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Arbitrarily complete Bell-state measurement using only linear optical elements
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A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve
a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate
results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves
the success rate to 75%. More generally, the addition of 2N − 2 ancillary photons yields a linear-optic Bell-state
measurement with a success rate of 1 − 1/2N .
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I. INTRODUCTION

The Bell-state measurement (BSM), defined as the projec-
tion of two qubits onto maximally entangled Bell states, is
an essential feature of a number of quantum communication
protocols, including quantum teleportation [1] and entangle-
ment swapping [2]. The simplest photonic polarization BSMs,
some of which have been demonstrated experimentally, in-
volve single-photon detectors along with ordinary linear-optic
elements such as waveplates and beam splitters. Unfortunately,
none of these has risen to the level of a complete BSM in the
sense that none has provided unambiguous discrimination of
all four Bell states. One commonly used scheme, for example,
is able to discriminate two of the four Bell states but returns
a degenerate result for the other two—a success rate of only
50% [3]. In principle, a complete BSM can be achieved through
the use of nonlinear optics [4] or entanglement in auxiliary
degrees of freedom [5], and the techniques of linear-optic
quantum computing allow for a complete BSM, but those
schemes require feed-forward techniques [6]. However, within
the constraints of linear-optic elements without hyperentan-
glement or feed-forward techniques, a complete BSM has
never been demonstrated and, in fact, it has been shown that a
complete BSM is not even possible [7,8].

It is shown here that the linear-optic BSM success rate
can be improved with the addition of ancillary entangled
photons and that, with enough additional photons, a BSM
can be realized that is arbitrarily close to “complete.” The
technique is introduced with the review of a typical scheme
that yields a 50% success rate. It is then shown that the addition
of a single pair of entangled photons cuts the degeneracy rate
in half, thus improving the success rate to 75%. The paper
concludes with a general proof showing that the addition of
2N − 2 ancillary photons yields a linear-optic BSM with a
success rate of 1 − 1/2N .

II. SIMPLE BELL-STATE MEASUREMENT

The technique described here is an extension of the BSM
proposed by Braunstein and Mann [3] and demonstrated in
several experiments. As shown in Fig. 1, two photons are
incident on a 50:50 beam splitter and the outputs are directed
to a pair of single-photon detectors (not shown). For the
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purposes of this discussion, the detectors are assumed to have
unit efficiency and to be capable of resolving photon number
and polarization (the latter can be realized with a polarization
beam splitter and additional detectors). The input and output
operators are related by
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where the subscripts “in” and “out” refer to all operators inside
the respective matrices. Where it is appropriate in subsequent
expressions, the â† will be replaced by either ĥ† or v̂† for
horizontal or vertical polarization, respectively.

Under this transformation, the four Bell states evolve from
input to output as follows:
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[ĥ†
1v̂

†
2 − v̂

†
1ĥ
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The states |ψ (+)〉 and |ψ (−)〉 result in two different outcomes:
for |ψ (+)〉, both photons end up at the same detector but with
different polarizations; and, for |ψ (−)〉, one photon reaches
each detector. For |φ(+)〉 and |φ(−)〉, both photons end up at the
same detector and with identical polarizations, an outcome that
is degenerate but distinct from the |ψ (+)〉 and |ψ (−)〉 results.
Thus, this BSM scheme can discriminate between |ψ (+)〉 and
|ψ (−)〉 but yields degenerate results for |φ(+)〉 and |φ(−)〉. It
is said that the success rate is only 50%, in the sense that an
unambiguous result is obtained only half the time for an input
state in which all four Bell states are equally likely.

For reasons that will become clear shortly, it is noted that
these outcomes can be classified in terms of nH and nV , the
number of horizontally and vertically polarized photons at the
outputs, respectively, and by n[1], which is the total number of
photons at detector 1. That is, nH and nV are odd for |ψ (±)〉
and even for |φ(±)〉, while the quantity n[1] is even for |ψ (+)〉
(0 or 2) and odd for |ψ (−)〉.
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FIG. 1. (Color online) Simple linear-optic method for measuring
Bell states. Polarization and photon-number resolving detectors are
not shown.

