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Tune-out wavelengths of alkali-metal atoms and their applications
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Using first-principles calculations, we identify “tune-out” optical wavelengths, λzero, for which the ground-state
frequency-dependent polarizabilities of alkali-metal atoms vanish. Our approach uses high-precision, relativistic
all-order method in which all single, double, and partial triple excitations of the Dirac-Fock wave functions are
included to all orders of perturbation theory. We discuss the use of tune-out wavelengths for sympathetic cooling
in two-species mixtures of alkali metals with group II and other elements of interest. Special cases in which these
wavelengths coincide with strong resonance transitions in a target system are identified.
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I. INTRODUCTION

The realization of mixtures of trapped ultracold atomic
gases [1–5] has opened new paths toward the formation of
ultracold diatomic molecules [6–10], quantum-state control
of chemical reactions [11], prospects for quantum computing
with polar molecules [12–14], tests of fundamental symmetries
[15–17] and studies of fundamental aspects of correlated
many-body systems [18], and dilute quantum degenerate
systems [19–23]. Cotrapped diamagnetic-paramagnetic mix-
tures have also made possible experimental realization of
interspecies Feshbach resonances [24–26], two-species Bose-
Einstein condensates and mixed Bose-Fermi and Fermi-Fermi
degenerate gases [18,27–29].

In an optical lattice, atoms can be trapped in the intensity
maxima or minima of the light field by the optical dipole
force [30]. This force arises from the dispersive interaction of
the induced atomic dipole moment with the intensity gradient
of the light field and is proportional to the ac polarizability of
the atom. When its ac polarizability vanishes, as can happen
at certain wavelengths, an atom experiences no dipole force
and thus is unaffected by the presence of an optical lattice.
Our present work provides accurate predictions of the λzero

which lead to zero Stark shifts for alkali-metal atoms. These
wavelengths have been introduced as “tune-out wavelengths”
by LeBlanc and Thywissen [31].

We suggest some possible uses for such wavelengths, all
of which take advantage of the fact (demonstrated below),
that tune-out wavelengths are highly dependent upon atomic
species and state. For a given atomic species and state A,
let LA designate an optical lattice or trap made with light at
one of the tune-out wavelengths of A. We start with a model
configuration consisting of the gas A embedded in LA and
confined by another trap, T. Some process is performed on the
gas, after which T is turned off. Members of A will depart
and LA may confine whatever is left. For example, one might
photoassociate some A atoms into dimers during the initial
period and thereby be left with a nearly pure population of
dimers trapped in LA at the end. LeBlanc and Thywissen [31]
have pointed out the advantage of tune-out wavelengths for
traps containing two species. If another species B is added to
the model configuration, it will ordinarily be affected by LA,

so B can be moved by shifting LA while A remains unaffected.
Schemes of this type have been used for entropy transfer
and controlled collisions between 87Rb and 41K [32–34]. For
bichromatic optical lattice schemes, such as those discussed
by Brickman Soderberg, et al. [35,36], it could be useful to
incorporate LB into the model configuration, so as to be able
to move A and B completely independently. In another appli-
cation, a Sr lattice at a 3P 0 tune-out wavelength was suggested
for realization of quantum information processing [37].

In the next section, we briefly discuss the calculation of
frequency-dependent polarizabilities of alkali-metal atoms. In
Sec. III, we present the tune-out wavelengths for the alkali
metals from Li to Cs and discuss some of their applications.

II. FREQUENCY-DEPENDENT POLARIZABILITIES

The background to our approach to calculation of atomic
polarizabilities is treated in a recent review article [38].
Here we summarize points salient to the present work. The
frequency-dependent scalar polarizability α0(ω) of an alkali-
metal atom in its ground state v may be separated into a
contribution from the core electrons, αcore, a core modification
due to the valence electron, αvc, and a contribution from the
valence electron, αv

0 (ω). Since core electrons have excitation
energies in the far-ultraviolet region of the spectrum, the
core polarizability depends weakly on ω for the optical
frequencies treated here. Therefore, we approximate the core
polarizability by its dc value as calculated in the random-phase
approximation (RPA) [39], an approach that has been quite
successful in previous applications. The core polarizability is
corrected for Pauli blocking of core-valence excitations by
introducing an extra term αvc. For consistency, this is also
calculated in RPA. Therefore, the ground-state polarizability
may be separated as

