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We analyze the impact of multichannel scattering in harmonic waveguides on the positions and widths
of confinement-induced resonances for both isotropic and anisotropic transversal confinement. Multichannel
scattering amplitudes and transmission coefficients are calculated and used to characterize the resonant behavior
of atomic collisions with varying anisotropy. A mechanism is established which leads to a splitting of the
confinement-induced resonance in the presence of anisotropy.
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I. INTRODUCTION

Confinement-induced resonances (CIRs), originally pre-
dicted in the seminal work of Olshanii [1] and more recently
observed experimentally for both bosons [2–4] and fermions
[5] have attracted a great deal of attention during the past few
years. The immediate reason is that they represent a valuable
tool for the control of the atomic interactions, thereby allowing
us to enter and probe the regime of strongly correlated bosonic
or fermionic many-body systems. Beyond this, changes of the
transversal confinement potential possess direct consequences
for the scattering behavior of the atoms in the waveguide such
that a multitude of binary resonance profiles are accessible.
Examples for the variety of scattering properties in waveguides
are multichannel confinement-induced resonances [6], res-
onant molecule-formation processes [7], and center-of-mass
coupling effects [7,8] as well as a dual CIR [9] which leads to
complete quantum suppression of scattering.

A recent experiment [10] on CIRs in transversally
anisotropic waveguides has shown the necessity of an adequate
theoretical approach for describing collisional processes in
confined geometries of one- and two-dimensional character. A
main result of this experimental work [10] was the observation
of a splitting of the CIR-related loss signals in the presence of
a transversal anisotropy. Two recent attempts to explain this
splitting have not been successful [11,12]. The corresponding
studies represent investigations of the pseudopotential scat-
tering with a single open transverse channel [1] in the case
of tightly confining waveguides. Both the width of the CIR
and the full multichannel character of the problem were not
taken into account. On the other hand, it has been shown that
the nonseparability of the center-of-mass and internal motion
for atomic scattering in anharmonic (transversally isotropic)
waveguide potentials changes the resonance picture qualita-
tively and new resonances [anharmonicity-induced resonances
(AIRs)] occur where molecular excited center-of-mass states
cross the threshold [8,13]. Very recently, the coupling of
the center-of-mass excitations in anharmonic isotropic and
anisotropic confining potentials to the ground state has been
analyzed in great detail in ab initio calculations [14]. There
a very good agreement of the AIR splitting with the distance
between the maxima of the atomic loss in the experiment [10]
was found. However, what happens with the “harmonic” part of
the investigated two-body spectrum in the trap and whether the

“harmonic” CIR agrees with previous results [1,11,12,15,16]
have not been analyzed.

In previous works [1,11,12,15,16] the specific ratio
a⊥/as = 1.4603 . . . (where a⊥ = √

h̄/(μω⊥), as , μ, and
ω⊥ are the harmonic oscillator length, scattering length in
free space, reduced atomic mass, and harmonic oscillator
frequency, respectively) yielding the position of the CIR
was defined by the zero Im{f0(a⊥/as)} = 0 of the scattering
amplitude f0 in the transversal ground state in the zero-energy
limit. This point also corresponds to the absolute minimum of
the transmission coefficient T0(a⊥/as) = |1 + f0(a⊥/as)|2 →
0 which represents an important scattering observable near
the CIR [1,11,12,15,16]. In the present work, we explore a
situation where not only the ground transversal channel but
also excited channels contribute to the scattering process in the
waveguide and demonstrate the importance of multichannel
scattering effects in the resonant region.

Within our description of few-channel ultracold scattering
in confined geometries we observe a mechanism which leads
to the splitting of the CIR under the action of a transversal
anisotropy of the waveguide. It is based on the fact that the
total transmission coefficient T , which we define as a sum of
partial coefficients Ti emerging from the different transverse
(ground and excited) states labeled by i,

T =
∑

i

WiTi, (1)

averaged over the initial populations Wi , possesses its main
contribution near the CIR from the first excited transversal
state and not from the ground state. This follows from the
observation that T0 possesses a much deeper as well as
broader transmission well around its minimum compared to
the wells (minima) of Ti(i �= 0) for the excited states near
the CIR [6]. Thus, even for low-energy pair collisions the
scattering properties near the CIR location are not determined
by the partial coefficient T0, where T0 → 0, but by the behavior
of the coefficients Ti �= 0 in excited states i �= 0. Employing
this mechanism, we find a splitting of the minimum of
the total transmission coefficient (1) in an anisotropic trap.
The splitting is a consequence of the different dependencies
of the partial coefficients Ti(a⊥/as) on a⊥/as for different
states in the resonant region. A necessary prerequisite of the
appearance of this splitting effect is, therefore, the occupation
of excited transversal states in the waveguide. We emphasize
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that the present investigation is performed for harmonic traps,
i.e., we investigate the influence of the anisotropy of a
harmonic transversal confinement on the CIRs [1,11,12,15,16]
opposite to the above-mentioned works that explore the effects
of anharmonicity [8,13] and anisotropy [14].

