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Multichannel quantum defect theory (MQDT) is shown to be capable of producing quantitatively accurate
results for low-energy atom-molecule scattering calculations. With a suitable choice of reference potential
and short-range matching distance, it is possible to define a matrix that encapsulates the short-range collision
dynamics and is only weakly dependent on energy and magnetic field. Once this has been produced, calculations
at additional energies and fields can be performed at a computational cost that is proportional to the number of
channels N and not to N3. MQDT thus provides a promising method for carrying out low-energy molecular
scattering calculations on systems where full exploration of the energy dependence and the field dependence is
currently impractical.
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I. INTRODUCTION

The creation of the first dilute atomic Bose-Einstein
condensates (BECs) in 1995 [1,2] led to enormous advances
in ultracold atomic physics. There is now great interest
in producing samples of cold molecules, at temperatures
below 1 K [3–5], and ultracold molecules, at temperatures
below 1 mK [6–9]. There are many potential applications
of ultracold molecular samples, amongst which are high-
precision measurements [10,11], quantum computation [12],
and ultracold chemistry [13].

Understanding atomic and molecular interactions and colli-
sions is essential to the study of cold and ultracold molecules.
For example, methods such as buffer-gas cooling [14] and
Stark deceleration [15] can produce cold molecules with
temperatures between 10 mK and 1 K. However, a second-
stage cooling method is needed to bring the molecules into the
ultracold regime. Sympathetic cooling, in which the molecules
are allowed to thermalize with a gas of ultracold atoms, is a
promising second-stage cooling method [16]. However, while
elastic collisions allow thermalization, inelastic collisions can
cause trap loss [17], and for many systems the inelastic
collisions are predicted to be too large for sympathetic cooling
to succeed [18–20]. Scattering calculations are essential in
order to identify systems for which sympathetic cooling has
a good prospect of success. Once in the ultracold regime,
the extent to which atomic and molecular interactions can be
controlled again depends on a detailed understanding of their
collisional properties.

Quantum molecular scattering calculations are usually
carried out using the coupled-channel method: the Schrödinger
equation for scattering is converted into a set of coupled
differential equations, which are then propagated across a
range of values of the intermolecular distance r . The size
of the problem is determined by the number of channels N

(the number of coupled equations). The usual algorithms take
a time proportional to N3, since each step of the propagation
requires an O(N3) matrix operation.

Cold molecule scattering presents problems with a large
number of channels for two reasons.

(1) At very low energies, small splittings between molecular
energy levels become important. This makes it necessary to
include fine details of molecular energy level patterns, such
as tunneling and nuclear hyperfine splitting. The extra degrees
of freedom require additional basis functions; in particular,
including nuclear spins can multiply the number of equations
by a substantial factor (sometimes 100 or more).

(2) Collisions in the presence of electric and magnetic
fields are very important. In an applied field, the total angular
momentum J is no longer a good quantum number. Because
of this, the large sets of coupled equations can no longer be
factorized neatly into smaller blocks for each J as is possible
in field-free scattering.

In addition, in cold molecule applications it is often
necessary to repeat scattering calculations on a fine grid of
energies and/or applied electric and magnetic fields, which
adds greatly to the computational expense.

Multichannel quantum defect theory (MQDT) offers an
alternative to full coupled-channel calculations. It was orig-
inally developed to provide a uniform treatment of bound and
scattering states for problems involving the interaction of an
electron with an ion core with Coulomb forces at long range
[21,22], but was subsequently generalized to handle a range of
other long-range potentials [22–27]. It has been successfully
applied to scattering problems as diverse as negative ion pho-
todetachment [28], near-threshold predissociation of diatomic
molecules [25,29], and predissociation of atom-diatom Van der
Waals complexes [30,31]. More recently it has been applied
to ultracold collisions between pairs of neutral atoms [32–36],
between atoms and ions [37,38], and between highly reactive
molecules [39–41].

