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Optimal trajectories for efficient atomic transport without final excitation
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We design optimal harmonic-trap trajectories to transport cold atoms without final excitation, combining an
inverse engineering technique based on Lewis-Riesenfeld invariants with optimal control theory. Since actual
traps are not really harmonic, we keep the relative displacement between the center of mass of the transport
modes and the trap center bounded. Under this constraint, optimal protocols are found according to different
physical criteria. The minimum time solution has a “bang-bang” form, and the minimum displacement solution
is of “bang-off-bang” form. The optimal trajectories for minimizing the transient energy are also discussed.
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I. INTRODUCTION

Efficient transport of ultracold atoms and ions by moving
the confining trap is an important goal in atomic physics
[1–15], with applications to basic science, metrology, and
quantum-information processing. A sufficiently slow, adia-
batic motion is a simple way to transport the atoms without
excitations or losses [4,6,7]. However, the long time required
may become impractical, e.g., if a fast quantum-information
operation is required [1,9], or counterproductive because of the
accumulation of perturbations. Motivated by these drawbacks
of adiabatic methods, several theoretical and experimental
investigations have been devoted to making atomic transport
fast and simultaneously faithful to the ideal final result of slow
adiabatic transport [10–15].

These works on transport share concepts and techniques
with other “shortcuts to adiabaticity” in expansion or compres-
sions [12,16–24], rotations [25], and internal state population
transfer and control [26–33]. Several approaches have been
proposed, including counter-diabatic [26–28] or, equivalently,
transitionless driving algorithms [29–31], optimal control the-
ory [20], “fast-forward” scaling [12], and inverse engineering
based on Lewis-Riesenfeld invariants [14–19,23,24,31–34].

We shall focus here on the invariant-based inverse engi-
neering method, which relies on designing the Hamiltonian
evolution so that the eigenvectors of corresponding invariants
of motion become at initial and final times equal to the
instantaneous eigenvectors of the Hamiltonian. This method
provides in fact families of paths [31] which satisfy the initial
and final boundary conditions, and thus guarantee the fast
transitionless evolution, ideally in an arbitrarily short time.
Given this freedom, it is natural to combine the invariant-based
inverse method and optimal control theory to optimize the
trajectory according to different physical criteria or operational
constraints. For example, the time-dependent frequency of a
harmonic trap expansion can be optimized with respect to
time or to transient excitation energy, with a restriction of the
allowed transient frequencies [35–37].

In this paper, we apply the invariant-based method com-
plemented by optimal control theory to find optimal trajec-
tories for fast atomic transport on harmonic traps without
final vibrational excitation. Since actual traps are not really

harmonic, we keep, as an imposed constraint, the relative
displacement between the center of mass and the trap center
bounded. We then optimize the trajectories according to
different physical criteria: time minimization, (time-averaged)
displacement minimization, and (time-averaged) transient
energy minimization. The combination of the invariant-based
method with optimal control and the use of the relative
displacement as a constrained control variable differentiates
the present article from our previous work [14], in which
energy minimization for unconstrained displacement was
applied on a heuristic basis.

II. INVARIANT-BASED INVERSE ENGINEERING
METHOD

We consider here the harmonic transport of a particle of
mass m described by the time-dependent Hamiltonian

H (t) = p̂2

2m
+ 1

2
mω2

0[q̂ − q0(t)]2, (1)

where q̂ and p̂ are the position and momentum operators,
ω0 is the constant (angular) frequency of the potential, and
q0(t) is the position of the center of the harmonic trap.
The corresponding quadratic-in-momentum Lewis-Riesenfeld
invariant [34] has the form [38,39] (up to an arbitrary
multiplicative constant)

I (t) = 1

2m
(p̂ − mq̇c)2 + 1

2
mω2

0[q̂ − qc(t)]2, (2)

where the dot represents a time derivative and the function
qc(t) must satisfy the auxiliary equation

q̈c + ω2
0(qc − q0) = 0, (3)

to guarantee the invariant condition

dI (t)

dt
≡ ∂I (t)

∂t
+ 1

ih̄
[I (t),H (t)] = 0. (4)

Equation (3) is simply Newton’s equation for a classical
particle in the moving harmonic potential.
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An arbitrary solution of the time-dependent Schrödinger
equation ih̄∂t�(q,t) = H (t)�(q,t), may be written in terms
of “transport modes” eiαnψn(q,t),

�(q,t) =
∑

n

cne
iαnψn(q,t), (5)

where n = 0,1, . . ., cn are time-independent coefficients,
ψn(q,t) are the orthonormal eigenvectors of the invari-
ant I (t) satisfying I (t)ψn(q,t) = λnψn(q,t), with real time-
independent λn, and the Lewis-Riesenfeld phase is defined
as

