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Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving
the corresponding time-dependent Schrödinger equation (TDSE) and a classical model, respectively. The
numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron
laser source agrees well with the experimental results. Different types of subcycle interferometric structures are
predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic
pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron
holography.
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I. INTRODUCTION

The study of electronic dynamics with long-wavelength
(low-frequency) laser pulses has received increasing attention
recently due to the possibility of controlling ionized electrons
at high intensities, including control of laser-induced recolli-
sion [1–3]. Some unexpected features have been observed,
such as a characteristic spike-like structure at low energy
in the photoelectron energy distribution [4,5] and a giant
resonance from inner-shell electrons of Xe in HHG [6]. It
has also been shown that a photoelectron holography [7,8]
pattern that contains extensive time-resolved information can
be clearly recorded with midinfrared laser fields. As illustrated
in Fig. 1, the photoelectron holography pattern comes from
the interference between scattered and unscattered electron
trajectories [9]. The holography encodes temporal and spatial
information about both the core and the recollision electrons
[7]. It is a subcycle interference phenomenon [7,8,10–12] due
to the subcycle time scale of recollision event [1,2]. The
unscattered electrons can be viewed as a reference, which
encodes the information of the initial state, whereas the
scattered electrons can be seen as a signal, which contains
the information of the scattering core. For short-wavelength
laser fields, this holography pattern may be less clear due to
the influence of the core on the reference wave. Huismans
et al. [7] have recently recorded clear holographic pictures by
using a midinfrared free-electron laser (FEL) source. When
the electron is tunnel ionized by the low-frequency laser
field [1], it will appear at some distance from the core.
Thus the influence of the core on the reference wave will
be greatly reduced. In this paper, we explore the dynamics of
photoelectron holography by investigating the above-threshold
ionization (ATI) of Xe and H atoms in midinfrared laser
pulses numerically. A simulation that is based on solving the
corresponding time-dependent Schrödinger equation (TDSE)
agrees well with the experimental results. The subcycle
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dynamics of interference in ATI is further studied by a classical
model which reproduces the observed interference patterns
well. In addition, the possible observation of several subcycle
interference patterns is predicted. Furthermore, based on
comparing TDSE calculations for different initial orbitals, we
conclude that photoelectron holography can give information
on atomic orbitals [13].

The paper is organized as follows. We briefly introduce the
numerical method for solving the TDSE in Sec. II; the classical
model to investigate the subcycle dynamics is presented in
Sec. III. The state-dependent holography of H is shown in
Sec. IV. The conclusion is given in Sec. V.

II. HOLOGRAPHY BY FULL QUANTUM SIMULATIONS

A. Theoretical method for TDSE

For numerically solving the TDSE, it was shown previously
that the velocity gauge is the preferred gauge, as it greatly
reduces the total angular momentum number Lmax compared
to the length gauge [14]. Thus we solve the TDSE in the
velocity gauge [atomic units (a.u.) e = m = h̄ = 1 are used
throughout unless otherwise stated],

i
∂

∂t
�(r,t) =

[
1

2
p2 + Ve(r) − A(t) · p

]
�(r,t). (1)

For the H atom, the potential Ve(r) = −1/r . For Xe, we
use the form of an effective model potential Ve(r) [15,16] in
the single-active-electron approximation (SAEA) to describe
both the atomic structure of the bare atom and the rescattering
properties of the ion core:

Ve(r) = −(1 + a1e
−a2r + a3re

−a4r + a5e
−a6r )/r, (2)

with a1 = 51.356, a2 = 2.112, a3 = −99.927, a4 = 3.737,
a5 = 1.644, and a6 = 0.431. Spin-orbit coupling is neglected.
The calculated ionization potential energies Ip from the ground
state 5p and the first excited state 6s are 12.1 and 3.9 eV,
respectively, and agree well with the ionization energies of
5p[1S]J=0 (12.1 eV) and 6s[2P3/2]J=2 (3.8 eV) [17]. The
validity of the SAEA has been discussed in Ref. [15]. It works
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FIG. 1. (Color online) Schematic illustration of interference
trajectories in photoelectron holography. Trajectory S1: after tunnel
ionization, the electron is accelerated in the laser field, then driven
back and scattered by the core. Trajectory S2: the ionized electron
oscillates in the laser field without being scattered.

well in tunneling ionization. In addition, the initial state of Xe
in this work is the first excited state 6s. Because of the lower
ionization potential of the 6s state compared to that of the 5p

outer shell state, the SAEA model in the low-frequency laser
field is a quite good approximation.