In the following section we describe the computational
approach to our multichannel scattering problem in the
confined quasi-1D geometry. The corresponding results are
discussed in Sec. III. Section IV is devoted to a discussion
of the mechanism leading in the harmonic waveguide with
transverse anisotropy to the splitting of the CIRs. Finally, in
Sec. V, we provide a brief conclusion.

II. MULTICHANNEL SCATTERING PROBLEM IN
ANISOTROPIC HARMONIC WAVEGUIDES

To calculate the partial transmission coefficients (the single
index i is here replaced by the double index n1,n2 indicating
the quantum numbers belonging to the different transversal
degrees of freedom of the waveguide)

Tn1,n2 =
∑
n′

1,n
′
2

kn′
1,n

′
2

kn1,n2

∣∣δn1,n
′
1
δn2,n

′
2
+ f

n′
1,n

′
2

n1,n2

∣∣2
, (2)

describing the transmission probability from the initial trans-
verse state (n1,n2) to all possible final states (n′

1,n
′
2) in the

course of the collision of identical bosons in a harmonic
waveguide with the transverse trapping potential 1

2μ(ω2
1x

2 +
ω2

2y
2) we solve the multichannel scattering problem for the

3D Hamiltonian

H (x,y,z) = − h̄2

2μ
�r + 1

2
μω2

1x
2 + 1

2
μω2

2y
2 + V (r), (3)

depending on the relative variables r = (x,y,z), with the
asymptotic scattering wave function for | z |→ +∞

ψn1,n2 (r) = cos(kn1,n2z)φn1,n2 (x,y) +
m1,m2∑

n′
1,n

′
2=0

f
n′

1,n
′
2

n1,n2

× exp{ikn′
1,n

′
2
|z|}φn′

1,n
′
2
(x,y), (4)

where the matrix elements f
n′

1,n
′
2

n1,n2 (E) of the scattering
amplitude describe the transition from the initial chan-
nel with the transverse energy E

(n1,n2)
⊥ = h̄[ω1(n1 + 1

2 ) +
ω2(n2 + 1

2 )] and the relative longitudinal momentum h̄kn1,n2 =√
2μ(E − E

(n1,n2)
⊥ ) = √

2μE‖ (E‖ being the relative longitu-
dinal collision energy and E the total energy) to the final open

channel (n′
1,n

′
2) with E = E

(n′
1,n

′
2)

⊥ + E′
‖. φn1,n2 (x,y) are the

eigenfunctions of the 2D harmonic oscillator corresponding
to the eigenvalues E

(n1,n2)
⊥ . The latter are degenerate with

respect to the quantum number n = n1 + n2 in an isotropic
trap ω1 = ω2 = ω⊥ and E

(n1,n2)
⊥ → E

(n)
⊥ = h̄ω⊥(n + 1). The

asymptotic wave function (4) is explicitly symmetric with
respect to the exchange of the atoms.

In order to solve the multichannel scattering problem
[Eqs. (3) and (4)] we extend the approach developed in
Refs. [17,18] for scattering in three dimensions: The expansion
over the spherical harmonics on a grid (two-dimensional
discrete-variable representation) is replaced by the expansion

over the product states φn1,n2 (x,y) = ϕn1 (x)ϕn2 (y), where ϕni

are the eigenfunctions of the 1D harmonic oscillator. The
calculations are performed with the finite-range Gaussian
approximation V (r) = −V0 exp{−r2/r2

0 } for the interparticle
interaction with V0 > 0 chosen such that we have one weakly
bound state in the potential well. We do expect that all effects
shown below are, to a large extent, independent of the chosen
interaction potential V (r). As an independent check, we have
verified that the results obtained for the four-open-channel
scattering in an isotropic waveguide ω1 = ω2 = ω⊥ using
the screened Coulomb potential [6] are reproduced by the
present approach. Note that for convergence typically 200 basis
functions are used.