αn(t) = 1

h̄

∫ t

0
〈ψn(t ′)|ih̄ ∂

∂t ′
− H (t ′)|ψn(t ′)〉dt ′. (6)

For the harmonic trap considered here [39],

ψn(q,t) = 1

(2nn!)1/2

(
mω0

πh̄

)1/4

exp

[
− mω0

2h̄
(q − qc)2

]

× exp

(
i
mq̇cq

h̄

)
Hn

[(
mω0

h̄

)1/2

(q − qc)

]
(7)

(the Hn are Hermite polynomials), i.e., qc is the center of mass
of the transport modes.1 Substituting Eq. (7) into Eq. (6),

αn = −1

h̄

∫ t

0
dt ′

(
λn + mq̇2

c

2

)
, (8)

where λn = En = (n + 1/2)h̄ω0. The instantaneous average
energy for a transport mode can be obtained from Eqs. (1) and
(7),

〈ψn(t)|H (t)|ψn(t)〉 = h̄ω0(n + 1/2) + Ec + Ep, (9)

where the first, “internal” contribution remains constant for
each n, Ec = mq̇2

c /2, and Ep = 1
2mω2

0(qc − q0)2 has the form
of a potential energy for a classical particle. The instantaneous
average potential energy can be written as

〈V (t)〉 = h̄ω0

2
(n + 1/2) + Ep. (10)

Suppose that the harmonic trap is displaced from q0(0) = 0 to
q0(tf ) = d (d > 0) in a time tf . The trajectory q0(t) of the trap
can be inverse engineered by designing first an appropriate
classical trajectory qc(t). To avoid vibrational excitation at the
final time we impose the conditions

qc(0) = 0, q̇c(0) = 0, q̈c(0) = 0, (11)

qc(tf ) = d, q̇c(tf ) = 0, q̈c(tf ) = 0, (12)

which, along with Eq. (3), imply also that

q0(0) = 0, q0(tf ) = d. (13)

The above boundary conditions guarantee the commutativity
of I (t) and H (t) at t = 0 and t = tf ; that is, the transport
modes coincide with the eigenvectors of the instantaneous
Hamiltonian at t = 0 and t = tf . qc(t) can be interpolated
by a simple polynomial ansatz that satisfies these boundary

1We shall also refer to qc as the “classical trajectory.” Note that the
center of mass of a linear combination of transport modes may be
displaced with respect to qc.

conditions. Once qc(t) is fixed, we get the trap trajectory q0(t)
from Eq. (3).

As discussed later in more detail, the boundary conditions
on the second derivatives and consequently the conditions for
q0 in Eq. (13) are special, in the sense that we shall allow for
discontinuities in the acceleration q̈c at the edge times (in fact
also elsewhere). Physically this means that the trap is ideally
allowed to be displaced suddenly a finite distance, whereas the
velocity q̇c and the trajectory qc remain always continuous.

Viewed as a mathematical problem, there is no lower bound
for tf [14]. However, there are always some physical limits
in the laboratory related, for instance, to spatial or energy
constraints, leading to a finite tf .

III. OPTIMAL CONTROL PROBLEM WITH
CONSTRAINED RELATIVE DISPLACEMENT

We begin with the equation of motion, Eq. (3), for the
classical particle in the harmonic trap, and set, for compactness
and to follow the usual conventions in optimal control theory,
a new notation,

x1 = qc, x2 = q̇c, u(t) = qc − q0, (14)

where x1,x2 are the components of a “state vector” x, and
the relative displacement between the trap and the classical
trajectory u(t) is considered as the (scalar) control function.
The physical motivation behind this control is that actual traps
are not really harmonic, so the relative displacement should be
kept bounded to avoid anharmonic perturbations. Equation (3)
becomes

ẋ1 = x2, (15)

ẋ2 = −ω2
0u. (16)

The optimal-control problem is to find |u(t)| � δ for some
fixed bound δ, with u(0) = 0 and u(tf ) = 0 such that the
system starts at {x1(0) = 0,x2(0) = 0}, ends up at {x1(tf ) =
d,x2(tf ) = 0}, and minimizes a cost function J .