MQDT can be viewed in two different ways. The first
tries to capture the important physics of collisions within a
few analytic quantum defect parameters. The other views it
as a method for solving the coupled equations of scattering
theory which offers substantial insights and advantages in
efficiency. The common feature of the two approaches is
to take advantage of the enormous difference in energy and
length scales associated with separated collision partners and
short-range potentials.
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When MQDT is viewed as a numerical method for solving
the coupled differential equations, the goal is to obtain a
matrix Y (E,B) [24,29,34,35] that completely describes the
short-range dynamics and is insensitive to collision energy E

and magnetic field B. This matrix can be obtained once and
then used for calculations over a wide range of energies and
fields, or obtained by interpolation from a few points. MQDT
achieves this by defining Y (E,B) at relatively short range, as
described below. The threshold behavior is accounted for from
properties of single channels. Once the matrix Y (E,B) has
been obtained, the time required for calculations at additional
energies and fields is only proportional to N , not N3.

Understanding threshold atomic physics in quantum defect
terms is well developed [32–34,42,43]. Threshold bound-state
and scattering properties are determined mainly by the long-
range potential, which can often be approximated as −Cn/rn.
For the case of the Van der Waals interaction, −C6/r6, the
linearly independent pair of solutions for a single potential
is known [44]. An analytic approach to MQDT using these
solutions has been developed [45,46] and gives much insight
into ultracold atom-atom collisions [47].

This paper investigates the use of MQDT as a numerical
method to study cold atom-molecule collisions. The structure
of the paper is as follows. In Sec. II we give an overview of
the theory of MQDT, sufficient to define notation. In Sec. III we
apply MQDT to the prototype system Mg + NH and compare
it with full coupled-channel calculations in order to establish
what is required for it to give accurate results. In Sec. IV we
present our conclusions and suggest directions for future work.

II. THEORY

A. Coupled-channel method

Cold atomic and molecular collisions and near-threshold
bound states are conveniently described by a set of coupled
equations. The Hamiltonian for an interacting pair of atoms or
molecules is of the form

− h̄2

2μ
∇2 + Ĥint(τ ) + V (r,τ ), (1)

where μ is the reduced mass, ∇2 is the Laplacian for the
intermolecular coordinates, and τ denotes all coordinates
except the interparticle distance r . Ĥint(τ ) represents the
internal Hamiltonians of the two particles and V (r,τ ) is the
interaction potential. The total wave function is expanded as

�(r,τ ) = r−1
∑

i

ϕi(τ )ψi(r), (2)

where the N functions ϕi(τ ) form a basis set for the motion
in all coordinates, τ , except the intermolecular distance, and
ψi(r) is the radial wave function in channel i. Substituting
this expansion into the total time-independent Schrödinger
equation and projecting onto the basis function ϕj (τ ) yields
the usual coupled equations of scattering theory,

[
− h̄2

2μ

d2

dr2
− E

]
ψj (r) = −

∑
i

Wji(r)ψi(r), (3)

where E is the energy. The coupling matrix W has elements

Wji(r) =
∫

ϕ∗
j (τ )

[
Hint(τ )+V (r,τ )+ h̄2Li(Li + 1)

2μr2

]
ϕi(τ ) dτ,

(4)

where Li is the partial-wave quantum number for channel i.
Equation (3) can conveniently be written in matrix form,

h̄2

2μ

d2ψ

dr2
= [W (r) − E I]ψ(r), (5)

where ψ(r) is a column vector made up of the solutions ψi(r)
and I is the identity matrix.

For both bound-state and collision calculations, the wave
function must be regular at the origin. When V (r) � 0 as
r → 0, the short-range boundary condition is

ψi(r) → 0 as r → 0. (6)

At any energy, there are N linearly independent solution
vectors ψ(r) that satisfy these boundary conditions, and it is
convenient to combine them to form the N × N wave function
matrix �(r).

The coupled-channel approach propagates either the wave
function matrix �(r) and its derivative � ′(r), or the log-
derivative matrix L(r) = � ′[�]−1, outward from r = 0 (or
a point in the deeply classically forbidden region at short
range) [48,49]. In scattering calculations, the propagation is
continued to a point rmax at large r . The wave function or
log-derivative matrix is then transformed into a representation
where W is asymptotically diagonal [50], such that

Wji(r)
r→∞−→

[
E∞

i + h̄2Li(Li + 1)

2μr2

]
δij + O(r−n), (7)

where n is the power of the leading term in the potential
expansion and E∞

i is the threshold of channel i. Each channel
is either asymptotically open, E � E∞

i , or asymptotically
closed, E < E∞

i . The scattering boundary conditions are

� = J(r) + N(r)K . (8)