III. RESULTS AND DISCUSSION

A. Multichannel scattering in isotropic waveguides

Let us first analyze atomic collisions in a transversely
isotropic waveguide ω1 = ω2 = ω⊥. The partial transmission
coefficients describing the transmission in the ground T00

and in the first excited T20 and T02 scattering channels are
shown in Fig. 1 for different longitudinal collision energies
E‖. Obviously, the position of the CIR is stable with respect to
variations of the energy for 10−4 � E‖/E

(0)
⊥ � 10−2. Indeed,

this position is very close to the value a⊥/as = 1.4603 . . .

predicted in the zero-energy limit with the pseudopotential
approach [1] and has been confirmed in subsequent numerical
computations with different interatomic potentials [6,15,16].
Hereafter we define the position of the CIR in the ground-
state scattering channel as the minimum of the transmission
coefficient T00(a⊥/as,E) which coincides with the zero of the
imaginary part of the scattering amplitude f00(a⊥/as,E) in the
region E

(0)
⊥ � E � E

(2)
⊥ [6]. The minimum of the transmission

coefficient T20(a⊥/as) = T02(a⊥/as) in the first excited state
(the position of the CIR in the excited scattering state) is at
a nonzero value and the corresponding transmission valley is,
therefore, much less pronounced than in the case of T00(a⊥/as)
for the ground state. Moreover, the width of the CIR differs
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FIG. 1. (Color online) Dependence of the partial transmission
coefficients Tn1,n2 (a⊥/as,E‖) on a⊥/as and E‖ in an isotropic
waveguide ω1/ω2 = 1.
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considerably for the two cases and, unlike the ground state, the
position of the CIR in the excited state is strongly dependent
on the energy E‖. These facts, as we will see below, are of
crucial importance for the analysis of the region near the CIR.
Importantly, according to (1) the total transmission coefficient
is determined in a broad neighborhood of the resonant region
a⊥/as ∼ 1.4603 . . . by the partial coefficients T20 and T02 (if
W20 and W02 are large enough)

T (a⊥/as) ≈ W20T20(a⊥/as) + W02T02(a⊥/as) + . . . , (5)

which is due to the near-zero values of T00(a⊥/as) around its
minimum (see Fig. 1).

A note is in order here. The significant occupation of
transversally excited states does not necessarily arise due to a
finite temperature in thermal equilibrium where the occupation
probability is determined by the corresponding Boltzmann
distribution. Instead, the preparation of the ultracold atomic
ensemble in the waveguide itself can lead to an occupation
of excited states. This could, e.g., be a nonadiabatic loading
process into the waveguide. The resulting nonequilibrium
state would show a redistribution of its energy between the
longitudinal and transversal degrees of freedom and might
eventually thermalize, depending on the number of atoms and
integrability aspects of the underlying system [19].

Atomic collisions near the CIR could possibly also lead
to an increase of the excited state population. Indeed, the
increase of the atomic loss and heating near a CIR has
been attributed [10] to inelastic three-body collisions, which
lead to the formation of molecules while transferring the
molecular binding energy and the following energy release due
to possible de-excitation of rovibrationally excited molecules
to the kinetic energy of the center-of-mass motion of the
molecule and, in particular, to the escaping third atom.
Subsequent collisions of this third atom can lead to transverse
excitations if its kinetic energy exceeds the threshold value
2h̄ω⊥ = E

(2)
⊥ − E

(0)
⊥ . The binding energy of the most weakly

bound molecular state in the waveguide (see Fig. 2 in Ref. [15])
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FIG. 2. (Color online) Transition probability P02(E,a⊥/as) from
the initial ground n = n1 + n2 = 0 into the transversally excited
states n = n1 + n2 = 2 for a few values of a⊥/as .

exceeds already this threshold energy. Using the calculated

scattering amplitudes f
n′

1,n
′
2

n1,n2 we have evaluated the transition
probabilities Pnn′ [6]

Pnn′ = 2
∑

n′
1,n

′
2(n′

1+n′
2=2)

kn′
1,n

′
2

kn1,n2

∣∣f n′
1,n

′
2

n1,n2

∣∣2
, (6)

where n = n1 + n2 and n′ = n′
1 + n′

2. The calculated prob-
abilities P02(E,a⊥/as) are presented in Fig. 2 for a few
values of a⊥/as in the region E

(2)
⊥ < E < E

(4)
⊥ , i.e., between

the first and second excited channel thresholds. Since the
probability P02(E,a⊥/as) approaches to the values ∼0.2–0.4
one might consider collisions with the atoms accelerated due
to molecules formation near CIR as a possible mechanism for
the emergence of considerable populations of the first excited
states n = 2.