We use a cosine square function to represent the temporal
profile of the laser pulse. Assuming that the polarization of the
laser field is along the z axis, the field vector potential reads

A(t) = E0

ω
cos2

(
πt

τ

)
sin(ωt + δ)ez, (3)

where τ is the total duration of the pulse, ω is the angular
frequency, E0 is the amplitude, and δ is the carrier-envelope
phase (CEP). The resulting electric field E(t) = − ∂A

∂t
satisfies

the total zero area
∫

E(t)dt = 0.
For accurate calculation of the ATI, direct TDSE simulation

is still a challenging problem. The kinetic energy of a scattered
electron can be as high as 10Up, where Up is known as
the ponderomotive energy Up = E2

0/4ω2. In midinfrared laser
pulses, Up (which scales with λ2) can reach appreciable values.
In addition, the total time duration τ ∝ λ and high angular
momenta l must be included. An ATI spectrum converged up
to 10Up requires a radius rmax = 0.55τ

√
2 × 10Up [18]. As a

result, for the same number of laser cycles and laser intensities,
the computation demand for an 8-μm laser field is at least 100
times larger than for an 800-nm laser field. Thus it is important
to choose a flexible basis expansion in the radial direction,
rather than equally distributed grid points to accurately
represent the electronic wave function in intense midinfrared
laser fields. As described in Refs. [18,19], a B-spline basis
is a localized basis, resulting in a sparse Hamiltonian matrix,
which greatly reduces the required memory on the computer. In
addition, a B-spline basis is efficient to describe the continuum
states [18]. Thus we expand the time-dependent wave function

by a radial basis of B splines and an angular basis of spherical
harmonics as:

�(r,t) =
Lmax∑
l=0

N∑
i=1

Cl
i (t)

Bk
i (r)

r
Y 0

l (θ,φ), (4)

where N is the number of B splines for each angular
momentum l, k is the order of the B-spline basis, and Cl

i (t)
are time-dependent coefficients. For a linearly polarized laser
field, the magnetic quantum number is conserved, which is set
ml = 0 in this paper. Inserting Eq. (4) in Eq. (1) leads to

iS
∂C
∂t

= HC, (5)

where C is a vector of coefficients with dimension Nmax =
(Lmax + 1)N , and S and H are the overlap and Hamiltonian
matrices, respectively. Due to the localized B-spline basis and
the orthonormality of spherical harmonics, the matrices S and
H are block-banded matrices; the corresponding expressions
can be found in Refs. [20,21].

For the propagation of the time-dependent wave function
�(r,t), we use the Arnoldi-Lanczos scheme [22,23]. Defining
H′ = S−1H, the essential idea of the Arnoldi-Lanczos method
is to construct the Krylov space of H′,

Km(H′,C) = span{C,H′C, . . . ,(H′)(m−1)C}, (6)

which is generated by the Lanczos iteration. The procedure
yields a matrix V with dimension Nmax × m, which transforms
matrix H′ into a tridiagonal symmetric matrix h with a
small-order m. The time-dependent coefficients C(t + �t) are
obtained by the relation

C(t + �t) = V exp(−i�th)V†C(t). (7)

The ATI spectrum P (E) can be extracted from the total
time-dependent wave function �(r,t), Eq. (4), at the end of
the pulse by projection on the discretized continuum wave
function �l

Ek
(r) obtained by diagonalization of the field-free

Hamiltonian,

dP (E)

dE
=

Lmax∑
l=0

∣∣〈�l
Ek

(r)
∣∣�(r,τ )

〉∣∣2
, (8)

where �l
Ek

(r) is normalized on the energy scale [18].
To calculate the photoelectron angular distribution (PAD),

we compute the differential spectrum:

∂P (Ek,θk)

∂Ek∂θk

= |〈ψ−
k (r)|�(r,τ )〉|2, (9)

where the Coulomb continuum wave function ψ−
k (r) is

expanded in terms of spherical harmonics:

ψ−
k (r) =

Lmax∑
l=0

(i)l exp−iηl �l
Ek

(r)Y 0
l (θk,0), (10)

where ηl is the Coulombic phase.