The boundary conditions for x1 and x2 can be equivalently
considered as those for qc and q̇c. The boundary conditions
for u(t) are equivalent to those for q0 and, through Eq. (3),
equivalent to those for q̈c, so there are totally six boundary
conditions, as in Eqs. (11) and (12). A natural way to
understand the boundary conditions on u(t) is to consider
that u(t) = 0 for t � 0 and t � tf , so the classical trajectory
and the trap center coincide before and after the transport.
We will consider cost functions that are not affected by the
isolated values u(0) and u(tf ), minimizing the transport time,
the displacement, or the energy, and solve the control problem
in the interval (0,tf ). In order to match the boundary conditions
at the initial and final times, the optimal control obtained
may be complemented by appropriate jumps at these points
which do not affect the cost. We use Pontryagin’s maximum
principle, which provides necessary conditions for optimality
[40]. Generally, to minimize the cost function

J (u) =
∫ tf

0
g(x(t),u) dt, (17)

the maximum principle states that for the dynamical system
ẋ = f(x(t),u), the coordinates of the extremal vector x(t) and
of the corresponding adjoint state p(t) formed by Lagrange
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multipliers, p1, p2, fulfill Hamilton’s equations for a control
Hamiltonian Hc,

ẋ = ∂Hc

∂p
, (18)

ṗ = −∂Hc

∂x
, (19)

where Hc is defined as

Hc(p(t),x(t),u) = p0g(x(t),u) + pT · f(x(t),u). (20)

The superscript T used here denotes the transpose of a vector,
and p0 < 0 can be chosen for convenience since it amounts to
multiplying the cost function by a constant. The (augmented)
vector with components (p0,p1,p2) is nonzero and continuous.
For almost all 0 � t � tf , the function Hc(p(t),x(t),u) attains
its maximum at u = u(t), and Hc(p(t),x(t),u(t)) = c, where c

is constant.

A. Time minimization

We discuss now the time-minimization optimal-control
problem with a constrained relative displacement, that is,
|u(t)| = |qc − q0| � δ, which means Ep � 1

2mω2
0δ

2. To find
the minimal time tf we define the cost function

JT =
∫ tf

0
dt = tf . (21)

The control Hamiltonian Hc(p(t),x(t),u) is

Hc(p1,p2,x1,x2,u) = p0 + p1x2 − p2ω
2
0u. (22)

With the control Hamiltonian, Eq. (19) gives the following
costate equations:

ṗ1 = 0, (23)

ṗ2 = −p1. (24)

They are solved easily as p1 = c1 and p2 = −c1t + c2 with
constants c1 and c2. According to the Pontryagin’s maximum
principle, the time-optimal control u(t) maximizes the control
Hamiltonian in Eq. (22).

Since the control Hamiltonian is a linear function of the
control function u(t), the optimal control that maximizes Hc is
determined by the sign of p2, when u(t) is bounded, |u(t)| � δ.
When p2 �= 0, the optimal control in the duration tf is given
by

u(t) =
{−δ, p2 > 0,

δ, p2 < 0.
(25)

If p2 = 0 for some time interval, then p1 = 0 from Eq. (24),
and p0 = 0 from Eq. (22), since Hc = 0 for the time-optimal
problem [40], in contrast with the maximum principle that
requires (p0,p1,p2) �= 0. Thus p2 can be zero only at isolated
points, the switching times. The solutions of the costate
functions in Eqs. (23) and (24) imply that the function of p2

depends linearly on time t , so that the sign of p2 cannot change
more than once. Since the final point is (x1,x2) = (d,0), d > 0,

a

t t f

u
d

b

x1 d

x 2
dω

FIG. 1. (Color online) (a) The control function (dashed blue line)
for time-optimal problem, and (b) the corresponding trajectory (solid
red line) for ω0 = 2π × 50 Hz, δ = 0.1d , and tf = 20 ms given by
Eq. (28).

the appropriate control sequence is of “bang-bang” (piecewise
constant) type,

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t � 0,

−δ, 0 < t < t1,

δ, t1 < t < tf ,

0, t � tf ,

(26)

with only one intermediate switching time at t1, as shown
in Fig. 1(a). The saturation of the control is typical of time
minimization problems.

Substituting u(t) into the classical Eq. (3), and using the
boundary conditions in Eqs. (11) and (12), we find the optimal
classical trajectory

qc(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t � 0,

ω2
0δt

2/2, 0 < t < t1,

d − ω2
0δ(t − tf )2/2, t1 < t < tf ,

d, t � tf ,

and the corresponding trajectory for the harmonic trap is

q0(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t � 0,

(1 + ω2
0t

2/2)δ, 0 < t < t1,

d − [
ω2

0(t − tf )2/2 + 1
]
δ, t1 < t < tf ,

d, t � tf .

