coherent
superposition of electronic states.

cycle of an (almost) one color field with a very low frequency
resembling a terahertz pulse.

We have presented numerical simulations examining the
control of electron localization in bound prototype molecular
model systems. Extending our recent work [25], the systems
we have analyzed here are not dissociative, excluding from the
very beginning the freezing out of electronic motion during
dissociation.

We explore the mechanism leading to localization in three
different model potentials. In model system (I), the almost
static offset component of the field shapes field-dressed
Born-Oppenheimer potential curves. Between the kicks, the
system adiabatically follows the dressed states, while the
HCPs induce almost impulsive couplings between the states.
We have shown that the first kicks during the ramp-on of
the field induce population inversion into the lowest lying
field-dressed vibrational state in the upper electronic state in
which the system stays for long times. The almost identical
shape of the upper and lower potential curves enables long-
term synchronous nuclear dynamics in both states which,
in turn, leads to a high degree of asymmetry lasting over
several vibrational periods. Model system (II) features a
wide excitation gap and different equilibrium internuclear
distances in the two electronic states. The best field found
induces localization as soon as the nuclear wave packets in the
lower and upper electronic state approach the outer turning
point where the gap between the states is reduced. Applying
the offset component with a smooth turning on and off (a
terahertz pulse) only yields in all cases a high degree of
localization. Model system (III), mimicking heterodiatomic
molecules, enables permanent localization of the electron as
population inversion implies switching of the preferred nuclear
site. We found the population inversion to proceed via stepwise
population transfer.

Although for the homonuclear diatomic molecules localiza-
tion exists only in the presence of the field, this is a necessary
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precursor for the implementation of electron-charge transfer
along chainlike molecules. Transient polarization can induce
a molecular electronic current from one end of the chain
to the other. Furthermore, detachment of selected functional
groups via electron localization and bond breaking can be
envisioned. Transient electron localization can be probed via
the asymmetry in the photoelectron distribution induced by a
weak, attosecond XUV pulse [40]. Details of such a probe will
be shown in a future publication.
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L. Zhang, S. Gräfe, M. S. Schöffler, J. Burgdörfer, A. Baltuska,
and M. Kitzler (unpublished).

[10] Y. Mairesse, N. Dudovic, J. Levesque, M. Yu. Ivanov, P. B.
Corkum, and D. M. Villeneuve, New J. Phys. 10, 025015 (2006).

[11] I. J. Sola et al., Nat. Phys. 2, 319 (2006).
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[23] S. Gräfe and M. Y. Ivanov, Phys. Rev. Lett. 99, 163603 (2007).
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