α0(ω) = αcore + αvc + αv
0 (ω). (1)

The valence contribution to the static ac polarizability is
calculated using the sum-over-states approach [40]:

αv
0 (ω) = 2

3(2jv + 1)

∑

k

〈k ‖D‖ v〉2(Ek − Ev)

(Ek − Ev)2 − ω2
, (2)
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where 〈k ‖D‖ v〉 is the reduced electric-dipole (E1) matrix
element. In this equation, ω is assumed to be at least several
linewidths off resonance with the corresponding transitions.
We use the shorter designation α0 for frequency-dependent
scalar polarizability below. Unless stated otherwise, we use
the conventional system of atomic units, a.u., in which e, me,
4πε0, and the reduced Planck constant h̄ have the numerical
value 1. Polarizability in a.u. has the dimension of volume, and
its numerical values presented here are expressed in units of a3

0 ,
where a0 ≈ 0.052 918 nm is the Bohr radius. The atomic units
for α can be converted to SI units via α/h [Hz/(V/m)2] =
2.488 32 × 10−8α [a.u.], where the conversion coefficient is
4πε0a

3
0/h and the Planck constant h is factored out.

The calculation of the ground-state frequency-dependent
polarizabilities in alkali-metal atoms has been previously
discussed in [41,42], and we give only brief summary of
the approach. The sum over intermediate k states in Eq. (2)
converges rapidly. Therefore, we separate the valence state po-
larizability into two parts: αmain, containing the contributions
from the few lowest np states, and the remainder, αtail. We note
that our calculations are carried out with the finite basis set
constructed using B splines [43] making the sum finite. In the
calculation of αmain, we use the experimental values compiled
in Ref. [44] along with their uncertainties for the first ns-np
matrix elements, for example the 4s-4pj matrix elements in
K. For all other terms, we use the relativistic all-order values
[44,45] of the matrix elements and the experimental values of
the energies [46–48]. In the relativistic all-order method, all
single-double (SD) or single-double and partial valence triple
(SDpT) excitations of the Dirac-Fock (DF) wave function
are included to all orders of perturbation theory [40,44,49].
We conduct additional semiempirical scaling of our all-order
values (SDsc) where we expect scaled values to be more
accurate or for more accurate evaluation of the uncertainties.
Our scaling procedure and evaluation of the uncertainties of
the all-order results have been recently discussed in Ref. [50].
Briefly, the uncertainties of the all-order matrix elements are
given by the spread of their SD, SDpT, SDsc, and SDpTsc

values. These are also used to calculate the uncertainties in
the state-by-state contributions to the frequency-dependent
polarizability. The tail contributions αtail are calculated in the
DF approximation using complete basis set functions that are
linear combinations of B splines [51]. In the cases treated here,
the tail contribution is of the order of 1% of the net valence
contribution αv

0 .
We define the tune-out wavelength λzero as the wavelength

where the ac polarizability of the ground state vanishes. In
practice, we calculated α0(ω) for a range of values in the
vicinity of relevant resonances and identified values of ω where
the polarizability turned to zero with sufficient numerical
accuracy.

We illustrate the cancellation of all contributions to 5s Rb
polarizability at λzero = 423.0448 nm in Table I. Since this
wavelength is between 5s-5p3/2 and 5s-6p1/2 resonances, the
contributions of the 5pj and 6pj terms strongly dominate.
However, the contribution from the core is significant (11% of
the largest valence term). This table shows that λzero is located
where the valence contribution to the polarizability cancels
the adjusted core contribution, a feature that is common to all
the cases treated here. The zero-crossing point is in the close

TABLE I. 5s-np contributions to the frequency-dependent po-
larizability of the ground state of Rb at λzero = 423.0448 nm =
1/(23 638.16 cm−1). Absolute values of electric-dipole matrix el-
ements are expressed in a.u. (ea0), and the corresponding energy
differences are expressed in conventional wave-number units (cm−1).