Figure 1(b) illustrates the time-optimal trajectory with one
switching time. Solving the system of Eqs. (15) and (16), one
can find the switching time t1 and final time tf ,

t1 = tf

2
, (27)

tf = 2

ω0

√
d

δ
, (28)
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FIG. 2. Velocity profiles of harmonic trap and particles for time
minimization, where the switching time t1 = tf /2.

by imposing continuity on x1 and x2. For the “bang-bang”
control, the motion of the trap has discontinuities, while
we impose continuity for the trajectory of the particle. As
illustrated by Fig. 2, the velocities of particle and trap become
equal,

q̇c = q̇0 =
{

ω2
0δt, 0 < t < t1,

−ω2
0δ(t − tf ), t1 < t < tf ,

(29)

since u(t) is piecewise constant during the bang-bang control.
The maximum velocity occurs at t = tf /2,

v0 = ω2
0δtf /2 = ω0

√
dδ, (30)

which is restricted by the imposed bound |u(t)| � δ. In
addition, the instantaneous potential energy 〈V 〉 is constant,
and

Ep = 1

2
mω2

0δ
2 = 8md2

ω2
0t

4
f

. (31)

If we loosen the bound by increasing δ, the maximum velocity
and the instantaneous potential energy increase, and the final
time may be shortened.

B. Displacement minimization

In this section, we minimize the integral, or time-average
of the relative displacement, which is equivalent to a minimal
control-effort problem. To this end, the cost function can be
defined as

JD =
∫ tf

0
|u(t)|dt =

∫ tf

0
|qc − q0|dt, (32)

and the control Hamiltonian is

Hc(p1,p2,x1,x2,u) = p0|u| + p1x2 − p2ω
2
0u, (33)

which leads to the same costate equations for p1 and p2 in
Eqs. (23) and (24). Thus, we obtain p1 = c1 and p2 = −c1t +
c2 with constants c1 and c2 from the costate equations. We use
for convenience the normalization p0 = −ω2

0. Disregarding
u-independent terms in Hc, the function of u(t) that we have
to maximize is

−ω2
0(|u| + p2u) =

{
−ω2

0(1 + p2)u, u � 0,

ω2
0(1 − p2)u, u � 0.

(34)

According to Pontryagin’s maximum principle, when u(t) is
bounded, |u(t)| � δ, the control function is

u(t) =

⎧⎪⎨
⎪⎩

−δ, p2 > 1,

0, −1 < p2 < 1,

δ, p2 < −1,

(35)

which maximizes the control Hamiltonian in Eq. (33). Switch-
ings of the optimal control occur at isolated instants when
p2 = ±1 and ṗ2 �= 0. In principle we may also consider

p2 =
{−1, u � 0,

1, u � 0,
(36)

in the whole interval from 0 to tf . This may occur if c1 = 0
and c2 = ±1, and thus p1 = 0. The optimal-control problem
becomes a singular-control case [37,41–43], in which the
maximization of the function in Eq. (34) with respect to u

gives us no useful information. However, when p2 = −1 and
u � 0, the initial point (0,0) is driven to (x1,x2) with x1,x2 � 0,
according to Eqs. (15) and (16), so the target point (d,0) cannot
be reached. Similarly, for p2 = 1 and u � 0, (d,0) at tf cannot
be reached either because u should be positive for some time
interval. Thus, the singular control plays no role in this problem
and the optimal control is given by Eq. (35).

Notice that whereas in the minimum-time problem dis-
cussed above, the optimal control is bang-bang, the minimal-
displacement control can be described as “bang-off-bang.”
Owing to the properties of costate equations, the bang-off-bang
trajectory with two switching times t1 and t1 + t2 can be

a

t t f

u
d

b

x1 d

x 2
dω

FIG. 3. (Color online) (a) Control function (dashed blue line) for
the displacement-optimal problem and (b) corresponding trajectory
(solid red line) for tf = 30 ms, δ = 9d/2ω2

0t
2
f , and ω0 = 2π × 50 Hz.
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described by, see Fig. 3(a),

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t � 0,

−δ, 0 < t < t1,

0, t1 < t < t1 + t2,

δ, t1 + t2 < t < tf ,

0, t � tf .

(37)

Substituting the control function u(t) into Eq. (3), using
the boundary conditions in Eqs. (11) and (12), and imposing
the continuity of qc at the two switching times, the optimal
classical trajectory, as shown in Fig. 3(b), is finally given by

qc(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t � 0,

ω2
0δt

2/2, 0 < t < t1,

v0t − v2
0/

(
2ω2

0δ
)
, t1 < t < t1 + t2,

d − ω2
0δ(t − tf )2/2, t1 + t2 < t < tf ,

d, t � tf ,

(38)

which results in the following optimal trap trajectory,

q0(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t � 0,

(1 + ω2
0t

2/2)δ, 0 < t < t1,

v0t − v2
0/(2ω2

0δ), t1 < t < t1 + t2,

d − [
ω2

0(t − tf )2/2 + 1
]
δ, t1 + t2 < t < tf ,

d, t � tf .