B. Comparison of the theoretical and experimental
photonelectron momentum distribution of Xe

For the solution of the TDSE, Eq. (1), we use the
parameters: λ = 7 μm and a 10-cycle time duration τ to match
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FIG. 2. (Color online) Comparison of ex-
perimental (a) and theoretical (b) photoelectron
momentum distribution of Xe. The initial state
is the metastable 6s state, the laser intensity
is I = 7.1 × 1011 W/cm2, and the wavelength
is 7 μm.

the experimental FEL parameters in Ref. [7]. It is expected that
CEP effects can be neglected for long multicycle pulses, thus
we set δ = 0. The maximum total angular momentum number
is Lmax = 39, the number of B splines for each partial wave
is N = 5000, and the box of the radial direction is confined to
rmax = 4500 a.u. The integration time step is �t =0.048 a.u.,
and the dimension of the reduced Krylov space is m = 16.

In Ref. [7], Huismans et al. measured 3D photoelectron
velocity map images experimentally at different laser inten-
sities. The initial state was the metastable 6s state and was
prepared by means of electron impact. Figure 2(a) shows a
slice through the experimental 3D photoelectron momentum
distribution for a peak laser intensity I = 7.1 × 1011 W/cm2.
For comparison, our theoretical result is presented in Fig. 2(b),
showing satisfactory agreement between theoretical and ex-
perimental results. From the theoretical result, we can clearly
identify three different kinds of interference patterns in the
momentum distribution spectrum. As illustrated in Fig. 2(b),
the interference pattern A resembles a “fork.” It can be clearly
identified in both theoretical simulation and experimental
measurement. The interference pattern B is a set of semirings
centered on a point in momentum space around momentum
P‖ = ±0.7 a.u. It is weak and therefore not possible to identify
in the experimental results. The pattern C is merely a set of
outgoing rings from the center around P = 0 a.u., which can
be well resolved in both Figs. 2(a) and 2(b). It is the familiar
ATI structure, corresponding to the absorption of photons in
excess of the minimum number needed to reach the ionization
threshold.

In Ref. [7], the observed interference patterns were inter-
preted by using a number of theoretical approaches, which
included numerical solution of the TDSE for an Ar atom, a
Coulomb-corrected SFA treatment (where the influence of the
Coulomb field on the signal and reference trajectories was
considered), and a semianalytical treatment that rationalized
the holographic interferences in terms of the geometrical
difference between the signal and reference trajectories and
the interaction of the electrons with the laser electric field.

Since the simulations by TDSE for Ar in Ref. [7] and Xe in
the present paper agree well with the experimental results,
the holography is not very dependent on the atomic target. To
further rationalize interference patterns A–C, discussed above,
in what follows we use a simple classical model [1,2,24] to
identify the subcycle interference dynamics.

III. HOLOGRAPHY BY A CLASSICAL MODEL

The analysis of holographic structures in angular resolved
ATI spectra based on application of the saddle-point approach
to the standard S-matrix expressions in the strong-field approx-
imation has been performed in Ref. [7] (see Supplementary
on-line material). Here we consider a simplified picture based
on the classical recollision three-step model [1,2]. It is based
on the following assumptions [1,2].

(i) The free electron is born at distance z0 = Ip/E0 from
the core by tunneling ionization. After ionization, we neglect
the influence of the Coulomb potential due to the large z0

and α (where α = E0/ω
2 is the maximum excursion of a free

electron in the laser field) for the current laser parameters.
When the electron comes back to the core, it is elastically
scattered.

(ii) The initial velocity of the scattered electron is v
signal
‖ =

v
signal
⊥ = 0 (i.e., between ionization and recollision the signal

trajectory is along the polarization axis), while the initial
velocity of the unscattered electron is vref

‖ = 0,vref
⊥ �= 0 (i.e.,

the reference electron acquires its transverse velocity during
the ionization process). Due to the long excursion time between
ionization and recollision, if v

signal
⊥ �= 0, the electron will not

return to the core [1].
(iii) After scattering, the velocity of the signal electron is

the same as that of the reference electron. This is a condition
for the observation of the interference pattern.