Note also that hereafter we do not address the transmission
coefficients Tn1n2 with odd quantum numbers n1 = n2 =
1,3, . . . because these states are not coupled with the ground
and excited states possessing even n1 and n2.

B. Multichannel scattering in anisotropic waveguides

We now analyze the multichannel scattering amplitude and
the corresponding transmission coefficients for anisotropic
waveguides for different values of the ratio ω1/ω2 �= 1.
In Fig. 3 we present the calculated partial transmission
coefficients Tn1n2 (a⊥/as) as a function of a⊥/as for fixed values
of ω1/ω2 and E‖. Comparing this result with the isotropic
case given in Fig. 1 we see that the anisotropy does not
change the overall behavior of the coefficients T00 and T20

in the region near the CIR. However, the anisotropy splits the
excited states with n = n1 + n2 = 2 into two components and
changes the T02 coefficient dramatically by splitting the well
of the transmission curve. As it is demonstrated in Fig. 4,
the effect of the splitting of the minimum of the partial
transmission coefficient T02(a⊥/as) can also be observed in
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FIG. 3. (Color online) Partial transmission coefficients
Tn1,n2 (a⊥/as,E‖) in an anisotropic waveguide ω1/ω2 = 1.05 as
functions of a⊥/as calculated for a near-threshold collision energy
E‖/E

(0)
⊥ = 5 × 10−3.
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FIG. 4. (Color online) Total transmission coefficients T (a⊥/as,E‖) in the region a⊥/as ∼ 1.4603 . . . of the CIR for the isotropic case
ω1/ω2 = 1 as well as for anisotropic waveguides with ω1/ω2 = 1.05 and 1.1 calculated for W2/W0 = 0.05. For ω1/ω2 �= 1 the splitting of the
minimum of the transmission coefficient can be observed.

the total transmission coefficient T (a⊥/as) [Eq. (1)] at 5% of
the relative population W2/W0 of the first exited states and
persists with varying ω1/ω2 and E‖. Figure 5 demonstrates
the dependence of the splitting on the relative population
W2/W0 calculated in the region W2/W0 � 0.1 compatible
with the experiment [10]. The effect of the splitting of the
transmission coefficient is enhanced with increasing excited
state population.

In the computations, the colliding energy E‖ was chosen in
agreement with the conditions of the experiment [10], where
E‖, even at maximal heating, has remained below kB × 30 nK,
i.e., E‖/E

(0)
⊥ < 30 nK/600 nK = 5 × 10−2. It should be noted

that the pronounced shift of the minimum of the T coefficients
with varying E‖ is due to the considerable dependence of
the partial coefficients T02 and T20 on E‖ (see Fig. 1). This
effect might be responsible for the shift of the maximum
of the atom loss in the experiment [10] in the direction of
increasing values for as . Using this assumption we can fix
E‖ � 2.5 × 10−4E

(0)
⊥ as being closest to the experimental

conditions [10] by choosing from the calculated T (a⊥/as,E‖)

curves for ω1/ω2 = 1 the one whose position of the minimum
coincides more close with the point of maximal atomic loss in
the experiment.

C. Diatomic weakly bound and resonant states in
anisotropic harmonic waveguides

To clarify the origin of the splitting of the partial coefficient
T02 we have calculated the spectrum of the near-threshold
bound state and resonant states of the atomic dimer in the
confining trap as a function of a⊥/as (see Fig. 6). The resonant
energies Er (a⊥/as) are determined by the position of the
minimum of the partial coefficient T00(a⊥/as,E), where the
two-body total energy E was varied between the thresholds
corresponding to the ground state E

(00)
⊥ = h̄

2 (ω1 + ω2) and the

second excited states E
(n1,n2)
⊥ = h̄[ω1(n1 + 1

2 ) + ω2(n2 + 1
2 )]

with n = n1 + n2 = 4. These resonant states were defined in
Ref. [6] as CIRs with nonzero energies. The binding energy
EB of the atomic dimer in the harmonic trap with respect to
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FIG. 5. (Color online) Total transmission coefficients T (a⊥/as,