(39)

As in the bang-bang time minimization, the velocities of
particle and trap are equal, see Fig. 4,

q̇c = q̇0 =

⎧⎪⎨
⎪⎩

ω2
0δt, 0 < t < t1,

v0, t1 < t < t1 + t2,

−ω2
0δ(t − tf ), t1 + t2 < t < tf ,

(40)

where v0 is the maximum velocity of trap motion in the
trajectory, which will be determined later. With the boundary
conditions for x1 and x2 at t = t1 and t = t1 + t2, the switching
times can be calculated as

t1 = v0

ω2
0δ

, (41)

t2 = d

v0
− v0

ω2
0δ

. (42)

FIG. 4. Velocity profiles of harmonic trap and particles for
displacement minimization with two switching times t1 and t1 + t2.

As a consequence, the final time is

tf = 2t1 + t2 = d

v0
+ v0

ω2
0δ

� 2

ω0

√
d

δ
. (43)

Since the final time tf is fixed, there are three possible cases:
(i) When tf > (2/ω0)

√
d/δ, the maximal velocity v0 can be

solved from Eq. (43) as

v±
0 = ω2

0δtf

2

(
1 ±

√
1 − 4d

ω2
0t

2
f δ

)
, (44)

where v+
0 should be ignored, because it leads to 2t1 > tf .

(ii) If tf = (2/ω0)
√

d/δ, the maximum velocity is v0 =
ω0

√
dδ, thus t1 = tf /2 and t2 = 0. The trajectory in this

case is reduced to that of the time-optimal control problem.
(iii) When the time tf is less than (2/ω0)

√
d/δ, there is no real

solution to v0 and no solution to displacement minimization.
Interestingly, the bang-off-bang trajectory for displacement

minimization may be related to the trajectory used for atomic
transport in Ref. [3], where the shift velocity q̇0 was increased
linearly during a quarter of the spatial transported distance
d/4, then kept constant for d/2, and during the last quarter
finally ramped back to zero. The corresponding (continuous)
trap trajectory q0 is exactly given by the function in Eq. (38)
with

δ = 9d

2ω2
0t

2
f

, (45)

t t f

q c
d

an
d

q 0
d

t t f

q c
d

an
d

q 0
d

(a)

(b)

FIG. 5. (Color online) (a) Comparison of trajectories qc (dashed
blue line: tf = 30 ms and dotted purple line: tf = 20 ms) and q0 (solid
red line) for the protocol in Ref. [3]. Note that tf = 3π/ω0 = 30
ms is a magic time without final excitation [14]. (b) Comparison of
trajectories qc (dashed blue line) and q0 (solid red line: tf = 20 ms and
dotted purple line: tf = 30 ms) in the displacement-optimal control.
ω0 = 2π × 50 Hz and δ = 9d/2ω2

0t
2
f .
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maximal velocity

v0 = 3d

2tf
, (46)

and switching times

t1 = 1

3
tf = d

2v0
, t2 = 1

3
tf = d

2v0
. (47)

An example is depicted in Fig. 5(a). The associated qc results
from solving Eq. (3) for this trap motion and in general will
not satisfy the boundary conditions at tf , Eq. (12), except for
a discrete set of “magic times” [14]. Figure 5(a) shows qc for
two different values of tf , one of them being a magic time.

Contrast this to the result of the optimization when choosing
the maximum displacement δ as in Eq. (45). According to
Eq. (44), v0 is also given by Eq. (46), and, from Eqs. (41)
and (42), the switching times are as in Eq. (47), so the
optimal classical trajectory qc would exactly coincide with
the continuous q0 set in the experiments [3], avoiding final
excitations for any tf . Nevertheless the trap trajectory q0

necessary to implement that displacement-optimal classical
trajectory, according to Eq. (39), includes finite jumps by ±δ

at t = 0, t1, t1 + t2, and tf , as depicted in Fig. 5(b).
Returning now to the general case, the time-averaged

potential energy for the optimal trajectory is

Ep =
∫ tf

0 Ep dt

tf
= mω2

0δ
2t1

tf
, (48)

where t1 = v0/ω
2
0δ is given by

t1 = tf

2

(
1 −

√
1 − 4d

ω2
0t

2
f δ

)
. (49)

As a result,

Ep = 1

2
mω2

0δ
2

(
1 −

√
1 − 4d

ω2
0t

2
f δ

)
. (50)

For example, when δ = 9d/2ω2
0t

2
f and t1 = tf /3 are chosen

as discussed above, the time-averaged potential energy is
Ep = 27md2/4ω2

0t
4
f , which is less than the (constant) po-

tential energy Ep = 8md2/ω2
0t

4
f for the time-optimal control

problem.

