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We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a
device performing an unknown von Neumann measurement with a single use of the device. When the unknown
device has to be used before the bipartite state to be measured is available we talk about 1 → 2 learning of the
measurement, otherwise the task is called 1 → 2 cloning of a measurement. We perform the optimization for
both learning and cloning for arbitrary dimension d of the Hilbert space. For 1 → 2 cloning we also propose a
simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1 → 2 learning just slightly
outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and
depending on the result suitably prepares the duplicate.
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I. INTRODUCTION

Arbitrary processing of classical information can be de-
scribed by strings of bits, and can be performed by a fixed
device, for example, a processor of any personal computer. As a
consequence, we do not need to build new devices for different
computations, but we just need to copy bit strings carrying the
appropriate program. The situation dramatically changes when
the systems carrying the information are governed by quantum
mechanics. Unknown states of quantum systems cannot be
copied perfectly [1] and the no-programming theorem [2]
prevents existence of universal quantum processors. This
means that quantum programs cannot be copied and that
by using registers of qubits (two level quantum systems)
one cannot deterministically realize all quantum information
processing functions with a fixed processor. So in contrast to
classical devices, quantum ones cannot be replicated by just
copying the program for them. Copying of quantum states was
extensively investigated [3–7]. On the other hand, copying of
quantum devices did not receive so much attention even though
it is a fundamental and equally important quantum information
processing task. Similarly to states, quantum transformations
are often used in quantum key distribution schemes [8–11] to
encode bits, so analysis of possible attacks by cloning them are
needed. Cloning of transformations was analyzed only for the
case of unitary transformations [11]. In the present paper we
investigate cloning of measurement devices, which can be seen
as a cloning of certain measure-and-prepare transformations.
More precisely, when a measurement is an intermediate step of
a quantum procedure, its outcome can influence the following
operations. This feed forward of the classical outcome can be
conveniently described using a quantum system into which the
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outcome is encoded into perfectly distinguishable orthogonal
states. In this sense a quantum measurement with only classical
outcomes [i.e., a positive operator-valued measure (POVM)]
can be seen as a channel, which first measures the input
system and based on the outcome prepares a state from a
fixed orthogonal set.

The term cloning of observables has been used in Ref. [12]
referring to state cloning machines preserving the statistics of
a class of observables. In the present paper the objective is to
actually mimic two uses of an unknown measurement device,
while using it only once.

Let us denote by A and B the systems on which the replicas
of the unknown measurement E should act. We denote by C

the system on which the measurement E acts and by D the
system encoding its outcome. The most general experimental
setup for replication of an unknown measurement E can be
seen as a sequence of three steps: (i) preprocessing of systems
A,B by a quantum channel, (ii) action of the measurement E,
and (iii) postprocessing phase. In general the preprocessing
can produce an auxiliary quantum system that is not affected
by the measurement E. The postprocessing phase receives
both the outcome of E and the auxiliary system and finally
produces the outcomes of the replicated measurements. The
most general representation of replication strategy is depicted
below:

A C
E

D

B
(1)

(the rectangular box represents a quantum channel, the round
shaped box on the right represents a measurement, and the
double wire carries the classical outcome of the measurement
E). In this case we talk about 1 → 2 cloning of a measurement
device.

On the other hand, one might ask how well the task can be
accomplished when we have to use the measurement before we
have access to the state of systems A,B. In this case the most
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general strategy starts with a preparation of a bipartite state
of system C and some ancillary system. After the unknown
measurement E is applied on C the replication is achieved
by a fixed measurement on the ancillary system and systems
A,B,D. This scenario is depicted below and is called 1 → 2
learning of a measurement device:

A

B

C
E

D .

(2)

From comparison of Eqs. (1) and (2) one can see that learning
is a special case of cloning. Indeed, if the preprocessing of a
cloning strategy is restricted to store the input states of A,B

into the ancillary system and to prepare a fixed state of system
C then the two strategies coincide [see Eq. (3)]:

A C
E

D

B

.

(3)

That being so, it is clear that the performance of the
optimal learning cannot be better than the performance of the
optimal cloning.

In the present paper we will analyze the above two
scenarios in which we assume E to be an arbitrary unknown
von Neumann measurement. However, one can in principle
think of more general versions of the problem, where for
example M replicas have to be produced out of N uses of
a measurement device. In particular, N → 1 learning was
analyzed in Ref. [13].

The paper is organized as follows. In Sec. II we expose
the formulation of the optimal learning and cloning in
mathematical terms. In Sec III we review the framework
of quantum combs that is used as main tool throughout the
paper. In Sec. IV the problem is simplified exploiting all the
symmetries that can be useful. Sections V and VI are devoted
to derivation of optimal cloning and learning, respectively. The
paper is closed by concluding remarks in Sec. VII.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Let us now formulate the problem mathematically. First
of all, we should be able to evaluate the performance of
the chosen replication strategy R. Hence we need a quantity
that expresses the closeness of a replicated measurement to a
desired bipartite von Neumann measurement. In the following
lemma we introduce a function F (P, Q) that quantifies the
closeness of a POVM Q to a von Neumann POVM P with the
same number of outcomes. Throughout the paper we shall use
boldface notation for objects that are composed from several
elements. For example, P ≡ {Pi}di=1 denotes the POVM with
elements Pi and I ≡ {I } is the single outcome POVM on the
Hilbert space H of dimension d.