The matrices J and N are diagonal matrices containing
Riccati-Bessel functions for open channels and modified
spherical Bessel functions for closed channels [49]. In a
problem containing N channels, No of which are open, the
scattering S matrix is related to the open-open submatrix of K
by

S = (1 + i K oo)−1(1 − i K oo). (9)

In full coupled-channel calculations, the matrices K and S
are rapidly changing functions of both energy and field,
particularly near scattering resonances, so that the entire
propagation to long range must be repeated for each set of
conditions required.

B. Multichannel quantum defect theory

MQDT also begins by propagating the wave function or
log-derivative matrix outward from short range. However,
instead of continuing to rmax, matching takes place at a point
rmatch, at relatively short range. The matching in MQDT treats
the open and weakly closed channels on an equal footing;
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weakly closed channels are usually defined as those that are
locally open, E > Wii(r), at some value of r , so are capable
of supporting scattering resonances. Matching at short range
produces a matrix Y (E,B) that is relatively insensitive to
energy and applied field, as described below. Y also varies
smoothly across thresholds, unlike S and K . Provided the
channels are uncoupled outside rmatch, it is then possible to
obtain the scattering S matrix from Y using the properties of
individual uncoupled channels.

We consider a problem with No open channels and Nc

weakly closed channels at some collision energy E and
field B. For each such channel, i = 1,Nref , where Nref =
No + Nc, MQDT requires a reference potential, U ref

i (r), which
asymptotically has behavior similar to that of Wii(r) in Eq. (7).
This reference potential defines a linearly independent pair of
reference functions fi(r) and gi(r),[

d2

dr2
+ K2

i (r)

]
fi(r) = 0, (10)

and similarly for gi , where the local wave vector Ki(r) is

Ki(r) =
√

2μ

h̄2

[
E − U ref

i (r)
]
. (11)

The regular solution fi has the boundary condition fi → 0 as
r → 0. fi and gi are normalized to have Wentzel-Kramers-
Brillouin (WKB) form, with amplitude Ki(r)−1/2, at some
point in the classically allowed region [24]. The Nref × Nref

matrix Y is defined by matching at rmatch,

� = f (r) + g(r)Y , (12)

or in terms of the log-derivative matrix L,

(L f − f ′) = (Lg − g′)Y , (13)

where f and g are diagonal matrices containing the functions
fi and gi and the primes indicate radial derivatives.

In order to relate Y to the physical scattering S matrix,
the asymptotic forms of the reference functions fi and gi in
each channel are required. To this end another pair of reference
functions is defined for each channel. For open channels, these
functions are asymptotically energy-normalized,

si(r)
r→∞−→ k

− 1
2

i sin

(
kir − Liπ

2
+ ξi

)
, (14)

ci(r)
r→∞−→ k

− 1
2

i cos

(
kir − Liπ

2
+ ξi

)
, (15)

where ξi is the phase shift associated with reference potential
i and ki is the asymptotic wave vector,

ki =
√

2μ

h̄2

(
E − E∞

i

)
. (16)

These asymptotically normalized functions are related to fi

and gi through the quantum defect parameters Ci and tan λi ,

si(r) = C−1
i fi(r), (17)

ci(r) = Ci[gi(r) + tan λifi(r)]. (18)

Thus Ci relates the amplitudes of the energy-normalised
reference functions to WKB-normalized ones, while tan λi

describes the modification in phase due to threshold effects.
Far from threshold, Ci ≈ 1 and tan λi ≈ 0.

For each weakly closed channel, an exponentially decaying
solution is defined,

φi(r)
r→∞−→ 1

2e−|ki |r√|ki |. (19)

This is related to the solutions fi and gi by a normalization
factor Ni and an energy-dependent phase νi ,

φi(r) = Ni [cos νifi(r) − sin νigi(r)] . (20)

The phase νi is an integer multiple of π at each energy that
corresponds to a bound state of the reference potential in
channel i.