Contribution |〈5s‖D‖np1/2〉| Enpj
− E5s α0

5p1/2 4.231 12 579.0 −41.130
6p1/2 0.325 23 715.1 50.235
7p1/2 0.115 27 835.0 0.124
8p1/2 0.059 29 835.0 0.023
np1/2 tail 0.085
5p3/2 5.978 12 816.5 −84.938
6p3/2 0.528 23 792.6 66.140
7p3/2 0.202 27 870.1 0.383
8p3/2 0.111 29 853.8 0.081
np3/2 tail 0.285
αcore 9.076
αvc −0.367
αv

0 −8.712
Total α0(ω) 0.00

vicinity of the 5s-6p1/2 resonance owing to the relative size of
the 5s-5pj and 5s-6pj reduced electric-dipole matrix elements
given in the second column of Table I. The 5s-6p matrix
elements are more than an order of magnitude smaller than
the 5s-5p matrix elements. Since polarizability contributions
are proportional to the square of the matrix element, the
denominators of the 6pj terms have to become very small
to cancel out the 5p contributions.

This tune-out wavelength is illustrated in Fig. 1 where we
plot the ground-state polarizability of the Rb atom in a.u. in the
vicinity of the 5s-6pj resonances. Another zero-crossing point
shown in the figure is located between 5s-6p1/2 and 5s-6p3/2

resonances, as expected. The next tune-out wavelength will be
located close to the 5s-7p1/2 resonance since the values of the
matrix elements continue to decrease with n.

FIG. 1. (Color online) Frequency-dependent polarizability of the
Rb ground state. The first two tune-out wavelengths are marked with
arrows.
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III. RESULTS AND APPLICATIONS

In Table II, we list the vacuum λzero wavelengths for alkali-
metal atoms from Li to Cs. For convenience of presentation, we
also list the resonant wavelength λres in vacuum in the relevant
range of wavelengths. We order the lists of the resonant
wavelengths and λzero to indicate the respective placements
of λzero and their distances from resonances. The resonant
vacuum wavelength values are obtained from energy levels
from National Institute of Standards and Technology (NIST)
database [46] with the exception of the 2s-2p1/2 and 2s-2p3/2

transition wavelengths for 6Li and 7Li that are taken from
recent measurements [52].

Since alkali-metal ground states have electric dipole transi-
tions only to p states, their polarizabilities will cross zero only
between two ns-n′p resonances. We set the wavelength of the
ns-(n + 2)p1/2 resonance as a lower-wavelength bound for our
search. The fine structure of the (n + 2)p level is sufficiently
small for all alkali metals to make the zero point between
ns-(n + 2)p1/2 and ns-(n + 2)p3/2 relatively difficult to use in
practice, so we do not list it. We omit the λzero between 2s-3pj

resonances for the same reason. The wavelengths of the next
zero crossing near the ns-(n + 3)p1/2 resonances are in the
ultraviolet and not as readily accessible in most laboratories, so
we have not calculated them. However, this would be a routine
matter for future work. There are no λzero at wavelengths
greater than those of the primary ns-np1/2 resonances. Within
these constraints, we have found four λzero for Na, K, Rb, and
Cs and three λzero for Li, as shown in Table I.

The stated uncertainties in the λzero values are taken to
be the maximum difference between the central value and the
crossing of the α0 ± δα0 with zero, where δα0 is the uncertainty
in the ground-state polarizability value at that wavelength. The
uncertainties in the values of polarizabilities are obtained by
adding uncertainties in the individual polarizability contribu-
tions in quadrature.

We find small but significant differences in the first tune-out
wavelengths of 6Li and 7Li due to the isotope shift. These
values refer to the centers of gravity of all hyperfine states and
do not take into account the hyperfine structure. Therefore, this
λzero and the corresponding 2s-2pj resonance wavelengths are
listed separately. We verified that isotope shift of the 2s-2p

traditions in Li does not affect the next tune-out wavelength,
324.18(6) nm, so we use NIST data for the other transitions.
We also investigated possible dependence of the first tune-out
wavelengths on the isotope shift for 39K, 40K, 41K, 85Rb, and
87Rb. The D1 (4s-4p1/2) and D2 (4s-4p3/2) line wavelengths
for 39K, 40K, and 41K have been measured using a femtosecond
laser frequency comb by Falke et al. [53]. We carry out three
calculations of the first tune-out wavelength using D1, D2

wavelengths for the specific isotope in our calculations. The
resulting value for 39K and 40K, 768.971(3) nm, is the same as
the value quoted in Table II. The 41K value is 768.970(3) nm,
with the difference being well below our quoted uncertainty.
The calculations of the first tune-out wavelength in Rb using
D1 and D2 frequencies for 85Rb and 87Rb listed in [54,55]
gave results identical to result from Table II, 790.034(7) nm
that was obtained using NIST data. We note that our values for
the first tune-out wavelengths are in good agreement with the
LeBlanc and Thywissen [31] calculations with the exception
of their value for 40K.