C. Energy minimization

The instantaneous potential energy 〈V (t)〉 is given in
Eq. (10). To minimize the potential energy average for a given
mode n and fixed transport time tf , the cost function can be
defined as

JE =
∫ tf

0
Ep dt =

∫ tf

0

1

2
mω2

0u
2 dt, (51)

and the control Hamiltonian is

Hc = −p0
1
2mω2

0u
2 + p1x2 − p2ω

2
0u, (52)

which gives two costate equations, Eqs. (23) and (24). The
solutions are as before p1 = c1 and p2 = −c1t + c2, with
constants c1 and c2. For the normalization p0 = −1/m the
function of u(t) that we have to maximize is −u2/2 − p2u.

Here we start with the case of “unbounded control,” i.e.,
without imposing any constraints on the displacement, and we
will show how this is related to the physically interesting case
where the control is bounded. To maximize −u2/2 − p2u, the
control function is found to be

u(t) = −p2, (53)

and the classical Eq. (3), q̈c = −ω2
0u, gives the optimal

trajectory

qc = − 1
6c1ω

2
0t

3 + 1
2c2ω

2
0t

2 + c3t + c4. (54)

Using the boundary conditions for qc and q̇c in Eqs. (11) and
(12), we find c1 = 12d/ω2

0t
3
f , c2 = 6d/ω2

0t
2
f , c3 = 0, and c4 =

0. Clearly, Eq. (54) does not satisfy the boundary conditions
for q̈c in Eqs. (11) and (12). To guarantee u(t) = 0 at t � 0 and
t � tf and match the boundary conditions, the control function
u(t) has to be complemented by the appropriate jumps at these
two edges. Consequently, the control function for unbounded
control, see Fig. 6(a), is found to be

u(t) =

⎧⎪⎨
⎪⎩

0, t � 0,

6d

ω2
0 t

2
f

(
2 t

tf
− 1

)
, 0 < t < tf ,

0, t � tf .

(55)

As shown in Fig. 6(b), the optimal classical trajectory for
unbounded control finally becomes

qc =

⎧⎪⎨
⎪⎩

0, t � 0,

dt2

t2
f

(
3 − 2 t

tf

)
, 0 < t < tf ,

d, t � tf ,

(56)

where the trajectory qc in the interval (0,tf ) is in agreement
with the result obtained in Ref. [14] using the Euler-Lagrange

a

t t f

u
d

b

x1 d

x 2
dω

FIG. 6. (Color online) (a) Control functions for the energy-
optimal problem with bounded (solid red line) and unbounded
(dashed blue line) controls, and (b) corresponding trajectories in the
cases of bounded (solid red line) and unbounded (dashed blue line)
controls. The parameters are the same as in Fig. 3.
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equation. In this case, the time-averaged minimal potential
energy is

Ep
min =

∫ tf
0 Ep dt

tf
= 6md2

ω2
0t

4
f

, (57)

which gives a lower bound for the time-averaged potential
energy of any other trajectories satisfying all the boundary
conditions, Ep � 6md2/ω2

0t
4
f . Note that, in spite of not having

preimposed a bound for the displacement, the optimal trajec-
tory obeys |u(t)| � δ0 = 6d/ω2

0t
2
f . For the bounded control,

i.e., when |u(t)| � δ is imposed, if δ � δ0 the unbounded
solution is the optimal one. [The value of δ0 can be obtained
in the bounded control case by requiring t1 � 0, see Eq. (67)
below.]

When the bound, |u(t)| � δ, is imposed, the control
function is

u(t) =

⎧⎪⎨
⎪⎩

−δ, p2 > δ,

−p2, −δ < p2 < δ,

δ, p2 < −δ,

(58)

to achieve the maximum value of the control Hamiltonian
Hc. As before, the linear p2 implies two switching times t1
and t1 + t2. To make the control function continuous at t1 and
t1 + t2, it has the form shown in Fig. 6(a),

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t � 0,

−δ, 0 < t < t1,

c1(t − tf /2), t1 < t < t1 + t2,

δ, t1 + t2 < t < tf ,

0, t � tf ,

(59)

where, because of tf = 2t1 + t2 due to the symmetry, the two
switching times t1 and t2 are given by

t2 = 2δ/c1, t1 = tf − 2δ/c1

2
. (60)

Unlike the time-minimization and displacement-
minimization problems, the control function here is not
piecewise constant, so the velocities of the classical particle
and the trap are not equal during the second segment from
t1 to t1 + t2, see Fig. 7. According to the control function in

FIG. 7. Velocity profiles of harmonic trap (dashed line) and
classical trajectory (solid line) for energy minimization with two
switching times t1 and t1 + t2.

Eq. (59), imposing the boundary conditions for x2 at t = 0
and t = tf , the velocity for the classical trajectory is

q̇c =

⎧⎪⎨
⎪⎩

ω2
0δt, 0 < t < t1,

− 1
2ω2

0c1
(
t − tf

2

)2 + v0, t1 < t < t1 + t2,

−ω2
0δ(t − tf ), t1 + t2 < t < tf .