The Y matrix is converted into the S matrix of scattering
theory using the quantum defect parameters Ci , tan λi , tan νi ,
and ξi . First, the effect of coupling to closed channels is
accounted for,

Y = Y oo − Y oc[tan ν + Y cc]−1Y co, (21)

where tan ν is a diagonal matrix of dimension Nc × Nc con-
taining elements tan νi . The No × No matrix Y incorporates
any resonance structure caused by coupling to closed channels
through tan ν. Unlike Y itself, Y can be a rapidly varying
function of energy and field. Second, threshold effects from
asymptotically open channels are incorporated,

R = C−1[Y−1 − tan λ]−1C−1, (22)

where C and tan λ are diagonal matrices of dimension No ×
No, containing elements Ci and tan λi . Finally, the S matrix is
obtained from

S = eiξ [1 + i R][1 − i R]−1eiξ . (23)

This may be compared to Eq. (9) for the full coupled-channel
method. The inclusion of the diagonal matrix eiξ accounts for
the phase difference between the reference functions fi and gi

used by MQDT and the Riccati-Bessel functions used by the
full coupled-channel method.

The approach taken in the present paper is somewhat differ-
ent from that in Refs. [25,34]. There MQDT was approached
as an exact representation of the full coupled-channel solution.
The matrix Y was evaluated at a distance rmatch large enough
that it had become constant as a function of rmatch. When this
is done, MQDT gives the same (exact) results for any choice
of reference potential U ref

i (r), although constancy of Y may
be achieved at different values of rmatch for different choices.
In our approach, rmatch is chosen to ensure that Y is only
weakly energy-dependent, and this may require matching in
a region where Y is not yet independent of rmatch. With this
approach, MQDT provides an approximate solution whose
quality depends on the choice of reference potentials.

C. Numerical evaluation of reference functions and quantum
defect parameters

1. Open channels

For an open channel i, the reference function si is obtained
by propagating a regular solution of Eq. (10) from a point
inside rmatch to a point rmax at long range and imposing the
boundary condition (14) (or its Bessel function equivalent).
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This establishes the normalization of si and also gives the
phase shift ξi , which is then used to obtain the function ci at
rmax from the boundary condition (15). The reference function
ci is then propagated inward to rmatch. The two remaining
quantum defect parameters are obtained by applying [25]

C−2
i = (

s2
i Ki + s ′2

i /Ki

)
(24)

and

cot λi = Ki(γi − ui)

K2
i + γiui

(25)

in the classically allowed region, where γi = s ′
i/si and ui =

c′
i/ci . The primes indicate radial derivatives. Equations (17)

and (18) then give the reference functions fi and gi .

2. Closed channels

For a weakly closed channel i, the reference function fi is
again obtained by propagating a regular solution of Eq. (10)
outward from a point inside rmatch, but in this case fi is
normalized in the classically allowed region such that

f 2
i

(
K2

i + γ 2
i

) = Ki. (26)

In the closed-channel case, gi cannot be obtained directly
from fi at a single point. Instead, the reference function
φi is obtained by using Eq. (19) as a long-range boundary
condition and propagating a solution of Eq. (10) inward toward
r = 0. The normalization factor Ni of Eq. (20) is obtained by
matching to

N 2
i = (

φ2
i Ki + φ′2

i /Ki

)
(27)

in the classically allowed region. The quantum defect param-
eter tan νi is then obtained from

tan νi = Ki(ti − γi)

K2
i + γiti

, (28)

where ti = φ′
i/φi . Finally, the function gi is obtained from fi

and φi using Eq. (20).

D. Sources of error

There are a number of sources of errors in MQDT
calculations using our approach:

(1) interchannel couplings that occur outside rmatch, which
are not taken into account by Eqs. (21) to (23);

(2) deviations between the reference potentials U ref
i (r) and

Wii(r) outside rmatch; and
(3) differences between the actual Y matrix at a given energy

and field and the Y matrix obtained by interpolation.

III. RESULTS AND DISCUSSION

To explore the application of MQDT to cold molecular
collisions, we consider the prototype system Mg + NH(3−).
The potential energy surface for this system is moderately
anisotropic [51] and provides substantial coupling between
channels. The system is topical because Wallis and Hutson [52]
have shown that sympathetic cooling of cold NH molecules
by ultracold Mg atoms has a good prospect of success.