TABLE II. Tune-out wavelengths λzero for alkali-metal atoms
from Li to Cs. The resonant wavelengths λres for relevant transitions
are also listed. The wavelengths (in vacuum) are given in nm.

Atom Resonance λres λzero

6Li 2s-2p1/2 670.992 478
6Li 670.987 445(1)
6Li 2s-2p3/2 670.977 380
7Li 2s-2p1/2 670.976 658
7Li 670.971 626(1)
7Li 2s-2p3/2 670.961 561
Li 324.18(6)
Li 2s-3p1/2 323.3576
Li 2s-3p3/2 323.3566
Li 274.911(7)
Li 2s-4p1/2 274.2001
Na 3s-3p1/2 589.7558
Na 589.5565(3)
Na 3s-3p3/2 589.1583
Na 331.905(3)
Na 3s-4p1/2 330.3929
Na 330.3723
Na 3s-4p3/2 330.3319
Na 285.5817(8)
Na 3s-5p1/2 285.3850
K 4s-4p1/2 770.1083
K 768.971(3)
K 4s-4p3/2 766.7009
K 405.98(4)
K 4s-5p1/2 404.8356
K 404.72(4)
K 4s-5p3/2 404.5285
K 344.933(1)
K 4s-6p1/2 344.8363
Rb 5s-5p1/2 794.9789
Rb 790.034(7)
Rb 5s-5p3/2 780.2415
Rb 423.05(8)
Rb 5s-6p1/2 421.6726
Rb 421.08(3)
Rb 5s-6p3/2 420.2989
Rb 359.42(3)
Rb 5s-7p1/2 359.2593
Cs 6s-6p1/2 894.5929
Cs 880.25(4)
Cs 6s-6p3/2 852.3472
Cs 460.22(2)
Cs 6s-7p1/2 459.4459
Cs 457.31(3)
Cs 6s-7p3/2 455.6557
Cs 389.029(4)
Cs 6s-8p1/2 388.9714

The first tune-out wavelength in Rb has been measured to
be 789.85(1) nm in [32]. Some discrepancy with our result
is most likely due to approximate linear polarization of the
beam in [32]. The difference is compatible with a shift in
the tune-out wavelength caused by few percent spurious σ−
polarization component [56].
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TABLE III. Wavelength (in vacuum) of selected transitions in Mg, Ca, Zn, Cd, Sr, Ba, Hg, Yb, Dy, Ho, and Er in nm. Comparison of these
values with tune-out wavelengths listed in Table II yields many instances of resonant transitions that are very close to λzero in alkali metals.

Atom Transition Wavelength Transition Wavelength

Mg 3s2 1S0-3s3p 1P1 285.3 3s2 1S0-3s3p 3P1 457.2
Ca 4s2 1S0-4s4p 1P1 422.8 4s2 1S0-4s4p 3P1 657.5
Sr 5s2 1S0-5s5p 1P1 460.9 5s2 1S0-5s5p 3P1 689.5
Ba 6s2 1S0-6s6p 1P1 553.7 6s2 1S0-6s6p 3P1 791.4
Zn 4s2 1S0-4s4p 1P1 213.9 4s2 1S0-4s4p 3P1 307.7
Cd 5s2 1S0-5s5p 1P1 228.9 5s2 1S0-5s5p 3P1 326.2
Hg 6s2 1S0-6s6p 1P1 184.9 6s2 1S0-6s6p 3P1 253.7
Yb 6s2 1S0-6s6p 1P1 398.9 6s2 1S0-6s6p 3P1 555.8
Dy 4f 106s2 5I8-4f 10(5I8)6s6p(1P1) J = 9 421.3
Er 4f 126s2 3H6-4f 11(3H6)6s6p(3P1) J = 7 582.8
Ho 4f 116s2 4I15/2-4f 11(4I15/2)6s6p(3P1) J = 17/2 598.5
Ho 4f 116s2 4I15/2-4f 11(4I15/2)6s6p(1P1) J = 13/2 416.4

Below, we identify two main applications of tune-out
wavelengths. First, these wavelengths are advantageous for
cooling of group II and other more complicated atoms,
by sympathetic cooling using an accompanying alkali-metal
atom.