Lemma 1 (Fidelity criterion for POVM). Let P ⊆ L(H )
and Q ⊆ L(H ) be two POVMs with d possible outcomes,
such that one of them is a von Neumann measurement.
Consider now the quantity

F (P, Q) := 1

d

d∑
i=1

Tr[PiQi]. (4)

Then F = 1 ⇔ Pi = Qi ∀i and F � 1.
Proof. Without loss of generality we can assume that P

is a von Neumann measurement and that we have Pi = |i〉〈i|
where |i〉 is an orthonormal basis of H . Then for Qi = Pi =
|i〉〈i| we have

F = 1

d

d∑
i=1

Tr[PiQi] = 1

d

d∑
i=1

Tr[|i〉〈i|] = 1. (5)

On the other hand, if F = 1 we have

d =
d∑

i=1

Tr[PiQi] =
d∑

i=1

〈i|Qi |i〉=
d∑

i,j=1

〈i|Qj |i〉−
∑
i 
=j

〈i|Qj |i〉

= Tr

⎡
⎣ d∑

j=1

Qj

⎤
⎦−

∑
i 
=j

〈i|Qj |i〉 = d −
∑
i 
=j

〈i|Qj |i〉, (6)

which implies
∑

i 
=j 〈i|Qj |i〉 = 0, because
∑d

j=1 Qj = I .
Since Qj � 0, we must have 〈i|Qj |i〉 = 0 for all i 
=
j , and consequently Qj = αj |j 〉〈j | with αj � 0. Finally
the condition

∑d
j=1 αj |j 〉〈j | =∑d

j=1 Qj = I implies αj = 1
and thus Qj = Pj . Proving that F � 1 is easy. Since Qi is an
element of a POVM we have 〈i|Qi |i〉 � 1 and consequently
F = 1

d

∑d
i=1〈i|Qi |i〉 � 1. �

Since we assume that the unknown measurement E to be
replicated is a von Neumann POVM, we can write it in the
following form:

Ei = |φi〉〈φi |, (7)

where {|φi〉}di=1 is an orthonormal basis of the Hilbert space
H. All the POVMs of this kind can be generated by rotating
a reference POVM {|i〉〈i|}di=1 by elements of the group of
unitary transformations SU(d) as follows:

E
(U )
i = U |i〉〈i|U †, U ∈ SU(d). (8)

Let us denote the bipartite POVM replicated by the strategy
R as G(U ) ≡ G(R,E(U )). Our task is to find such replicating
strategy R that the elements G

(U )
ij are as close as possible

to E
(U )
i ⊗ E

(U )
j . Assuming that the unknown POVM E(U ) is

randomly drawn according to the Haar distribution, we choose
the quantity

F [R] :=
∫

dU F (G(U ),E(U ) ⊗ E(U ))

= 1

d2

d∑
i,j=1

∫
dU Tr

[
G

(U )
ij

(
E

(U )
i ⊗ E

(U )
j

)]
(9)

as a figure of merit for the replicating strategy. Hence, after
choosing one of the two considered scenarios (1 → 2 cloning
or learning) the goal is to find a strategy R, that maximizes
F [R].
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III. PRELIMINARY CONCEPTS

In this section we introduce the necessary notation and
review the general theory of quantum networks, as developed
in [14,15]. The main tool which is necessary in order to develop
this framework is the Choi-Jamiołkowsky isomorphism. It
is an isomorphism connecting any quantum operation (i.e.,
trace nonincreasing completely positive map) M : B(Hin) →
B(Hout) to a positive operator M ∈ B(Hout ⊗ Hin) defined as
follows:

M := M ⊗ I(|ω〉〈ω|), (10)

where I is the identical map on B(Hin), |ω〉 :=∑n |n〉|n〉 ∈
Hin ⊗ Hin and we fixed an orthonormal basis {|n〉} on Hin.
The action of M on a given input state ρ can be expressed in
terms of M as

M(ρ) = Trin[M(I ⊗ ρT )], (11)

where Trin denotes the partial trace over Hin and the superscript
T marks the transposition with respect to the basis {|n〉}.

If M is a quantum channel (i.e., a completely positive trace
preserving map), its Choi-Jamiołkowsky operator M satisfies

Trout[M] = Iin. (12)

which expresses the trace preserving condition. On the other
hand, when M is trace nonincreasing M must obey the
inequality

M � Z (13)

for some Z that satisfies (12).
A collection of quantum operations M ≡ {Mi} such that

M� :=∑i Mi is a quantum channel is called quantum
instrument. Physically it represents a quantum device which
produces the classical outcome i and the quantum outcome
Mi(ρ)/Tr[Mi(ρ)] with probability Tr[Mi(ρ)] when the input
state is ρ. The Choi-Jamiołkowsky isomorphism allows us to
represent a quantum instrument as a set M ≡ {Mi} of positive
operators such that ∑

i

Mi = M�, (14)

where M� is the Choi-Jamiołkowsky operator of a channel.
If we have several quantum devices we can feed the output

of some of them into the input of some others, thus building
a quantum network. Pairs of unconnected inputs and outputs
form open slots of the network into which quantum devices
can be later inserted. A network with (N − 1) open slots has
N input and N output systems, that we label by even numbers
from 0 to 2N − 2 and by odd numbers from 1 to 2N − 1,
respectively. Each network can be visualized as in Eq. (15),

0

C1

1 2

C2

3 2N − 2

CN

2N − 1

· · ·
(15)

where the wires represent the connections of output systems
to next inputs. This flow of quantum systems induces a causal
order among the wires, according to which the input system
m cannot influence the output system n if m > n.