The energy levels of NH in a magnetic field are most
conveniently described using Hund’s case (b), in which the

molecular rotation n couples to the spin s to produce a total
monomer angular momentum j . In zero field, each rotational
level n is split into sublevels labeled by j . In a magnetic field,
each sublevel splits further into 2j + 1 levels labeled by mj ,
the projection of j onto the axis defined by the field. For the
n = 0 levels that are of most interest for cold molecule studies,
there is only a single zero-field level with j = 1 that splits into
three components with mj = +1, 0, and −1.

The coupled equations are constructed in a partly cou-
pled basis set |nsjmj 〉|LML〉, where L is the end-over-end
rotational angular momentum of the Mg atom and the NH
molecule about one another and ML is its projection on the
axis defined by the magnetic field. Hyperfine structure is
neglected. The matrix elements of the total Hamiltonian in this
basis are given in Ref. [50]. The only good quantum numbers
during the collision are the parity p = (−1)n+L+1 and the total
projection quantum number M = mj + ML. The calculations
in the present work are performed for p = −1 and M = 1. This
choice includes s-wave scattering of NH molecules in initial
state mj = +1, which is magnetically trappable, to mj = 0
and −1, which are not. The basis set used included all functions
up to nmax = 1 and Lmax = 3. This unconverged basis set is
sufficient for the purpose of comparing MQDT results with
full coupled-channel calculations.

A. Numerical methods

The coupled-channel calculations required for both MQDT
and the full coupled-channel approach were carried out using
the MOLSCAT package [53], as modified to handle collisions
in magnetic fields [50]. The coupled equations were solved
numerically using the hybrid log-derivative propagator of
Alexander and Manolopoulos [54], which uses a fixed-step-
size log-derivative propagator in the short-range region (rmin �
r < rmid) and a variable-step-size Airy propagator in the
long-range region (rmid � r � rmax). The full coupled-channel
calculations used rmin = 2.5 Å, rmid = 50 Å and rmax = 250 Å
(where 1 Å = 10−10 m). MQDT requires coupled-channel
calculations only from rmin to rmatch (which is less than rmid),
so only the fixed-step-size propagator was used in this case.

The MQDT reference functions and quantum defect pa-
rameters were obtained as described in Sec. II C, using
the Numerov propagator [55] to solve the one-dimensional
Schrödinger equations. Use of the renormalized Numerov
method [56] was not found to be necessary in the present
case. The MQDT Y matrix was then obtained by matching to
the log-derivative matrix extracted from the coupled-channel
propagation at a distance rmatch.

B. Comparison of full coupled-channel and MQDT results

1. Choice of rmatch and reference potential

One of the goals of MQDT is to obtain a matrix Y (E,B)
in such a way that it is only weakly dependent on energy E

and magnetic field B. However, the actual form of Y (E,B) is
strongly dependent on the distance at which it is defined and
the reference potentials used. In the present work we consider
three different reference potentials, as shown in Fig. 1. First
we define a reference potential containing a pure C6 long-
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FIG. 1. (Color online) Reference potentials for Mg + NH. For the
V0 reference potential the first rotational excited state is also shown
(n = 1). The hard wall at r = 4.5 Å is shown as a dashed line.

range term, which has been used with great success in cold
atom-atom collisions,

U
ref,C6
i (r) = −C6

r6
+ h̄2Li(Li + 1)

2μr2
+ E∞

i , (29)

where C6 = 7.621 × 105 Å
6

cm−1 for Mg + NH [51]. Second,
we define a reference potential containing an additional C8

term,

U
ref,C6,8

i (r) = −C6

r6
− C8

r8
+ h̄2Li(Li + 1)

2μr2
+ E∞

i , (30)

where C8 = 9.941 × 106 Å
8

cm−1 [51]. Finally we define

U
ref,V0
i (r) = V0(r) + h̄2Li(Li + 1)

2μr2
+ E∞

i , (31)

where V0(r) is the isotropic part of the interaction potential,
which is equivalent to the diagonal W -matrix element in the
incoming s-wave channel. Each reference potential contains a
hard wall at r = rwall

i , so that U ref
i (r) = ∞ for r < rwall

i . This
allows the phase ξi of the reference functions in each channel
to be adjusted if required. A useful feature of MQDT, to be
explored in future work, is that the position of the hard wall can
be chosen to minimize the energy dependence of Y . However,
in the present paper we simply take rwall

i = 4.5 Å.
It is convenient to compare MQDT and coupled-channel

results at the level of T -matrix elements, Tij = δij − Sij .
In general we label elements Tα,L,ML→α′,L′,M ′