Recently, group II atoms have been the subject of various
experiments and proposals in atomic clock research and
quantum information. BECs of 84Sr have been reported
recently by two groups [57,58]. The element Yb has four
boson and two fermion isotopes, all of which have been cooled
to the microkelvin range. Several exciting new prospects for
quantum information processing with the ground-state nuclear
spin have recently been identified in group II elements [37].
Also, Sr or Yb are useful for polarized mixtures of fermions, or
Bose-Fermi mixtures, where isotopic mixtures can be studied.

More complex systems have become of interest in the
development of frequency standards and quantum information
processing schemes. For example, the rare earth holmium is
a candidate for quantum information applications [59] due to
its rich ground-state hyperfine structure. Erbium has been a
subject of recent experimental work [60,61], stimulated by its
possible use in a variety of applications, including narrow
linewidth laser cooling and spectroscopy, unique collision
studies, and degenerate bosonic and fermionic gases with
long-range magnetic dipole coupling.

Some species, particularly fermions, are difficult to cool by
themselves due to unfavorable ultracold collisional dynamics.
In such cases, it may be possible to use sympathetic cooling in a
mixture of the target species and one of the alkali metals, where
the alkali-metal atom is cooled directly by standard techniques.
This has recently been demonstrated in Yb:Rb mixtures [62].
Use of λzero trap wavelengths could allow one to release
alkali-metal atoms after the target atoms of the other species are
sufficiently cold, in a hybrid trap configuration that combines
optical and magnetic traps or bichromatic optical traps. If
the final trap configuration utilizes a λzero wavelength, strong
trapping of the target atom is possible while alkali-metal atoms
will be released by turning off its separate trapping potential.
Since placement of the resonances varies significantly among
the alkali-metal atoms, a wide range of λzero is available, as
shown in Table II.

We list the resonant wavelengths for variety of atomic
systems in Table III. For consistency with the other tables, we
list vacuum wavelengths obtained from the NIST energy levels
database [48]. Both strong and intercombination lines that can
be used for trapping of these species are listed. Comparing
Tables II and III yields many instances of resonant transitions
that are very close to λzero. Here are a few of the very close
cases: Mg 285.3 - Na 285.6, Sr 460.9 - Cs 460.2, Dy 421.3 -
Rb 421.1, and Ho 598.5 - Na 589.6.

Tune-out-wavelength laser light may be also useful in
three-species cooling schemes such as reported in Ref. [63]
by allowing easy release of one of the species from the trap.
The work [63] demonstrated that the efficiency of sympathetic
cooling of the 6Li gas by 87Rb was increased by the presence
of 40K through catalytic cooling.

Measurements of the tune-out wavelengths may be used
as high-precision benchmark tests of theory and to determine
the excited-state matrix elements that are difficult to measure
by other methods. Matrix elements of ns-n′p transitions of
alkali-metal atoms, where ns is the ground state, are difficult to
calculate accurately owing to large correlation corrections and
small values of the final numbers. Experimental measurements
of the λzero predicted in this work will serve as an excellent
benchmark test of the all-order calculations. Moreover, it will
be possible to combine these measurements with theoretical
calculations to infer the values of these small matrix elements.
Only one high-precision measurement of such matrix elements
(6s-7pj transitions in Cs) has been carried out to date [64].

IV. CONCLUSION

In summary, we calculate tune-out wavelengths in alkali-
metal atoms from Li to Cs and estimate their uncertainties.
Applications of these tune-out wavelengths to sympathetic
cooling of group II and other more complicated atoms
with alkali metals are discussed. Special cases where these
wavelengths coincide with strong resonance transition in group
II atoms, Yb, Dy, Ho, and Er are identified. Measurements of
the tune-out wavelengths for benchmark tests of theory and
experiment are proposed.
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