A generalized version of the Choi-Jamiolkowsky isomor-
phism allows to represent a quantum network R in terms
of a positive operator R, called quantum comb. R acts on
the Hilbert space Hout ⊗ Hin where Hout :=⊗N−1

j=0 H2j+1,

Hin :=⊗N−1
j=0 H2j , and Hn being the Hilbert space of the nth

system. For a deterministic quantum network (i.e., a network of
quantum channels) the causal structure implies the following
normalization condition:

Tr2k−1[R(k)] = I2k−2 ⊗ R(k−1), k = 1, . . . ,N, (16)

where R(N) = R, R(0) = 1, R(k) ∈ L(
⊗2k−1

n=0 Hn), Tr2k−1 de-
notes the partial trace on H2k−1, and I2k−2 is an identity
operator on H2k−2. Equation (16) can be interpreted as the
quantum network analog of Eq. (12).

If we consider probabilistic quantum networks (i.e., net-
works of quantum operations), their Choi-Jamiołkowsky
operators satisfy the following generalized version of Eq. (13):

0 � R � T , (17)

where T is the Choi-Jamiołkowsky operator of a deterministic
network.

We are now ready to introduce the quantum network
generalization of the concept of quantum instrument. We call
generalized instrument a set of probabilistic quantum networks
R := {Ri} such that the set R := {Ri} of the corresponding
Choi operators satisfies∑

i

Ri = R�, (18)

where R� is the Choi operator of a deterministic network.
We can say that a generalized instrument is the mathematical
representation of a network of quantum devices that produces
both the classical outcome i and the quantum outcomeRi(ρ) ∈
L(Hout) with probability Tr[Ri(ρ)] when the state ρ ∈ L(Hin)
is fed into the free inputs of the network. A typical example of
a generalized instrument is a quantum network in which one
of the devices is a quantum instrument:

0

C

1 2 3 4

E

5

A D B
(19)

In Eq. (19) we have two channels C and E connected through
wires A and B to the quantum instrument D ≡ {Di}.

Two quantum networks R1 and R2 can be connected by
linking some outputs of R1 (R2) with inputs of R2 (R1),
thus forming a new network R3 := R1 ∗ R2. We adopt the
convention that the wires to be connected are identified
by the same label. The connection of the two quantum
networks is mathematically represented by the link product
of the corresponding Choi operators R1 and R2, which is
defined as

R1 ∗ R2 = TrK
[
R

θK

1 R2
]
, (20)

θK denoting partial transposition over the Hilbert space K
of the connected systems (recall that we identify the Hilbert
spaces of connected systems with the same label).
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As an example the generalized instrument R from Eq. (19)
is described by operators Ri = C ∗ Di ∗ E.

As we pointed out in the Introduction, the classical outcome
of the inserted measurement can influence the next operation
of the network. In order to take the feed forward of the
classical outcome into account it is convenient to describe the
measurement device to be replicated as a measure and prepare
quantum channel

E (U )(ρ) =
d∑

i=1

Tr
[
E

(U )
i ρ

]|i〉〈i|, (21)

which measures the POVM E(U ) on the input state and in
the case of outcome i prepares the state |i〉 from a fixed
orthonormal basis on the output of the channel. Within this
framework the classical outcome is encoded into a quantum
system by preparing it into a state from a set of orthogonal
states. The Choi-Jamiołkowski representation of the channel
E (U ) is the following:

E(U ) =
d∑

i=1

|i〉〈i| ⊗ E
(U )
i

T =
d∑

i=1

|i〉〈i| ⊗ U ∗|i〉〈i|UT , (22)

where XT denotes the transpose of X in the basis {|i〉}di=1.
Since we want the replicating network R to behave as two

copies of the POVM E(U ) upon insertion of a single use of
E (U ), we have that R is actually a generalized instrument
R ≡ {Rij }di,j=1 ∈ L(HA ⊗ HB ⊗ HC ⊗ HD)} where i,j is
the couple of outcomes of the two replicated measurements
and the labeling of the Hilbert spaces follows from Eqs. (1)
and (2).

Specializing Eq. (18) using Eq. (16), the normalization
of the generalized instrument R has to obey the following
equations:

1 → 2 cloning∑
i,j

Rij = R� = ID ⊗ SABC TrC[S] = IAB, (23)

1 → 2 learning∑
i,j

Rij = R� = IABD ⊗ ρC Tr[ρ] = 1. (24)

The replicated POVM is then equal to

G
(U )
ij = [Rij ∗ E

(U )
CD

]T
(25)

=
[∑

k

〈k|C〈k|D(U † ⊗ I )Rij (U ⊗ I )|k〉C |k〉D
]T

.

IV. SYMMETRIES OF THE REPLICATING NETWORK

In this section we utilize the symmetries of the figure
of merit (9) to simplify the optimization problem. These
considerations apply both to cloning and learning of a
measurement device. The first simplification relies on the
fact that some wires of the network carry only classical
information, representing the outcome of the measurement.
The classical information encoded in the choice of a state from
basis {|i〉} can be read without disturbance by the measure
and prepare channel M with Choi-Jamiolkowski operator

M ≡ E(I ), where E(I ) is defined in Eq. (22) by choosing
U = I . Thus, inserting channel M between the use of a
measurement device E(U ) and the network R will not change
the operation of the scheme, i.e.,

E M
=

E

(26)

As a consequence we have the following lemma.
Lemma 2 (Restriction to diagonal network). The optimal

generalized instrument R,
∑

i,j Rij = R� maximizing Eq. (9)
can be chosen to satisfy:

Rij =
∑

k

R′
ij,k ⊗ |k〉〈k|D, (27)

where 0 � R′
ij,k ∈ L(HA ⊗ HB ⊗ HC).