L
, where |α〉 =

|nsjmj 〉. However, the collisions considered in the present
paper are all among the n = 0,j = 1 levels and so α is simply
abbreviated to mj . The spin-changing cross sections are quite
small except near resonances, so we focus mostly on diagonal
elements, for which we suppress the second set of labels.

Figure 2 compares diagonal T -matrix elements |Tii |2
obtained from full coupled-channel calculations with those
from the MQDT method for the pure C6 reference potential
of Eq. (29), with a matching distance of rmatch = 20 Å. The
Y matrix was recalculated at every energy at which full
coupled-channel calculations were performed. The MQDT
results reproduce the coupled-channel results almost exactly at
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FIG. 2. (Color online) The squares of diagonal T -matrix ele-
ments in the incoming channels for mj = +1 and L = 0 and 2 at
B = 10 G, obtained from full coupled-channel calculations (solid,
black) and MQDT with the C6 reference potential and rmatch = 20 Å
(dashed, red). T -matrix elements are labeled with quantum numbers
mj , L, and ML. (Units of gauss rather than tesla, the accepted SI
unit of magnetic field, have been used in this paper to conform to the
conventional usage of this field.)

collision energies E/kB > 10 mK. However, at lower energies
the results start to differ noticeably. It may be noted that
|U ref,C6

i − Wii |/kB ≈ 0.6 mK at rmatch = 20 Å.
Figure 3 shows the diagonal Y elements corresponding to

Fig. 2. They vary smoothly across most of the energy range
and are continuous across the threshold at zero energy, but
exhibit occasional sharp structures as a function of energy.
These sharp features are close to the energies of quasibound
states, as shown by carrying out bound-state calculations using
the BOUND package [57], with the same basis set as the
MOLSCAT calculations. The resulting bound-state energies are
shown in Fig. 3 as dashed vertical lines. The broad feature
near E/kB = 0.5 K is due to a quasibound state (Feshbach
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FIG. 3. (Color online) Diagonal Y -matrix elements as a function
of collision energy at B = 10 G for the C6 reference potential
with rmatch = 20 Å. The dashed vertical lines show the positions of
quasibound states as described in the text.
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resonance) with quantum numbers n = 1, j = 0, mj = 0, and
L = 3.

For MQDT to be more efficient than full coupled-channel
calculations, it needs to produce results in agreement with
full coupled-channel calculations from an energy-insensitive Y
matrix that can be assumed to be constant or can be obtained by
interpolation from a few energies, instead of being recalculated
at every energy. However, the Y -matrix elements in Fig. 3
do not meet this requirement: the resonant features prevent
reliable interpolation over useful ranges of energy.

The energy sensitivity of the Y matrix in Fig. 3 is due
to the value used for rmatch. When rmatch is large, resonance
features due to quasibound states may be present in the
log-derivative matrix from which Y is obtained. In this case
the open- and closed-channel blocks of Y are uncoupled, so
that Ȳ ≈ Y oo, and the resonances appear through the Y oo term
in Eq. (21) rather than through tan ν + Y cc [58]. However,
if rmatch is small enough, the resonance features are shifted
to high energies, out of the region of interest. It is usually
desirable to obtain Y at a value of rmatch that is in or near
the classically allowed region for all weakly closed channels.
However it must be remembered that the MQDT method
neglects interchannel couplings that occur outside rmatch, so
there is always a tradeoff between choosing a value that
minimizes the energy dependence and one that takes account of
coupling at relatively long range. This is particularly important
in molecular scattering, where the anisotropy of the inter-
action potential often provides substantial couplings at long
range.