III. BELL-STATE MEASUREMENT WITH TWO
ANCILLARY PHOTONS

Consider now the arrangement shown in Fig. 2. The input
state in paths 1 and 2 is mixed at a pair of 50:50 beam splitters
with ancillary photons in paths 3 and 4, and the four beam-
splitter outputs are subsequently subjected to a pair of simple
BSMs, as described above. The input and output operators in
this arrangement are related by⎛
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The ancillary photons are in the state |ϒ1〉 = 1√
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The rationale for this choice is that the degeneracy in the simple
BSM can be broken by interfering |φ(±)〉 with something
having a very similar form (i.e., with |ϒ1〉).

With four outputs, each of which could receive between
zero and four photons of either polarization, the number of
detection outcomes is quite large. Nevertheless, the calculation
is straightforward and the results can be organized in the
following way. Just as for the simple BSM, nH and nV are odd
for |ψ (±)〉|ϒ1〉 and even for |φ(±)〉|ϒ1〉. The states |ψ (+)〉|ϒ1〉

FIG. 2. (Color online) Bell-state measurement with two ancillary
photons. The unknown state is in paths 1in and 2in, while the ancillary
photons enter via paths 3in and 4in.

and |ψ (−)〉|ϒ1〉 differ in the total number of photons in outputs
1 and 3: the quantity n[1,3] ≡ n[1] + n[3] is even for |ψ (+)〉|ϒ1〉
and odd for |ψ (−)〉|ϒ1〉. The measurement outcomes for
|φ(+)〉|ϒ1〉 and |φ(−)〉|ϒ1〉 are of two types: either all photons
have the same polarization or half are horizontally polarized
and half are vertically polarized. When all the polarizations
are identical, which occurs in 50% of the cases, there is no
information to distinguish the two input states. In the latter case
(when two horizontally and two vertically polarized photons
are detected), |φ(+)〉|ϒ1〉 and |φ(−)〉|ϒ1〉 can be distinguished
by the quantity n[1,2], which is even for |φ(+)〉|ϒ1〉 and odd for
|φ(−)〉|ϒ1〉.

Hence, the introduction of an ancillary pair of photons in
the state |ϒ1〉 = 1√

2
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4]in|0〉 has made it possible

to distinguish some of the |φ(±)〉 states. Whereas the two
were completely indistinguishable with the simple BSM, the
ancillary entangled photon pair yields unambiguous results for
half of the |φ(+)〉 outcomes and half of the |φ(−)〉 outcomes.
Moreover, the states |ψ (+)〉 and |ψ (−)〉, which could be
distinguished by the simple BSM, remain distinguishable in
the presence of the ancillary photons. Thus, the success rate
improves from 50% to 75% with the introduction of a single
pair of ancillary photons.

IV. BELL-STATE MEASUREMENT WITH ADDITIONAL
ANCILLARY PHOTONS

Given that the BSM success rate is improved with the
addition of one pair of ancillary photons, it is not surprising that
more ancillaries will bring even more improvement. A scheme
is presented in this section for the introduction of additional
entangled states with the result of an improved success rate
with each set of ancillaries. The additional entangled photons
are introduced in the same way as in the preceding section.
That is, each of the inputs is mixed at a 50:50 beam splitter
with one photon of an entangled state and the beam-splitter
outputs are sent to identical arrangements of beam splitters.
The total number of photons doubles with each stage, as does
the total number of outputs.

The arrangement of beam splitters is defined by the
recursive relation⎛
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where S(N) is a 2N × 2N matrix given by
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with S(0) = 1. As before, the â† will be replaced with
ĥ† or v̂†, as appropriate. The input state is taken to be
|ζ 〉|ϒ1〉 · · · |ϒN−1〉, the product of the unknown state |ζ 〉 and
N − 1 ancillary entangled states given by
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It is noted that the expressions in Eqs. (1) and (3) are consistent
with the notational scheme of Eqs. (4)–(6).

Just as with |ϒ1〉, it is still possible to distinguish |ψ (±)〉
from |φ(±)〉 with the introduction of additional ancilla. Recall
that, in the two schemes discussed in the preceding sections,
nH and nV are odd for |ψ (±)〉 and for |ψ (±)〉|ϒ1〉, but even
for |φ(±)〉 and for |φ(±)〉|ϒ1〉. Since each |ϒj 〉 contributes
an even number of photons, all with the same polarization,
this parity remains unchanged with additional ancillary states.
Hence, nH and nV are odd for |ψ (±)〉|ϒ1〉 · · · |ϒN 〉 and even
for |φ(±)〉|ϒ1〉 · · · |ϒN 〉.