Proof. Let Sij be the Choi representation of a generalized
instrument corresponding to a quantum network S. Let us
define network R as

Rij :=
∑

k

〈k|Sij |k〉 ⊗ |k〉〈k|, (28)

which can be seen as Rij = Sij ∗ M = Sij ∗ E(I ) [see Eq. (22)]
with the link performed on system D carrying the classical
information. We can easily prove that R is a generalized
instrument. Indeed we have∑

i,j

Rij = ∑
i,j

Sij ∗ E(I ) = S� ∗ E(I ), (29)

where the link is performed only on the space HD . The
operator in Eq. (29) is the Choi-Jamiołkowski operator of a
deterministic quantum network satisfying the same normal-
ization conditions as S�. Since M ∗ E(U ) = E(U ) we show
that S and R produce the same replicated POVM G

(U )
ij when

linked with the single use of E(U ), as follows:

(
G

(U )
ij

)T = Sij ∗ E
(U )
CD = Sij ∗ M ∗ E

(U )
CD = Rij ∗ E

(U )
CD

=
∑

k

(〈k|D〈k|CU †)Sij (|k〉DU |k〉C), (30)

where the explicit form of the star product will be used later.
The thesis then holds with R′

ij,k := 〈k|Sij |k〉. �
The restriction to diagonal networks allows us to simplify

the figure of merit [Eq. (9)] as follows:

F [R] :=
∫

dUF (G(U ),E(U ) ⊗ E(U ))

= 1

d2

∫
dU
∑
i,j,k

Tr
[
R′

ij,k

×U ∗⊗2 ⊗ U |ijk〉〈ijk|UT ⊗2 ⊗ U †], (31)

where |ijk〉 ≡ |i〉A|j 〉B |k〉C and we applied Eq. (27).
Since the performance of the scheme is evaluated as an

average over all possible “orientations” of the replicated
measurement device, there exists a symmetrization procedure
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that can make any strategy covariant [i.e., having property
from Eq (32)], without affecting the figure of merit:

U E

U
=

U E

(32)

This translates into mathematical terms as follows.
Lemma 3 (Restriction to covariant networks). The operators

R′
ij,k that maximize Eq. (31) can be chosen to satisfy the

commutation relation

[R′
ij,k,U

∗
A ⊗ U ∗

B ⊗ UC] = 0. (33)

Proof. Suppose that the generalized instrument correspond-
ing to S ′

ij,k is optimal. Then one can easily check that also the
instrument R′

ij,k defined as follows:

R′
ij,k :=

∫
dU (U ∗⊗2 ⊗ U )S ′

ij,k(UT ⊗2 ⊗ U †) (34)

is suitably normalized and satisfies [R′
ij,k,U

∗ ⊗ U ∗ ⊗ U ] = 0.
Generalized instrument R corresponds to a strategy where
random unitary U †, U †, U is applied before and after the
original strategy S to systems A, B, C, respectively. From
the integration in Eq. (31) it is obvious that the value of F for
the above choice of R′

ij,k is the same as for S ′
ij,k . �

The commutation relation (33) allows us to rewrite the
figure of merit as

F [R] = 1

d2

∑
i,j,k

〈ijk|R′
ij,k|ijk〉ABC. (35)

Another symmetry we can utilize is related to a simultaneous
relabeling of the outcomes of the inserted and produced
measurements. We shall denote by σ the element of Sd , the
group of permutations of d elements, and by Tσ the linear
operator that permutes the elements of basis {|i〉} according to
this permutation, in formula Tσ |i〉 = |σ (i)〉. Let us note that
the complex conjugation and transposition are defined with
respect to the basis {|i〉}, so Tσ = T ∗

σ .
Lemma 4 (Relabeling symmetry). Without loss of generality

we can assume that the operators R′
ij,k that maximize Eq. (31)

satisfy the relation

R′
ij,k = R′

σ (ij,k). (36)

where we shortened σ (ij,k) := (σ (i) σ (j ),σ (k)).
Proof. Suppose that network S characterized by operators

Sij is optimal and satisfies both conditions (27) and (33). Let
us then define

R′
ij,k := 1

d!

∑
σ∈Sd

(
T †

σ

⊗2 ⊗ Tσ
†)S ′

σ (ij,k)

(
Tσ

⊗2 ⊗ Tσ

)

= 1

d!

∑
σ∈Sd

S ′
σ (ij,k), (37)

where the last identity in (37) follows from the commutation
relation (33) with U = Tσ . The operators R′

ij,k correspond to a
valid quantum network R, because R is a convex combination
of networks Zσ defined by Eq. (27) with Z′σ

ij,k = S ′
σ (ij,k).

Quantum network R operationally corresponds to relabeling

of the outcomes of the inserted and replicated measurements
by permutation σ . The figure of merit for R is

F [R]= 1

d2

∑
i,j,k

〈ijk|R′
ij,k|ijk〉

= 1

d2d!

∑
σ∈Sd

∑
i,j,k

〈σ (ijk)|S ′
σ (ij,k)|σ (ijk)〉=F [S]. (38)

It is easy to prove that R′
ij,k satisfies Eq. (36). �

Remark 1. The properties (27), (33), and (36) induce the
following structure of the replicated POVMs:

G
(U )
σ (ij ) = (UTσ )⊗2G

(I )
ij (T †

σ U †)
⊗2

. (39)

The advantage of using the relabeling symmetry is the
reduction of the number of independent parameters of the
quantum generalized instrument. Let us define the equivalence
relation between strings ijk and i ′j ′k′ as

ijk ∼ i ′j ′k′ ⇔ ijk = σ (i ′j ′k′) (40)

for some permutation σ . Thanks to Eq. (36) there are only
as many independent R′

ij,k as there are equivalence classes
among sequences (ij,k). There are four or five equivalence
classes depending on the dimension d being two or greater
than two, respectively. We denote the set of these equivalence
classes by L := {xxx,xxy,xyx,xyy,xyz}.