It is convenient to consider lengths and energies in ultracold
scattering in relation to the Van der Waals characteristic length
and energy, defined by [59]

rVdW = 1

2

(
2μC6

h̄2

) 1
4

and EVdW = h̄2

2μr2
VdW

. (32)

For Mg + NH, rVdW = 12.7 Å and EVdW/kB = 11 mK. In
atomic systems, it is common to place rmatch close to rVdW.
However, the quasibound state responsible for the broad
feature in Fig. 3 is due to an n = 1 state, with an outer
turning point around 5.7 Å. The resonant feature therefore
does not shift in energy significantly until rmatch is around
7 Å. In addition, it is not enough simply to move rmatch to
short range with the same reference function. Figure 4 shows
diagonal T -matrix elements obtained by MQDT with the C6

reference function, as in Fig. 2, but with rmatch = 6.8 Å. This
does indeed produce a Y matrix without poles in the energy
region of interest, but the MQDT results are no longer in
agreement with the full coupled-channel results at any of the
energies considered. This is because the difference between
the reference potential and the diagonal W -matrix elements at
rmatch = 6.8 Å is |U ref,C6

i − Wii |/kB ≈ 4 K, as seen in Fig. 1.
Alternatively, in terms of the approach of Mies and Raoult [34],
6.8 Å is too short a distance for the Y matrix evaluated
with the C6 reference potential to have reached its asymptotic
value.

This problem may be remedied by using a better reference
potential. Figure 5 shows results obtained using the reference
potentials of Eqs. (30) and (31), again for rmatch = 6.8 Å.
The C6 + C8 reference potential gives a marked improvement
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FIG. 4. (Color online) The squares of diagonal T -matrix ele-
ments in the incoming channels for mj = +1 and L = 0 and 2 at
B = 10 G, obtained from full coupled-channel calculations (solid,
black) and MQDT with the C6 reference potential and rmatch = 6.8 Å
(dashed, red).

over the pure C6 reference potential. The T -matrix elements
it produces follow the form of the full coupled-channel
results but still become poor at energies much below 1 K:
at rmatch = 6.8 Å, |U ref,C6+C8

i − Wii |/kB ≈ 0.35 K. However,
the results obtained with the V0 reference potential are much
more accurate and can scarcely be distinguished from the full
coupled-channel results in Fig. 5.

Even the V0 reference potential does not produce exact
results. Figure 6 shows the ratio of the MQDT T -matrix
elements for this reference potential to the full coupled-channel
results. The poles in the ratio arise simply because MQDT
places the zeroes in |T |2 (where the phase shift is an integer
multiple of π ) at very slightly different collision energies.
However, at very low energies (below about 1 mK) the MQDT
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B = 10 G, obtained from full coupled-channel calculations (solid,
black) and MQDT with the C6 + C8 (dot-dashed, blue) and V0

(dashed, red) reference potentials and rmatch = 6.8 Å.
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mj = +1 and L = 0 at B = 10 G for MQDT, with the V0 reference
potential and rmatch = 6.8 Å, to that from full coupled-channel
calculations.

results underestimate the squared T -matrix elements by up
to 3%. This probably arises because the “best” reference
potential would be one that takes account of adiabatic shifts
due to mixing in excited rotational levels. For the n = 0
channels, the shift due to n = 1 channels may be estimated
from second-order perturbation theory to be about 0.012 cm−1

(equivalent to 17 mK) at rmatch = 6.8 Å. This will cause
residual errors in the MQDT C functions that are responsible
for the small errors visible in Fig. 6.

Figure 7 shows representative matrix elements of Y
obtained at rmatch = 6.8 Å, with the V0 reference potential, as a
function of energy. It may be seen that they are nearly linear in
energy. The other matrix elements of Y show similar behavior.
While the actual values of matrix elements vary substantially,
they are all nearly linear in energy for rmatch = 6.8 Å.

It should be noted that when the reference functions are
obtained numerically, as in the present work, there is no
significant difference in computer time for different choices
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FIG. 7. (Color online) Diagonal Y -matrix elements as a function
of energy at B = 10 G, for the V0 reference potential with rmatch =
6.8 Å.

of reference potential. Using the full V0 reference potential is
just as inexpensive as using a simpler one.

2. Feshbach resonances

Magnetic fields have important effects on cold molecular
collisions, and in particular magnetically tunable low-energy
Feshbach resonances provide mechanisms by which the
collisions may be controlled. It is therefore important to
establish whether the Y matrices obtained from MQDT are
smooth functions of magnetic field as well as energy and can
be used to characterize Feshbach resonances. If they are, it
will offer substantial computational efficiencies.