The distinguishability of |ψ (+)〉 and |ψ (−)〉 is also preserved
with the introduction of the ancillary states. It is shown in the
Appendix that, if a 2N -photon state |�N 〉 leads to an even
(odd) number of photons in the set A(0,N) = {1,3, . . . ,2N − 1}
of output ports, then the state |�N 〉|ϒN 〉 leads to an even (odd)
number of photons in the set A(0,N+1) = {1,3, . . . ,2N+1 − 1}
of output ports. As an example, recall that n[1] is even for
|ψ (+)〉 (0 or 2) and odd for |ψ (−)〉. With the introduction of the
first pair of ancillary photons, it was found that n[1,3] is always
even for |ψ (+)〉|ϒ1〉 and odd for |ψ (−)〉|ϒ1〉. Making use of
the result in the Appendix, it follows that n[1,3,5,7] is always
even for |ψ (+)〉|ϒ1〉|ϒ2〉 and odd for |ψ (−)〉|ϒ1〉|ϒ2〉 and, more
generally, that nodd is always even for |ψ (+)〉|ϒ1〉 · · · |ϒN 〉 and
odd for |ψ (−)〉|ϒ1〉 · · · |ϒN 〉, where nodd is the total number of
photons in the odd-numbered outputs. Hence, the states |ψ (+)〉
and |ψ (−)〉 remain distinguishable upon the incorporation of
additional ancillary states.

Thus far, it has been shown that the ancillary photons do no
harm, in the sense that none of the functionality of the simple
BSM is lost. However, the real advantage of the ancillaries
is that the degeneracy rate for the states |φ(+)〉 and |φ(−)〉 is
reduced by half for each additional ancillary state. To show
how this happens, it is instructive to express the |φ(±)〉 input
state as follows:
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With the input state expressed as in Eq. (7), the terms are
organized by nH − nV . Each of the states |�(±)

j 〉 is made up
of two terms, each leading to equal numbers of horizontally
and vertically polarized photons. Each of the states |ϒj 〉 leads
to either 2j horizontally polarized photons or 2j vertically
polarized photons. By expanding the products in Eq. (7), it
is easy to see that the state |�(±)

N 〉 leads to nH − nV = 0,
the state |�(±)

N−1〉|ϒN−1〉 leads to nH − nV = ±2N−1, the state

|�(±)
N−1〉|ϒN−1〉|ϒN−2〉 leads to nH − nV = ±2N−1 ± 2N−2,

and so forth, up to the state |�(±)
2 〉|ϒ2〉|ϒ3〉 · · · |ϒN−1〉, which

yields nH − nV = ±2N−1 ± 2N−2 ± · · · ± 23 ± 22. For the
final term, |�(±)

N 〉, the photons are either all horizontally
polarized or all vertically polarized, yielding nH − nV = ±2N .

Hence, each term in the expansion in Eq. (7) can be
distinguished from all others by the quantity nH − nV . But
in order to distinguish |φ(+)〉 from |φ(−)〉, it must be possible
to distinguish each of the (+) terms from each of the (−)
terms. To see how this is done consider the state |�(±)

N 〉. Each
of the input raising operators can be expressed as a linear
combination of the 2N output operators according to Eq. (4).
With the exception of very small N , this very quickly leads to
an unwieldy number of terms. Note, however, that each term
in the expansion of (ĥ†
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where [p]S[q] is the matrix element in the pth row and qth
column of S(N) and where each kj is some integer in the set
{1,2, . . . ,2N }. Note that each row of S(N) shows up in this term,
since there is one photon in each input. In general, however, not
all columns are represented, owing to the fact that most terms
result in one or more outputs with no photons. The specific set
{k1, . . . ,k2N } for each term determines the number of photons
in each output.

For each term of the form in Eq. (10), there is a correspond-
ing term in the expansion of (v̂†
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Putting the two together yields

HV �̂{k1,...,k2N } ± V H �̂{k1,...,k2N } =
[ (

[1]S[k1] · · · [2N−1]S[k2N−1]
)(

[2N−1+1]S[k(2N−1+1)] · · · [2N ]S[k2N ]
)

± (
[1]S[k(2N−1+1)] · · · [2N−1]S[k2N ]

)(
[2N−1+1]S[k1] · · · [2N ]S[k2N−1]

)]

× (
ĥ
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where p and q are the number of horizontally and verti-
cally polarized photons, respectively, in the outputs {2N−1 +
1, . . . ,2N }. This result follows from the specific structure of
S(N); namely, that

[j+2N−1]S[kx] =
{

i[j ]S[kx] if kx ∈ {1, . . . ,2N−1}
−i[j ]S[kx] if kx ∈ {2N−1 + 1, . . . ,2N }.