Based on lemma (4) we can write the optimal generalized
instrument as follows:

Rab,c := R′
ij,k = R′

σ (ij,k), (41)

where (ab,c) is a string of indices that represents one
equivalence class from L.

The figure of merit can finally be written as follows:

F [R] = 1

d2

∑
(ab,c)∈L

n(ab,c)〈Rab,c〉, (42)

where n(ab,c) is the cardinality of the equivalence class
denoted by (ab,c), and 〈Rab,c〉 = 〈ijk|R′

ij,k|ijk〉 for any
string ijk in the equivalence class denoted by (ab,c). As a
consequence of Schur’s lemmas, Eq. (33) implies the following
structure for the operators Rab,c:

Rab,c =
⊕

ν

P ν ⊗ rν
ab,c, (43)

where ν labels the irreducible representations in the Clebsch-
Gordan series of U ∗

A ⊗ U ∗
B ⊗ UC , and P ν acts as the identity

on the invariant subspaces of the representations ν, while rν
ab,c

acts on the multiplicity space of the same representation.
Depending on the dimension d = 2 or d > 2 we have two

different decompositions. In the former case, we have

Rab,c = P α ⊗ rα
ab,c + P βr

β

ab,c, (44)

where rα
ab,c is a positive 2 × 2 matrix, while r

β

ab,c is a non-
negative real number. The projections P ξ on the invariant
spaces of the representation U ∗ ⊗ U ∗ ⊗ U are the following:

P α ⊗ |i〉〈j | =
d∑

m=1

∣∣�i
m

〉〈
�j

m

∣∣, i,j ∈ {+,−},
(45)

P β = I ⊗ P + − P α ⊗ |+〉〈+|,
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where |�±
m 〉 = (|ω〉|m〉 ± |m〉|ω〉)/[2(d ± 1)]

1
2 , and P +, P −,

are the projections onto the symmetric and antisymmetric
subspace, respectively. When d > 2, on the other hand, we
have

Rab,c = P α ⊗ rα
ab,c + P βr

β

ab,c + P γ r
γ

ab,c, (46)

where rα
ab,c is a positive 2 × 2 matrix, while r

β

ab,c and r
γ

ab,c are
non-negative real numbers. The projections P ξ on the invariant
subspaces are the following:

P α ⊗ |a〉〈b| =
d∑

m=1

∣∣�a
m

〉〈
�b

m

∣∣, a,b ∈ {+,−〉,

P β = I ⊗ P + − P α ⊗ |+〉〈+|, (47)

P γ = I ⊗ P − − P α ⊗ |−〉〈−|.
The last symmetry we are going to introduce relies on the

possibility of exchanging the inputs (Hilbert spaces HA and
HB) of the two replicated measurements with simultaneously
exchanging their measurement outcomes, while the figure of
merit is left unchanged.

Lemma 5. The operators Rab,c in Eq. (43) can be chosen to
satisfy

Rab,c = SRba,cS ∀(ab,c) ∈ L, (48)

where S is the swap operator S|k〉A|j 〉B = |j 〉A|k〉B .
Proof. The proof can be done by the following averaging

argument. Let us define Rij,k := 1
2 (R′

ij,k + SR′
ji,kS). It is easy

to prove that {Rij,k〉 satisfies the corresponding normalization
[Eq. (23) for cloning or Eq. (24) for learning] and that it gives
the same value of F as R′

ij,k . �
Equation (48) together with the decomposition (46) gives

for ∀(ab,c) ∈ L,

σzr
α
ab,cσz = rα

ba,c, r
β

ab,c = r
β

ba,c, r
γ

ab,c = r
γ

ba,c, (49)

where σz = ( 1 0
0 −1 ).

As a consequence of Eq. (43) , the figure of merit in
Eq. (42) can be written as

F = 1

d2

∑
(ab,c)∈L

n(ab,c) Tr

[
|ijk〉〈ijk|

∑
ν

P ν ⊗ rν
ab,c

]

=
∑

ν

1

d

∑
(ab,c)∈L

Tr
[
�ν

ab,cs
ν
ab,c

] = Fα + Fβ + Fγ , (50)

where

�ν
ab,c := TrHν

[|ijk〉〈ijk|], (51)

sν
ab,c := n(ab,c)

d
rν
ab,c, (52)

and ij,k is any triple of indices in the class denoted by ab,c.
Notice that n(xx,x) = d, n(xx,y) = n(xy,x) = n(xy,y) =
d(d − 1), n(xy,z) = d(d − 1)(d − 2) and in the case d = 2
Fγ = 0 (i.e., does not appear).

In particular, by direct calculation we have

�α
xx,x =

(
2

d+1 0

0 0

)
, �α

xx,y = 1

2

(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)
,

�α
xy,y = �α

xy,z = 0, �α
xy,x = σz�

α
xx,yσz,

�β
xx,x = d − 1

d + 1
, �β

xx,y = �β
xy,x = d

2(d + 1)
,

�β
xy,y = 1, �β

xy,z = 1

2
, �γ

xx,x = �γ
xy,y = 0,

�γ
xx,y = �γ

xy,x = d − 2

2(d − 1)
, �γ

xy,z = 1

2
. (53)

V. OPTIMAL CLONING

In this section we turn our attention to the cloning scenario.
Cloning is less restrictive than learning, since we allow the
two states to be measured to be available at the same time as
the single use of the measurement device. The normalization
condition for the 1 → 2 cloning reads∑

ij,k

|k〉〈k|D ⊗ R′
ij,k = ID ⊗ SABC, TrC[S] = IAB (54)

which implies the following:

IAB = TrC[Rxx,x] + (d − 1)(d − 2)TrC[Rxy,z]