(iv) We neglect the phase changes during the tunnel ioniza-
tion and the scattering process. We further neglect multiple
scattering of the signal electron by the core.

043420-3



XUE-BIN BIAN et al. PHYSICAL REVIEW A 84, 043420 (2011)

Since the laser field is polarized along the z direction, the
motion of the electrons along the perpendicular direction is
conserved in the laser field. In the following, we only consider
the motion of electrons along the z direction. If the electron
is ionized at a particular phase ϕ of the electric field E(t) =
E0 cos(ωt + ϕ), the velocity and the position of the electron
can be obtained as

v(t,ϕ) =
∫ t

0
−E(t ′)dt ′ = −E0

ω
[sin(ωt + ϕ) − sin(ϕ)], (11)

z(t,ϕ) =
∫ t

0
v(t ′)dt ′

= E0

ω2
[cos(ωt + ϕ) − cos(ϕ) + ω sin(ϕ)t] − z0. (12)

When the electron is driven back to the core after traveling time
tc, z(tc,ϕ) = 0, and we have a relation between tc and ϕ as

cos(ωtc + ϕ) − cos(ϕ) + ω sin(ϕ)tc = γ 2/2, (13)

where γ = √
2Ipω/E0 is the Keldysh parameter.

Next we assume that the signal electron is elastically
scattered by the core at an angle θc. After that, the velocity in
the perpendicular direction is constant as v⊥ = v(tc,ϕ) sin(θc).
The final velocity along the z direction is

v‖(t) =
∫ t

tc

E(t ′)dt ′

= −E0

ω
[sin(ωt) − sin(ωtc)] + v(tc,ϕ) cos(θc). (14)

Here we take into account that the vector potential A(t) = 0
after the end of the pulse. Thus, the momentum measured at
the detector is

P‖ = E0

ω
sin(ωtc) + v(tc,ϕ) cos(θc). (15)

The phase accumulated between the reference (with ion-
ization phase ϕ′) and the scattered signal waves does not
change after the recollision of the signal electron. Therefore,
the time t r up to which the phase accumulation of the

A

B

Scattered
forward

Ref

FIG. 3. (Color online) Sketch of different subcycle interference trajectories and the corresponding interferometric structures. The laser
parameters are the same as in Fig. 2. In the upper panel, A stands for the signal electron, B represents the reference electron.
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reference wave packet needs to be calculated is the time
interval between the collision time of the signal wave packet
and the ionization time for the reference wave packet. Thus
in our notation, ϕ + ωtc = ϕ′ + ωtr (tc is calculated from
the ionization time of the signal wave, t r is calculated from
the given formula). In addition, vr

‖(t r ,ϕ′) = v(tc,ϕ) cos(θc),
vr

⊥ = v(tc,ϕ) sin(θc).
From the above discussion, we can get the phase difference

between the reference electron and the signal electron as

�� =
∫ tc

0

v2(t ′,ϕ)

2
dt ′ −

∫ t r

0

v2(t ′,ϕ′)
2

dt ′

− v2
⊥t r

2
− Ip

(ϕ − ϕ′)
ω

. (16)

We discuss next the subcycle interference dynamics. As
shown in Fig. 3, we fix the ionization of the signal electron
in the first quarter-cycle with ϕ ∈ [0,π/2]. This electron is
first ionized in the negative z direction and is then turned
around by the laser field, so that the velocity of the signal
electron arriving at the core is positive before being scattered.
Next we consider the interference patterns that are generated
by the interference of this signal electron in combination
with a reference electron that is ejected during the same
quarter-cycle or one of the first three-quarter cycles after this
one. Though it may not be possible to separate all these
interference patterns experimentally, separate evaluation of
different interfering contributions to the overall spectrum is
useful, since it provides insight into the experimental results
and in the TDSE calculations.