(61)

and q̇0 = q̇c − u̇ gives the velocity profile of the trap,

q̇0 =

⎧⎪⎨
⎪⎩

ω2
0δt, 0 < t < t1,

− 1
2ω2

0c1
(
t − tf

2

)2 + v0 − c1, t1 < t < t1 + t2,

−ω2
0δ(t − tf ), t1 + t2 < t < tf ,

(62)

where v0 is the maximum velocity. With t2 = 2δ/c1, and
further imposing continuity of x2 at t = t1 and t = t1 + t2,
we find

t1 = v0

ω2
0δ

− δ

2c1
, (63)

which finally leads to tf = 2t1 + t2,

tf = 2v0

ω2
0δ

+ δ

c1
. (64)

Solving Eqs. (63) and (64), the parameters c1 and v0 are given
by

c1 = 2δ

tf − 2t1
, v0 = 1

4
ω2

0δ(tf + 2t1). (65)

Thus, c2 = δtf /(tf − 2t1). So far, c1, c2, and v0 are all
functions of t1. To determine t1 we write the optimal-energy
classical trajectory from Eq. (61),

qc(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, t � 0,

1
2ω2

0t
2δ, 0 < t < t1,

− 1
6ω2

0c1
(
t − tf

2

)3 + v0t + c3, t1 < t < t1 + t2,

d − 1
2ω2

0(t − tf )2δ, t1 + t2 < t < tf ,

d, t � tf .

By imposing its continuity at t = t1 and t = t1 + t2, c3 and t1
can be solved as

c3 = 1
2 (d − v0tf ), (66)

t1 = tf

2

(
1 −

√
3

√
1 − 4d

ω2
0t

2
f δ

)
, (67)

where the other unphysical solution should be neglected. Once
t1 is fixed, cj (j = 1,2,3) are available, and v0 is given by

v0 = ω2
0δtf

2

(
1 −

√
3

2

√
1 − 4d

ω2
0t

2
f δ

)
, (68)

which is smaller than the maximum velocity for the
displacement-optimal trajectory. A trajectory with minimal
energy and bounded control is depicted in Fig. 6(b). It is
seen from Eqs. (67) and (68) that for a real t1 and v0,
tf � (2/ω0)

√
d/δ should be satisfied. In the particular case

tf = (2/ω0)
√

d/δ, the maximum velocity is v0 = ω0

√
dδ, thus

t1 = tf /2 and t2 = 0. Like for displacement minimization, the
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E
p

FIG. 8. (Color online) Dependence of time-averaged energies Ep

on tf with δ = 0.1d , for energy minimization with bounded control
(red solid line), unbounded control, Eq. (57) (blue dashed line), and
displacement minimization (purple dotted line). Parameters are ω0 =
2π × 50 Hz, ε = mω2

0d
2/2, and mass of rubidium 87. Vertical lines

delimit the interval 4d/(δω2
0) � t2

f � 6d/(δω2
0).

trajectory in this case is reduced again to that of the time-
optimal control problem. Moreover, to make t1 non-negative,
tf should be less than (

√
6/ω0)

√
d/δ. If tf > (

√
6/ω0)

√
d/δ,

the optimal trajectory is the one in the unbounded-control case,
as commented before. In other words, δ > δ0 = 6d/ω2

0t
2
f . As

a result, the five-segment form in Eq. (59) applies for the
interval 4d/(δω2

0) � t2
f � 6d/(δω2

0) delimited by vertical lines
in Fig. 8. There is no solution for smaller times, whereas the so-
lution becomes the one for unbounded control for larger times.

In this energy-optimal trajectory, the time-averaged poten-
tial energy Ep should be minimized. The cost function in
Eq. (51) becomes

JE = mω2
0δ

2t1 + 1
6mω2

0δ
2t2, (69)

and therefore

Ep =
∫ tf

0 Ep dt

tf
= mω2

0δ
2

(
2t1

3tf
+ 1

6

)
, (70)

which finally results in

Ep = 1

2
mω2

0δ
2

(
1 − 2

√
3

3

√
1 − 4d

ω2
0t

2
f δ

)
. (71)

In Fig. 8, we compare this to the (larger) average energy
for the displacement-optimal problem, Eq. (50), and the lower
bound Eq. (57), and also demonstrate that the lower energy
bound can be realized when tf > (

√
6/ω0)

√
d/δ.