(13)

It is clear from Eq. (12) that different values of p and q lead
to different results. Specifically, (−1)p and (−1)q have the
same sign when p and q are both even or both odd, and they
have opposite signs when only one is odd. This result holds
for all sets {k1, . . . ,k2N } and so it follows that n[1,...,2N−1] is
always even for |�(+)

N 〉 and always odd for |�(−)
N 〉. Hence,

|�(+)
N 〉 can be distinguished from |�(−)

N 〉 on the 2N -port system
by the quantity n[1,...,2N−1].

This result, along with the result from the Appendix,
can be used to show that every (+) state in Eq. (7) can
be distinguished from every (−) state (with the excep-
tion of |�(±)

N 〉). Note first that each state has the form
|�(±)

j 〉|ϒj 〉 · · · |ϒN−1〉. Given the result of Eq. (12) and the

subsequent discussion, it must be the case that |�(+)
j 〉 can

be distinguished from |�(−)
j 〉 on the 2j -port system by the

quantity n[1,...,2j−1]. Using the result from the Appendix, it
must also be the case that |�(+)

j 〉|ϒj 〉 can be distinguished from

|�(−)
j 〉|ϒj 〉 on the 2j+1-port system by the quantity n[1,...,2j−1] +

n[2×2j−1+1,...,3×2j−1] and, likewise, that |�(+)
j 〉|ϒj 〉|ϒj+1〉 can

be distinguished from |�(−)
j 〉|ϒj 〉|ϒj 〉 on the 2j+2-port

system by the quantity n[1,...,2j−1] + n[2×2j−1+1,...,3×2j−1] +
n[4×2j−1+1,...,5×2j−1] + n[6×2j−1+1,...,7×2j−1]. Continuing in this
manner, it follows that, for every j , |�(+)

j 〉|ϒj 〉 · · · |ϒN−1〉
leads to a different outcome than |�(−)

j 〉|ϒj 〉 · · · |ϒN−1〉. And
since each j leads to a different set of values for nH − nV , the
only term in Eq. (7) that leads to degenerate outcomes is |�(±)

N 〉.
The general results for |ζ 〉|ϒ1〉 · · · |ϒN−1〉 are summarized

in Table I. If nH and nV are odd, then |ζ 〉 must be either
|ψ (+)〉 or |ψ (−)〉. These two possibilities are distinguished by
the quantity nodd, which is even for |ψ (+)〉 and odd for |ψ (−)〉.
If nH and nV are even, then |ζ 〉 must be either |φ(+)〉 or |φ(−)〉.
Each value of nH − nV corresponds to exactly one (±) term in
the expansion in Eq. (7). For each of these terms, there is a set
of detectors to distinguish (+) from (−). The total number of
photons at these detectors is even for |φ(+)〉 and odd for |φ(−)〉.

The lone term in Eq. (7) for which this scheme does not
provide a definitive result is the final term, |�(±)

N 〉. As noted
previously, nH − nV = ±2N for this term, thus making it
distinct from all others. But there is no measure that will
distinguish the (+) term from the (−) term. The probability
of obtaining this result (all photons horizontally polarized or
all photons vertically polarized) is 1/2N−1 when the input
is either |φ(+)〉 or |φ(−)〉. Thus, the overall probability of
obtaining an inconclusive result when the input is an equal
mixture of all four Bell states is 1/2N , which means that the
BSM success rate approaches unity as 2N → ∞. Although
this method makes an arbitrarily complete BSM possible, the
number of entangled photons required makes it impractical to
reach even 95% (30 entangled photons would yield 96.875%).
However, moving from 50% to 75% requires only a single

TABLE I. General results for |ζ 〉|ϒ1〉 · · · |ϒN−1〉.