W2/W0) in the region a⊥/as ∼ 1.4603 . . . of the CIR for anisotropic
case ω1/ω2 = 1.1 as a function of relative population W2/W0 of the
first excited manifold n = 2. The splitting of the minimum of the
transmission coefficient is still present even for only 1% population
of the excited states.

the ground-state threshold E
(0)
⊥ has been calculated by solving

the corresponding eigenvalue problem.
In analyzing the results it is important to note the different

dependence of the position of the CIR obtained for the different
transmission curves T00(a⊥/as),T02 = T20(a⊥/as) in Fig. 1
on the collisional energy E‖. Since the resonant energy Er

belonging to the CIR in the ground state strongly changes
with varying a⊥/as near the value a⊥/as = 1.4603 . . . (see
Fig. 6 where a steep descent can be observed with increasing
a⊥/as) the dependence of T00(a⊥/as,E) on the energy E‖ near
the minimum position is very weak (see Fig. 1). Conversely,
the dependence of the resonant energy Er for the first excited
states on a⊥/as is much smoother (see uppermost black curve
with full dots in Fig. 6). This leads to a considerably stronger
dependence of the position of the minimum of T20 and T02 on
E‖ (see Fig. 1).

In the anisotropic waveguide, the resonant curve E
(0)
⊥ �

Er (a⊥/as) � E
(2)
⊥ of the CIR of the ground state splits into

two components which are shown in Fig. 6. The energetically
lower (0,2) component qualitatively repeats the behavior of the
resonant energy curve (CIR) of the isotropic case. This is why
the anisotropy causes only a limited quantitative change for
the T00 coefficient. However, the behavior of the energetically
upper (2,0) component differs (see Fig. 6). The resonance
curve Er of this component is flat for the complete parameter
region of a⊥/as which leads to a strong change with respect
to the energy dependence of the T02 coefficient, including, in
particular, a strong change of the corresponding positions of
the minima (maxima) with respect to a⊥/as . The behavior of
the T20 coefficient is determined by the energetically lowest
resonant curve Er emerging from the n = 4 threshold in
the isotropic case which is deformed only slightly by the

−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

ω
1
/ω

2
=1

ω
1
/ω

2
=1.2

n
1
+n

2
=0

(0,2)

a
⊥
/a

s

E
r(a

⊥
/a

s)/
E

⊥(0
)

ω
1
/ω

2
=1

ω
1
/ω

2
=1

ω
1
/ω

2
=1.2

ω
1
/ω

2
=1.2

n
1
+n

2
=2

n
1
+n

2
=4

(1,1)
(2,0)

(0,4)

FIG. 6. (Color online) Illustration of the spectrum of the atomic
dimer in harmonic isotropic ω1/ω2 = 1 and anisotropic ω1/ω2 = 1.2
waveguides as a function of a⊥/as . Below the continuum threshold
E

(0)
⊥ the calculated binding energy of the weakly bound state is shown.

Between the thresholds E
(0)
⊥ and E

(4)
⊥ the calculated resonant energies

Er were determined by the minimum of the transmission coefficient
T00(a⊥/as,E). Between the E

(0)
⊥ and E

(2)
⊥ thresholds the resonant

energy Er coincides with the location of the zero of Im{f00(a⊥/as)}.
Bold solid curves with the full dots correspond to the isotropic case
ω1/ω2 = 1 and the thin curves with open circles to the anisotropic
case ω1/ω2 = 1.2. Indices (n1,n2) label the splitted sub-levels of the
threshold energies E

(n1,n2)
⊥ (ω1/ω2 = 1.2) of the excited states with

n = n1 + n2. For the second excited threshold with n = 4 only the
lowest sublevel (0,4) is shown.

anisotropy. This is why the difference between T20(ω1/ω2 �= 1)
and T20(ω1/ω2 = 1) is significantly smaller when compared to
the case of the T02 coefficient.

The above model could potentially also explain the ap-
pearance of additional CIRs with further increase of the
anisotropy ω1/ω2 �= 1 as seen in Ref. [10]. By increasing
ω1/ω2 �= 1 the energetical distance between the sublevels
characterized by n = 2,4, . . . decreases. This leads to a
considerable increase of the populations Wn1,n2 of higher
excited states and, in particular, to an increase of the con-
tribution of these states to the total transmission coefficient T

[see Eq. (1)].