IV. DISCUSSION AND CONCLUSIONS

We have proposed optimal protocols for fast atomic trans-
port in harmonic traps combining the invariant-based inverse
engineering method and optimal control theory. Optimal
trajectories with bang-bang and bang-off-bang forms are,
respectively, obtained for time minimization and displacement
minimization with constrained displacement between the trap
center and the center of mass of the particle density in the
transport modes. The transient energies for bounded and
unbounded displacement are also minimized. As an example
of the potentiality of these optimization methods, let us
apply the adiabaticity criterion t2

f � md2/(2h̄ω0) to harmonic

transport with constant velocity of an atom of rubidium 87 a
distance d = 1 mm, and trap frequency ω0/(2π ) = 50 Hz.
This gives tf � 1.4 s. Suppose that the transport is done
with a Gaussian dipole trap [44] with waist w0 = 50 μm and
wavelength λ = 850 nm. The corresponding Rayleigh range
is zR = πw2

0/λ = 0.92 cm. Setting a displacement bound δ =
zR/100 to stay in the harmonic regime gives a minimal time,
Eq. (28), of 21 ms, a significant reduction with respect to the
adiabatic result. There are many different conditions regarding
times, distances, constraints, and the transported system for
which the proposed trap trajectories or their smoothed versions
could be implemented using magnetic or optical traps driven
by several mechanisms [14]. In this respect the numerical
values of this example or the ones used for the figures are
only for illustration. A much broader range of parameters
may be considered, ranging from microseconds to seconds, or
from micrometers to meters. Specific implementations would
of course benefit from a more detailed analysis taking into
account their peculiarities and technical limitations regarding
trap features and stability, trap speed limits, coherence times,
switching times, or geometric constraints.

In the time-optimal problem, the minimal time, Eq. (28),
corresponds to a fixed constraint: δ is the maximum dis-
placement allowed. Consistent with this, no solutions are
found for displacement- and energy-minimization problems
for transport times shorter than the minimal time, i.e., for tf <

(2/ω0)
√

d/δ. To achieve fast and faithful transport in shorter
times, an “energy price” must be paid by increasing δ, which, in
real traps, will also produce errors because of anharmonicities.
The relation between the minimal (time-averaged) energy and
the transport time tf obtained here is not at all trivial, in
particular they are not simply inversely proportional, see, e.g.,
Eq. (57) or (71), as one might naively expect from the form
of time-energy uncertainty relations. The scaling laws found
are also peculiar to transport. For example the minimal energy
in Eq. (57) depends on t−4

f instead of the t−2
f dependence

applicable to engineered trap expansions [18].
In a previous work on invariants and transport [14], the en-

ergy bound for Ep was found using the Euler-Lagrange equa-
tion. Here we have shown how to realize this bound by allowing
the discontinuous acceleration of the trap at t = 0 and t = tf
in the unbounded control optimization, and also finite jumps
in the trap position. In principle these and other discontinuities
found in the trap motion design could be avoided by imposing
appropriate bounds (for example, on the rate of change of
the control) and using a powerful pseudospectral numerical
optimization method [35,45,46] to address the corresponding
more complex optimal-control problem. One may also approx-
imate the jumps with fast switching technology. Accelerations
which are effectively discontinuous compared to atomic or
trap motion time scales are currently implemented in transport
experiments [5,10], and effectively sudden trap displacements
could be based on rapid phase switches of one of the
lasers forming a standing wave by electro-optical modulators.
Alternatively, one can switch off and on very rapidly a beam
shifting the focus, in less than 100 ns. Further work is required
to analyze the perturbations induced by these operations as
well as the deviation from the optimal results and bounds
(in time or energy) due to continuous solutions to the trap
motion.
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While the strategy in this work has been to keep the atom
displacement small to avoid anharmonic effects, anharmonic-
ity could be dealt with in a completely different way using
the protocols for anharmonic transport described in Ref. [14],
which require a compensation of inertial forces in the frame
of the trap. This may be feasible or not depending on the
accelerations imparted, and the corresponding optimization is
also left for future work. Last but not least, the present results
may be extended to Bose-Einstein condensates following [15],
and Tonks-Girardeau gases could be treated as well with a
simple generalization [17].
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We thank D. Guéry-Odelin, G. C. Hegerfeldt, D. Meschede,
and A. Ruschhaupt for useful discussions. We acknowledge
funding by the Basque Government (Grant No. IT472-10)
and Ministerio de Ciencia e Innovación (FIS2009-12773-
C02-01). X. C. thanks the Juan de la Cierva Programme,
the National Natural Science Foundation of China (Grant
Nos. 60806041 and 61176118) and the Shanghai Leading
Academic Discipline Program (Grant No. S30105); E.T., the
Basque Government (Grant No. BFI08.151); and J.-S. Li, the
AFOSR Grant FA9550-10-1-0146.

[1] M. A. Rowe et al., Quantum Inf. Comput. 4, 257 (2002).
[2] R. Reichle, D. Leibfried, R. B. Blakestad, J. Britton, J. D. Jost,

E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland,
Fortschr. Phys. 54, 666 (2006).

[3] W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, Phys.
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