Input State nH ,nV nH − nV +|− Discriminator

|ψ (+)〉|ϒ1〉 · · · |ϒN−1〉 odd nodd is even

|ψ (−)〉|ϒ1〉 · · · |ϒN−1〉 odd nodd is odd

|φ(+)〉|ϒ1〉 · · · |ϒN−1〉 =
|�(+)

N 〉 even 0 n[1,...,2N−1] is even

+|�(+)
N−1〉|ϒN−1〉

... ±2N−1 n[1,...,2N−2] + n[2×2N−2+1,...,3×2N−2] is even

+ · · ·
...

...
...

+|�(+)
2 〉|ϒ2〉|ϒ3〉 · · · |ϒN−1〉

... ±2N−1 ± 2N−2 ± · · · ± 23 ± 22 n[1,2] + n[5,6] + n[9,10] + · · · is even

+|�(+)
N 〉

... ±2N (+) and (−) are degenerate

|φ(−)〉|ϒ1〉 · · · |ϒN−1〉 =
|�(+)

N 〉 even 0 n[1,...,2N−1] is odd

+|�(−)
N−1〉|ϒN−1〉

... ±2N−1 n[1,...,2N−2] + n[2×2N−2+1,...,3×2N−2] is odd

+ · · ·
...

...
...

+|�(−)
2 〉|ϒ2〉|ϒ3〉 · · · |ϒN−1〉

... ±2N−1 ± 2N−2 ± · · · ± 23 ± 22 n[1,2] + n[5,6] + n[9,10] + · · · is odd

+|�(−)
N 〉

... ±2N (+) and (−) are degenerate
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pair of ancillary photons—certainly possible with today’s
technology. Moreover, the scheme presented here constitutes
only one approach, and it is reasonable to expect that more
efficient schemes may be discovered.

Note added in proof. Recently, similar results appeared in
Ref. [9]. As in the present work, it is shown there that the
Bell-state measurement can be improved with additional linear
resources. Here, entangled photons are added, and in [9], it is
additional interferometers. Besides the difference in resources,
there is a subtle difference in the way that the measurement
results can be classified. For the method described in the
present work, the additional resources (entangled photons)
yield five distinct types of measurement results, four of which
unambiguously identify the four Bell states. In contrast, the
additional resources (interferometers) described in [9] yield
four distinct types of results, only two of which unambiguously
identify Bell states. The other two correspond to |φ(+)〉 and
|φ(−)〉, respectively, but both are degenerate with |ψ (+)〉.
While the degree of uncertainty is reduced with additional
interferometers, unambiguous identification of |φ(+)〉 and
|φ(−)〉 is possible only in the limit of infinite resources.
Nevertheless, the two approaches share a number of important
similarities, and it would be interesting to consider some type
of hybrid approach to further reduce the resource requirements.
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APPENDIX

At several points in the preceding text, reference is made
to a theorem which asserts that a state’s parity on a set of
output ports is preserved with the addition of ancillary states
as long as the set is enlarged to include a subset of the new
output ports. A formal statement of that theorem, along with its
proof, is given here. Consider a BSM system comprising 2M

input ports and 2M output ports, as described in Sec. IV. It will
be helpful in the following to group the outputs in blocks of
size 2p, where 0 � p � M − 1. Specifically, the outputs can
be grouped in blocks described by the sets A

(p,M)
m = {m2p +

1, . . . ,(m + 1)2p}, where 0 � m � 2M−p − 1. The parity of a
state is defined to be even (odd) on the set A of outputs if it
has the property that it always results in an even (odd) number
of photons in the outputs A.

Theorem. If the 2M -photon input state |�M〉
has even (odd) parity on the set of output ports
A(p,M) = A

(p,M)
0 ∪ A

(p,M)
2 ∪ · · · ∪ A

(p,M)
2M−p in the 2M -photon

BSM apparatus, then the input state |�M〉|ϒM〉 will have
even (odd) parity on the set of output ports A(p,M+1) =
A

(p,M+1)
0 ∪ A

(p,M+1)
2 ∪ · · · ∪ A

(p,M+1)
2M+1−p in the 2M+1-photon

BSM apparatus. That is, the parity is preserved as long as
the output-port set is extended to include the additional ports
using the same pattern (every other block) as the original set.