We first consider the case where the reference electron
is generated in the same quarter-cycle ϕ′ ∈ [0,π/2]. The
interference pattern for this case is presented in Fig. 3(a) and
agrees well with the pattern shown in Fig. 2(b), labeled A. If the
reference electron is generated in the next quarter-cycle with
ϕ′ ∈ [π/2,π ], the interference pattern is shown in Fig. 3(b).
This is a ring pattern centered at P = 0 a.u. The velocity of
the reference electron generated with ϕ′ ∈ [0,π ] is positive
when the signal electron arrives at the core, which implies that
the interference patterns in Figs. 3(a) and 3(b) correspond to
forward scattering interference. Although somewhat similar
in appearance, the interference pattern in Fig. 3(b) is not the
usual ATI pattern C spaced by one photon energy in Fig. 2(b),
which is produced by multiple-cycle laser pulses. Nor does
it correspond to the time double-slit interference reported
by Gopal et al. [10], which corresponds to the interference
between two non-rescattering reference electrons, rather than
the interference between a rescattering signal electron and
a non-rescattering reference electron. A calculation of the
time double-slit interference trajectories and the corresponding
interferometric structures within the framework of the classical
model is presented in Fig. 4. This interference is particularly
easy to understand; it arises from the interference of two wave
packets ionized at instants t1 and t2 within the same laser cycle,
for which A(t1) = A(t2), where the laser electric field has
opposite values, E(t1) = −E(t2). That is, the two wave packets
appear on the opposite sides of the ion but have the same drift
momentum. In other words, the signal electron goes across the
core without being rescattered. It is interesting to note that the
holographic interference pattern shown in Fig. 3(b) is a set of

(a)

(c)

(b)

FIG. 4. (Color online) Sketch of time double-slit interference
trajectories and the corresponding interferometric structures by the
classical model. Laser parameters are the same as in Fig. 2. A stands
for the signal electron; B represents the reference electron.

outgoing rings (i.e., rings with an upward curvature), while the
time double-slit interference pattern presented in Fig. 4(c) is a
set of incoming rings (downward curvature).

So far we have considered the subcycle interference
pattern in forward scattering. Now we turn to the holographic
structures that appear in backward scattering. If the reference
electron is generated in the third quarter-cycle with ϕ′ ∈
[π,3π/2], the interference pattern shown in Fig. 3(c) is
obtained. This pattern is a semiring structure centered around
P‖ = −0.7 a.u., which agrees with the pattern labeled B in
Fig. 2(b). However, we cannot definitely say that pattern B in
Fig. 2(b) is caused by the interference in Fig. 3(c) since the
time double-slit interference pattern illustrated in Fig. 4(c) has
a somewhat similar structure [7,10–12].

If the reference electron is ionized in the fourth quarter-
cycle with ϕ′ ∈ [3π/2,2π ], the interference structure is pre-
sented in Fig. 3(d). It is difficult to resolve these structures
in the experimental and theoretical spectra in Fig. 2. In the
results shown in Figs. 3(c) and 3(d), the reference electron
has a negative velocity, whereas the signal electron arrives at
the core with a positive velocity. Therefore the results in both
Figs. 3(c) and 3(d) involve backward scattering of the signal
wave, which usually is weaker than the forward scattering.
This is the reason why the interference patterns in Figs. 3(c)
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FIG. 5. (Color online) Atomic orbitals of H in momentum space and the corresponding photoelectron momentum distribution in a laser
field with intensity I = 1.775 × 1011 W/cm2 and wavelength 7 μm. The initial state is (a) 3s, (b) 3p, and (c) 3d . The horizontal (red) line
corresponds to the cutoff momentum of the directly ionized electrons.

and 3(d) are difficult to be identified in the experimental results
in Fig. 2(a).

IV. IMPRINT OF DEGENERATE ORBITALS OF THE H
ATOM IN HOLOGRAPHY

Photoelectron holographic patterns contain both time and
spatial information [7]. In this light it would be interesting
to investigate the possibility of resolving the shape of the
atomic orbital with photoelectron holography. As described
in the previous section, there are four types of holographic
interference structures, which should all carry valuable infor-
mation. Realistically, however, only the interference structure
described in Fig. 3(a) will be resolvable, since it is the
only interference pattern in the angular direction. All other
interference patterns, including the nonholographic ones, have
a pattern in the radial direction and will be hard to disentangle.
From now on we therefore focus on the first interference
structure and explore to what extent these interference patterns
depend on the choice of initial orbital.