IV. MECHANISM OF THE CIR SPLITTING IN
ANISOTROPIC HARMONIC WAVEGUIDE

The key for the understanding of the mechanism of the
splitting of the CIR under the action of an anisotropic harmonic
trap is the diatomic spectrum of the weakly bound and resonant
states in the harmonic waveguide given in Fig. 6. It also
explains why the previous considerations in the zero-energy
limit near the ground-state threshold did not provide any
splitting of the CIR defined as the singularity of g1D =
limE‖→0(k00Ref0/Imf0) [11,12].

Actually, so far it was implicitly supposed that the res-
onant energy curve Er behaves linearly as it crosses the
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ground-state threshold n = 0 for a⊥/as = 1.4603 and be-
comes, subsequently, a weakly bound state for a⊥/as >

1.4603 (see, for example, Fig. 2 in Ref. [15]). Therefore,
it was natural to expect that in an anisotropic waveguide
ω1 − ω2 = �ω → 0 leading to the splitting of the first excited
threshold E

(2,0)
⊥ − E

(0,2)
⊥ = h̄�ω (see Fig. 6 in the present

paper and Fig. 1(b) in Ref. [10]) the resonant curve Er will
also split into two components E(2,0)

r and E(0,2)
r crossing the

ground-state threshold at the points a⊥/a(2,0)
s and a⊥/a(0,2)

s

with the separation a⊥/a(0,2)
s − a⊥/a(2,0)

s proportional to the
threshold splitting h̄�ω. These expectations were confirmed
in the experiment by measuring the distance between the
maxima of the atomic loss in the anisotropic waveguide
which was interpreted as a⊥/a(0,2)

s − a⊥/a(2,0)
s (see Fig. 3(c) in

Ref. [10]).
However, our extension of the calculation of the resonant

energy Er to the region a⊥/as > 1.4603 has shown a strongly
nonlinear behavior of the curve Er (see Fig. 6) while shifting
the point where the resonant curve Er crosses the ground-state
threshold to the value a⊥/as → +∞. This means that at the
point as → +0 we observe a complete rearrangement of the
spectrum. The first resonant state Er becomes a new weakly
bound state once we cross this point and, equivalently, for
the higher excited resonant states which convert into each
other.

This behavior, i.e., the rearrangement of the spectrum of
the two-body system at the point as → +0, remains in the
anisotropic waveguide (see Fig. 6). This is why the splitting of
the singularity of the function g1D = limE‖→0(k00Ref0/Imf0)
was not observed near the point a⊥/as = 1.4603 in the
anisotropic harmonic waveguide [11,12] but one can observe
the splitting of the minimum in the effective transmission
coefficient T [Eq. (1)] due to the quasicrossing of the resonant
curves E(0,2)

r and E(2,0)
r leading to the splitting of the minimum

in the T02 coefficient (see Fig. 3) qualitatively equal to the
width of the quasicrossing near a⊥/as = 1.4603. This width
is proportional to the first excited threshold splitting h̄�ω in
the presence of the anisotropy and in good agreement with the
experimental value for the splitting of the maxima of the atom
loss [10].

V. CONCLUSIONS

Our investigation and following analysis demonstrate that
multichannel scattering in anisotropic harmonic waveguides
can lead to a splitting of the confinement-induced resonance. A
necessary ingredient is a population of at least a few percentage
points of the transversally excited states which can certainly
occur via, e.g., a nonadiabatic loading process of the atoms
into the waveguide.

There are several ways to improve our suggested model
which would help to clarify further the behavior of the splitting
effect with varying parameters and depending on the initial
preparation of the atomic ensemble. First, one would have to
take into account the velocity distribution (distribution over
the collision energy E‖) in the longitudinal direction [20].
Shifts and splittings of the CIR due to anharmonicities of
the trap [13,14] and the influence of the inelastic channel of
molecule formation have also to be determined.

It is known that the anharmonicity of the trap couples the rel-
ative and center-of-mass motion of the colliding atoms and can
lead to additional anharmonicity-induced resonances (AIRs)
due to the removal of the degeneracy of the center-of-mass and
relative motions [13,14]. However, the AIRs are supposed to
be much narrower than the CIRs and, as a consequence, more
difficult to be detected experimentally because of the relatively
weak anharmonic coupling with respect to the interatomic
interaction [8,13]. In conclusion, the observation of these AIRs
presumably represents a challenging experimental problem.
Explicitly suppressing the anharmonicity of the waveguide
could lead to a discrimination between the two mechanisms
causing a splitting of the CIRs.

Note added in proof. Recently, new work on AIR has been
posted [21].
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