Proof. For the 2M -photon BSM apparatus, each input
raising operator is related to the output operators according
to Eq. (4), (i.e., [â†

j ]in → ∑2M

k=1 [j ]S[k][â
†
k]out). In the scheme

outlined in Sec. IV, the 2M -photon state becomes the input
for the first 2M ports of the 2M+1-photon BSM apparatus. The
relationship between the first 2M input operators and the output
operators is unchanged in the larger system, except there are
now twice as many outputs:

[â†
j ]in →

2M+1∑
k=1

[j ]S[k][â
†
k]out =

2M∑
k=1

[j ]S[k][â
†
k + iâ

†
k+2M ]out.

(A1)

This last result, which arises from the fact that [j ]S[k+2M ] =
i[j ]S[k] for j � 2M , shows that each of these input operators
leads to the same type of output in the 2M+1-photon system
as in the 2M -photon system, except that [â†

k]out → [â†
k +

iâ
†
k+2M ]out. Note that the expression in Eq. (A1) is consistent

with the mapping A(p,M) → A(p,M+1), and so the parity is
preserved for |�M〉—. That is, if |�M〉 results in an even (odd)
number of photons in A(p,M) in the BSM system with 2M inputs
and outputs, then |�M〉— results in an even (odd) number of
photons in A(p,M+1) in the BSM system with 2M+1 inputs and
outputs. All that remains to be shown is that this parity remains
unchanged with the addition of the ancillary state |ϒM〉.

The state |ϒM〉 is a superposition of two terms, each of
which is a product of 2M raising operators acting on the
vacuum, with one operator for each of the inputs in the set
{2M + 1, . . . ,2M+1}. Each of these input operators is related
to the output operators according to Eq. (4); that is,

[â†
j ]in →

2M+1∑
k=1

[j ]S[k][â
†
k]out =

2M+1∑
k∈A(p,M+1)

[j ]S[k][â
†
k]out

+
2M+1∑

k /∈A(p,M+1)

[j ]S[k][â
†
k]out. (A2)

In this expression, the terms have simply been grouped
according to whether or not the photon ends up in an output in
the set A(p,M+1). The product of two adjacent input operators is

[â†
j â

†
j+1]in

→
⎡
⎣ 2M+1∑

k∈A(p,M+1)

[j ]S[k]â
†
k +

2M+1∑
k /∈A(p,M+1)

[j ]S[k]â
†
k

⎤
⎦

×
⎡
⎣ 2M+1∑

k′∈A(p,M+1)

[j+1]S[k′]â
†
k′ +

2M+1∑
k′ /∈A(p,M+1)

[j+1]S[k′]â
†
k′

⎤
⎦

out

= i

⎡
⎣ 2M+1∑

k∈A(p,M+1)

[j ]S[k]â
†
k +

2M+1∑
k /∈A(p,M+1)

[j ]S[k]â
†
k

⎤
⎦

×
⎡
⎣ 2M+1∑

k′∈A(p,M+1)

[j ]S[k′]â
†
k′ −

2M+1∑
k′ /∈A(p,M+1)

[j ]S[k′]â
†
k′

⎤
⎦

out

, (A3)

where, without loss of generality, j has been taken to be odd.
The index shift for the matrix elements in the second equality
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arises from the structure of S given in Eq. (5); namely, that

[j+1]S[k] =
{

i[j ]S[k] if k ∈ A(p,M+1)

−i[j ]S[k] if k /∈ A(p,M+1).
(A4)

Noting that this expression has the form i(x + y)(x − y) =
ix2 − iy2, Eq. (A3) can be rewritten as

[â†
j â

†
j+1]in →i

⎡
⎣ 2M+1∑

k∈A(p,M+1)

[j ]S[k]â
†
k

⎤
⎦

2

− i

⎡
⎣ 2M+1∑

k /∈A(p,M+1)

[j ]S[k]â
†
k

⎤
⎦

2

.

(A5)

When written in this form, it is clear that each pair of adjacent
inputs leads to two possibilities: both photons end up in
A(p,M+1) or neither photon ends up in A(p,M+1). That is, each
pair of |ϒM〉 input operators contributes only an even number
of photons to the outputs in A(p,M+1). It follows that the state
|ϒM〉 leads exclusively to an even number of photons in the
outputs in A(p,M+1).

The following is a summary of these results: (i) The parity
for |�M〉 is the same in the 2M+1-port BSM system as it is in
the 2M -port BSM system; (ii) The ancillary state |ϒM〉 does
nothing to change that parity. �
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