+ (d − 1)TrC[Rxx,y + Rxy,x + Rxy,y]. (55)

From the commutation [Rab,c,U
∗
A ⊗ U ∗

B ⊗ UC] it follows
that [TrC[Rab,c],U ∗

A ⊗ U ∗
B] = 0 and taking the decomposition

Rab,c =∑ν P ν ⊗ rν
ab,c along with definition (52), the normal-

ization constraint (55) becomes

P ± = P ±∑
ν

∑
(ab,c)∈L

TrC
[
P ν ⊗ sν

ab,c

]
P ±. (56)

We take the trace of the previous equation to obtain the follow-
ing equivalent formulation of the normalization constraints:

d+ = dα

∑
(ab,c)∈L

s
α,+,+
ab,c + dβ

∑
(ab,c)∈L

s
β

ab,c, (57)

d− = dα

∑
(ab,c)∈L

s
α,−,−
ab,c + dγ

∑
(ab,c)∈L

s
γ

ab,c, (58)

where d± ≡ Tr[P ±], dν ≡ Tr[P ν]. If we introduce the notation

s
β

a,bc :=
(

s
β

a,bc 0

0 0

)
, s

γ

a,bc :=
(

0 0

0 s
γ

a,bc

)
,

(59)

�+ =
(

1 0

0 0

)
, �− =

(
0 0

0 1

)
,

the normalization constraints (57) and (58) can be rewritten as

�+

⎛
⎝ ∑

ν,(a,bc)∈L

dνs
ν
a,bc

⎞
⎠�+ =

(
d+ 0

0 0

)
,

(60)

�−

⎛
⎝ ∑

ν,(a,bc)∈L

dνs
ν
(a,bc)

⎞
⎠�− =

(
0 0

0 d−

)
.

In order to solve the optimization problem we have to find the
set s := {sν

� ,� ∈ L,ν ∈ {α,βγ }}, sν
� ∈ L(C2),sν

� � 0 subjected
to the constraint (60) that maximizes the figure of merit (50);
we will denote as M the set of all the s satisfying Eq. (60).
Since the figure of merit (50) is linear and the set M is convex,
a trivial result of convex analysis states that the maximum of
a convex function over a convex set is achieved at an extremal
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point of the convex set. We now give two necessary conditions
for a given s to be an extremal point of M. Let us start with the
following.

Definition 1 (Perturbation). Let s be an element of M. A
set of Hermitian operators z := {zν

�} is a perturbation of s if
there exists ε � 0 such that

s + hz ∈ M ∀h ∈ [−ε,ε], (61)

where we defined s + hz := {sν
� + hzν

� |h ∈ [−ε,ε]}.
By the definition of perturbation it is easy to prove that an

element s of M is extremal if and only if it admits only the
trivial perturbation zν

� = 0 ∀�,ν. We now exploit this definition
to prove two necessary conditions for extremality.

Lemma 6. Let s be an extremal element of M. Then sν
� has

to be rank one for all �,ν.
Proof. Suppose that there is a sν ′

�′ = ( a b

c d ) ∈ s which
is not rank one; then there exist ε such that
z := {0, . . . ,0,zν ′

�′ ,0, . . . ,0}, zν ′
�′ = ( 0 1

1 0 ) is an admissible
perturbation. �

The above lemma tells us that without lost of generality we
can assume the optimal s to be a set of rank one matrices. Let
us now consider a set s such that sν

� is rank one for all �,ν; any
admissible perturbation z of s must satisfy

zν
� = cν

� s
ν
� , cν

� ∈ R, (62)

�+
(∑

ν,�

dνc
ν
� s

ν
�

)
�+ = �−

(∑
ν

dνc
ν
� s

ν
�

)
�− = 0. (63)

where the constraint (62) is required in order to have sν
� +

hzν
� � 0, while Eq. (63) tells us that s + hz satisfies the

normalization (60). Let us now consider the map

f : L(C2) −→ C2, f (A) :=
(

Tr[�+A]
Tr[�−A]

)
,

f

(
a b

c d

)
=
(

a

d

)
,

exploiting this definition Eq. (63) becomes

∑
ν,�

cν
�f
(
sν
�

) =
(

0

0

)
. (64)

Suppose now that the set s has N � 3 nonzero elements; then
{f (sν

�)} is a set of N � 3 vectors of C2 that cannot be linearly
independent. That being so, there exists a set of coefficients
{cν

� } such that
∑

ν,� cν
�f (sν

� ) = 0 and then zν
� = cν

� s
ν
� is a

perturbation of s. We have then proved the following lemma.
Lemma 7. Let s be an extremal element of M. Then s cannot

have more than two nonzero elements.
Lemmas 6 and 7 provide two necessary conditions for

extremality that allow us to restrict the search of the optimal s
among the ones that satisfy

s = {sν ′
�′ ,s

ν ′′
�′′
}
, Rnk

(
sν ′
�′
) = Rnk

(
sν ′′
�′′
) = 1,

(65)

�i

(∑
ν,�

dνs
ν
�

)
�i = di, i = +, − .

The set of the above s is small enough to allow us to compute
the value of F for all the possible cases. It turns out that there
are two choices achieving the highest value of fidelity

F = 4

3d
. (66)

They are defined by s = {sα
xx,x,s

α
xy,x} and s = {sα

xx,x,s
α
xy,y},

where

sα
xx,x =

( 9d+−1
9d

0
0 0

)
≡ A, B ≡

(
1

9d

√
d−

3d√
d−

3d

d−
d

)
,

(67)
sα
xy,x = B, sα

xy,y = σzBσz.