To reduce the influence of the tunneling time and the ioniza-
tion rate of the different initial states, we choose the degenerate
3s, 3p, and 3d states of H as initial states. The photoelectron

momentum distributions, calculated with the TDSE, are pre-
sented in Fig. 5. Different initial orbitals indeed give rise to dif-
ferent holographic patterns and three types of differences can
be observed; the width of the pattern, the cutoff of the pattern,
and the shape of the fringes. Concerning the first, for both the
3s and the 3d state, multiple fringes can be observed, while for
the 3p state the second fringe is already barely visible. This can
be explained by the initial distribution of the photoelectrons;
the more the photoelectrons initially ionize with an orthogonal
component P⊥, the wider the final pattern. The perpendicular
momentum distribution of the unscattered photoelectrons is
closely related to the initial state �(0) [25,26]:

�(P⊥) = �(0) exp

[
−P 2

⊥τ0

2

]
, (17)

where τ0 = √
2Ip/E0 in the static limit. The shapes of the

atomic orbitals in momentum space are presented in the top
panel in Fig. 5. Both the s and the d state have a substantial
distribution in the orthogonal direction, while for the 3p state
there is a nodal plane perpendicular to the z axis with P‖ =
0 a.u. Consequently, the reference photoelectrons ionized in
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the perpendicular direction are suppressed, giving rise to a
narrower distribution of the holographic pattern.

The second observation is the lower momentum cutoff in the
interference pattern for the 3d orbital compared to the 3s and
3p orbitals. The cutoff energy of the directly ionized electron
is 2Up, which restricts the holographic pattern below 2

√
Up

in momentum space. Photoelectrons with a higher energy,
up to 10Up, can also be obtained by backscattering [24]. A
possible explanation for the lower cutoff of 3d orbitals could
be related to the effective potential l(l+1)

2r2 − 1
r
, which is strongly

dependent on l. A high angular momentum changes the shape
of the tunneling wave packet and the tunneling rate [27].
The ionization rate of electrons from 3d orbitals with higher
energy decreases compared to that of electrons from 3s and
3p orbitals. The momentum distribution of electrons from the
3s and 3p states extends beyond 2

√
Up, which corresponds

to a stronger recollision signal. However, the recollision is
suppressed for the 3d state due to the centrifugal potential
(preventing the return).

The third, and perhaps most important, observation is the
shape of the fringes itself. While for 3s they are parallel to
the main lobe, for 3p they bend together at higher momenta
and for 3d they diverge. A possible explanation is the different
short-range potentials altering the phase of the scattering wave
packets in a different way for the three atomic orbitals. This
would imply that it is possible to map the atomic orbital [13,28]
with photoelectron holography.

The observation and analysis so far are qualitative, but the
TDSE calculations do show that the atomic orbitals have an
imprint on the final pattern. It would be very interesting to
investigate the possibility of time-resolving atomic orbitals
with photoelectron holography.

V. CONCLUSION

In summary, we present and compare accurate numerical
methods to calculate ATI spectra of atoms in midinfrared laser
pulses. The simulations agree well with current experimental
results performed with a FEL source. A simple classical model
is proposed to interpret the subcycle interference patterns
obtained. To our knowledge, the subcycle interference patterns
shown in Figs. 3(b)–3(d) have not been reported previously.
We have demonstrated that all subcycle interferences give
a pattern in the radial direction except for the holographic
pattern created by electron wave packets generated in the same
quarter-cycle. This allows us to disentangle this holographic
pattern from other interference structures and investigate the
time and spatial information stored in the hologram. TDSE
calculations show that this holographic pattern is sensitive to
the degenerate 3s, 3p, and 3d states of the H atom, which
implies that the shape of the original orbital is imprinted in the
photoelectron hologram. This opens the way to investigation
of the possibility of doing time-resolved studies of atomic
and molecular orbitals with photoelectron holography. Further
research may benefit from sculpturing and tailoring these new
pulses using control algorithms [29].
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[11] D. G. Arbó, E. Persson, and J. Burgdörfer, Phys. Rev. A 74,

063407 (2006).
[12] F. Lindner, M. G. Schätzel, H. Walther, A. Baltuška,
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