Figure 8 shows how the diagonal Y -matrix elements vary
as a function of magnetic field for Mg + NH collisions over
the range from 0 to 2500 G for a collision energy of 400 mK.
It may be seen that the matrix elements are indeed very nearly
linear, as required for efficient interpolation.

In Mg + NH, there is a Feshbach resonance due to the
n = 1, j = 0, mj = 0, L = 3 state shown in Fig. 3 that tunes
down toward the n = 0, mj = +1 threshold with increasing
field. Figure 9 shows the comparison between MQDT and full
coupled-channel calculations for a selection of diagonal and
off-diagonal T -matrix elements as the magnetic field is tuned
across this resonance at energies of 400 mK and 1 mK. At each
energy, MQDT results were obtained both by recalculating the
Y matrix at every field and by linear interpolation between
two points separated by 100 G. In both cases, the interpolated
MQDT results are within about 0.2 G of the full MQDT results
even for this long interpolation, and this could of course be
improved simply by considering a few more fields across the
range to allow. However, there is also a residual error of 0.1
to 0.2 G in the resonance position even for the full MQDT
results, which is not very different at the two collision energies
considered. This is again likely to be due to the effect as
described in Sec. III B 1: the V0 reference potential neglects
couplings between channels outside rmatch, and for the small
value of rmatch used here these couplings are sufficient to shift
the resonance positions slightly. Apart from these small shifts,
however, both the elastic and the inelastic scattering around
the resonances are very well described at both energies.
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FIG. 8. (Color online) Diagonal Y -matrix elements as a function
of magnetic field at E/kB = 400 mK, for the V0 reference potential
with rmatch = 6.8 Å.
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results are obtained with the V0 reference potential at rmatch = 6.8 Å.

The linearity of the Y matrix with both energy and applied
magnetic field is an extremely promising result and suggests
that MQDT will provide very efficient ways of performing
cold collision calculations as a function of energy and magnetic
field, without needing to repeat the expensive coupled-channel
part of the calculation on a fine grid.

IV. CONCLUSIONS

We have shown that MQDT can be applied to low-
energy molecular collisions in applied magnetic fields. MQDT
provides a matrix Y , defined at a distance rmatch at relatively

short range, which encapsulates all the short-range dynamics
of the system. For the prototype Mg + NH system, we have
shown that MQDT can provide numerical results that are in
quantitative agreement with full coupled-channel calculations
if the MQDT reference functions are defined appropriately.

We have investigated the effect of different choices of ref-
erence potential and values of rmatch. For cold atom-molecule
collisions, unlike cold atom-atom collisions, calculations are
likely to be needed over a significant range of collision energy,
perhaps 1 K or so. If rmatch is placed at too long a range,
there is a significant likelihood of resonant features within
the energy range that prevent simple interpolation of Y . This
may be circumvented by carrying out the matching at a
smaller distance rmatch. However, when this is done, a pure
C6 reference potential may not be sufficient. For Mg + NH,
the most satisfactory procedure is to perform matching at fairly
short range (inside 7 Å) and use a reference potential that is
defined to be the same as the true diagonal potential in the
incoming channel.

The major strength of MQDT for molecular applications
is that, if the matching to obtain Y is carried out at relatively
short range, the matrix is only weakly dependent on collision
energy and magnetic field. This allows very considerable
computational efficiencies, because the expensive calculation
to obtain Y needs to be carried out at only one or a few
combinations of collision energy and field. The remaining
calculations to obtain scattering properties on a fine grid
of energies and fields are then computationally inexpensive,
varying only linearly with the number of channels N . Full
coupled-channel calculations, by contrast, scale as N3.

MQDT is a promising alternative to full coupled-channel
calculations for cold atom-molecule collisions, particularly
when fine scans over collision energy and magnetic field
are required. In future work, we will investigate further the
choice of reference functions to optimize the accuracy and to
minimize the dependence of Y on collision energy and field.
We will also investigate how the results for Mg + NH transfer
to more strongly anisotropic systems, with stronger long-range
anisotropy and more closed channels that are capable of
producing scattering resonances.
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