From the linearity of the link product and our figure of merit
it follows that also any convex combination of the above two
strategies will give the optimal performance. In the rest of the
paper we consider the equal convex combination of the above
two strategies:

sα
xx,x = A, sα

xy,x = 1
2B, sα

xy,y = 1
2σzBσz, (68)

because it treats the two clones in the same way. Using Eq. (30)
one can derive the form of the replicated POVM corresponding
to the above choice of the optimal generalized instrument:

Gii =
[

1 − 2

9d(d + 1)

]
P +(E(U )

i ⊗ IB

)
P +,

Gij = 1

d − 1

[
Q+(E(U )

i ⊗ IB

)
Q+ + Q−(E(U )

j ⊗ IB

)
Q−],

where Q± = 1/
√

9d(d + 1) P + ± 1/
√

2 P −.

A. Realization scheme for the optimal cloning network

In this section we describe the inner structure of the optimal
cloning network. First we notice that the choice from Eq. (68)
corresponds to the generalized instrument

Rii = |i〉〈i| ⊗ 9d+ − 1

9d

∑
k

|�+
k 〉〈�+

k |,

Rij = |i〉〈i| ⊗ 1

2(d − 1)

∑
k

|φk〉〈φk|

+ |j 〉〈j | ⊗ 1

2(d − 1)

∑
k

σ̃z|φk〉〈φk|σ̃z, (69)

|φk〉 =
√

1

9d
|�+

k 〉 +
√

d−
d

|�−
k 〉

σ̃z|�±
k 〉 = ±|�±

k 〉.
The generalized instrument R can be realized by the

following network:

A

SWAP

C
E(U)

D

f
B K

I

|+ •
L

P

(70)
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The first step consists of a controlled-SWAP gate, which is
described by the unitary

CSWAP = TA→C ⊗ TB→K ⊗ |0〉〈0|L
+ TA→K ⊗ TB→C ⊗ |1〉〈1|L

with the control qubit prepared in the state |+〉 = 1√
2
(|0〉 +

|1〉). We defined TX→Y =∑i |i〉Y |i〉X and named HL the two-
dimensonal Hilbert space of the control qubit with {|0〉,|1〉}
being an orthonormal basis on HL.

In the second step we have three commuting actions:
(1) the single use of the measurement device E(U ) is applied

on system C and its outcome is recorded on a classical
memory D,

(2) system K is discarded, and
(3) system L undergoes a three-outcome measurement

described by the POVM P defined as follows:

P1 = [9d(d + 1) − 2]

9d(d + 1)
|+〉〈+|,

P2 = |ψ〉〈ψ |, P3 = σz|ψ〉〈ψ |σz, (71)

|ψ〉 =
√

1

9d(d + 1)
|+〉 +

√
1

2
|−〉.

The last step is just a classical processing f of the outcome
k of the measurement E(U ) and of the outcome n of POVM P .
The function f that produces the outcome (i,j ) = f (k,n) of
the network is defined as follows:

f (k,n) =

⎧⎪⎨
⎪⎩

(k,k) if n = 1

(k,j ) j 
= k if n = 2

(j,k) j 
= k if n = 3

, (72)

where the outcome j in the second and third case is randomly
generated with flat distribution.

In order to prove that this network is described by the
generalized instrument in Eq. (69) we first realize that the
action of the POVM P and of the processing f can be
represented by the bipartite POVM Q on systems D and L

defined as

Qi,j =

⎧⎪⎨
⎪⎩

|i〉〈i| ⊗ [9d(d+1)−2]
9d(d+1) |+〉〈+| if i = j

|i〉〈i| ⊗ |ψ〉〈ψ |
d−1 + |j 〉〈j | ⊗ σz|ψ〉〈ψ |σz

d−1 if i 
= j,

C
E(U)

D

Q =

C
E(U)

D

f

L
P

.

(73)

Finally, one can check the identity

Rij = |+〉〈+| ∗ MCSWAP ∗ (Qi,j ⊗ IK ), (74)

where MCSWAP is the Choi-Jamiolkowski operator of the
control SWAP unitary channel.

It is worth noticing that the optimal cloning of the
measurement device has some features in common with the
optimal cloning of unitaries. Both in the cloning of unitaries

and in the cloning of von Neumann measurements the first step
is to perform a control-SWAP of the two input systems with
the control qubit prepared in the superposition 1√

2
(|0〉 + |1〉).

We could give an intuitive explanation of this feature in
terms of quantum parallelism: for a bipartite input |χ〉0|ξ 〉1

the unknown measurement acts on both input states via a

superposition
√

1
2 (|χ〉2|ξ 〉A + |ξ 〉2|χ〉A).

VI. OPTIMAL LEARNING

Our goal in this scenario is to create two replicas of the
measurement after it was used once. Let us consider the
normalization constraint for the generalized instrument Rij .
Since

∑
i,j Rij has to be a deterministic network, we have∑

ijk

|k〉〈k|D ⊗ R′
ij,k = IABD ⊗ ρC, Tr[ρ] = 1, (75)

where ρ has to be positive operator. The commutation
relation (33) implies [ρ,U ] = 0 and so we have ρ = 1

d
IC .

Writing IABCD as
∑

k |k〉〈k|D ⊗ (Imα
⊗ P α + P β + P γ ) we

can rewrite the normalization conditions as follows:∑
(ab,c)∈L

sν
ab,c = 1

d
, ν = β,γ,

(76)∑
(ab,c)∈L

sα
ab,c = 1

d
Imα

.

Let us now maximize the figure of merit under these con-
straints. The maximization of Fβ and Fγ is simple and yields

Fβ = 1

d2
, Fγ = 1

2d2
, (77)

sβ
xx,x = sβ

xy,x = sβ
xy,y = sβ

xy,z = 0,
(78)

sγ
xx,x = sγ

xx,y = sγ
xy,x = sγ

xy,y = 0,

sβ
xx,y = sγ

xy,z = 1

d
.

Let us now consider the maximization of Fα; the normalization
constraint for the α subspace gives∑

(ab,c)∈L

s
α,+,+
ab,c = 1

d
,

∑
(ab,c)∈L

s
α,+,−
ab,c = 0,

(79)∑
(ab,c)∈L

s
α,−,−
ab,c = 1

d
,

∑
(ab,c)∈L

s
α,−,+
ab,c = 0.

Inserting the explicit expression of the �α
ab,c into Eq. (50) and

taking into account Eq. (49) we have

dFα = Tr

[(
sα,+,+
xx,x sα,+,−

xx,x

sα,−,+
xx,x sα,−,−

xx,x

)( 2
d+1 0

0 0

)]

+Tr

[(
sα,+,+
xy,x sα,+,−

xy,x

sα,−,+
xy,x sα,−,−

xy,x

)(
1

d+1
1√

d2−1
1√

d2−1
1

d−1

)]

= 2sα,+,+
xx,x

d + 1
+ sα,+,+

xy,x

d + 1
+ sα,−,−

xy,x

d − 1
+ 2sα,+,−

xy,x√
d2 − 1

� 5d − 3

2d(d2 − 1)
− 3sα,+,+

xy,x

d + 1
+ 2

√
s
α,+,+
xy,x

2d(d2 − 1)
, (80)
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where in the derivation of the bound (80) we used the positivity
of sα

xy,x and the constraints (79). The upper bound (80) can be
achieved by taking

sα
xx,x =

(
1
d

− 2a 0

0 0

)
, sα

xy,x =
⎛
⎝ a

√
1

2d
a√

1
2d

a 1
2d

⎞
⎠,

(81)
sα
xy,z = sα

xx,y = 0,

where we defined a := sα,+,+
xy,x . Equation (80) gives the value

of Fα as a function of a; the maximization of Fα(a) with the
constraint 0 � a � 1

2d
is easy and gives

Fα = 4(2d − 1)

3d2(d2 − 1)
for a = d + 1

18d(d − 1)
. (82)

and then for d � 3 we have

F = Fα + Fβ + Fγ = 9d2 + 16d − 17

6d2(d2 − 1)
∼ 3

2d2
. (83)

For d = 2 the invariant subspace Hγ does not appear and the
fidelity becomes F = Fα + Fβ = 7

12 .
Using Eq. (30) it is possible to derive the form of the

replicated POVM corresponding to the optimal generalized
instrument:

Gii = 16d − 2

9d(d2 − 1)
P +(E(U )

i ⊗ IB

)
P + + d2 − 3

d(d2 − 1)
P +,

Gij = 1

d − 1

[
Q′+(E(U )

i ⊗ IB

)
Q′+ + Q′−(E(U )

j ⊗ IB

)
Q′−]

+ 2

d(d − 1)2(d − 2)
P −(E(U )

i ⊗ IB + E
(U )
j ⊗ IB

)
P −

+ d − 3

(d − 1)2(d − 2)
P −,

where Q′± = 1/
√

9d(d − 1) (P + ± 3 P −).
One can now compare the performance of the optimal 1 →

2 cloning and learning. The optimal values of F depending on
the dimension d are plotted in Fig. 1. As expected, the optimal
cloning strategy largely outperforms the optimal learning
strategy with a fidelity, which is a factor d larger, as one can
see from Eqs. (66) and (83). Similar distinction arises also for
comparison of cloning and learning of unitary channels (for
details see Ref. [16]).

A. Estimate and prepare strategy

One can achieve both cloning and learning of a measure-
ment by first estimating the unknown measurement and then
constructing the measurement devices according to the results
of the estimation [see Eq (84)]:

C
E(U)

D A
π(V )

B
π(V )

.

(84)

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d

F

Fcloning

Flearning

Fm & p

FIG. 1. (Color online) Optimal 1 → 2 cloning and learning of
a measurement device: we present the values of F for different
values of the dimension d . The squared dots represent the optimal
1 → 2 cloning, the round dots represent the optimal 1 → 2 learning
and lowest curve corresponds to a strategy in which one performs
the optimal estimation followed by the preparation of the estimated
measurement.

In the above equation TV is the quantum network describing the
estimation and π (V ) ⊗ π (V ) are the two replicas of the original
POVM E(U ) that are prepared depending on the outcome V

of the estimation. Since the estimation is done independently
on the availability of states A,B estimate and prepare strategy
is a special case of learning, which is in turn a special case of
cloning of a measurement.

Since the unknown Von Neuman measurements, which
are parametrized by unitary operators, are picked randomly
according to a Haar measure, we assume covariant esti-
mation procedure, that is, the shift in the parameters of
the measurement to be estimated induces the same shift
in the probability distribution for the estimate V ∈ U (d).
Mathematically estimation from Fig. 1 is described by a
special type of generalized quantum instrument. Its covariance
and normalization are expressed by the following equations:
TV = V TIV

†,
∫

dV TV = ρ0 ⊗ I1, where TV ∈ B(H1 ⊗ H0).
We also assume covariance π

(V )
i = V π

(I )
i V † of the POVM

π (V ) that is prepared based on the outcome V . These two
assumptions allow us to optimize the operator seeds TI and
π (I ) for the 1 → 1 learning of a measurement using the same
techniques we used earlier in the paper. As one would expect
the optimal seed of the replicated POVM corresponds to a Von
Neuman measurement π

(I )
i = |i〉〈i| and the estimation stage

is determined by TI =∑k |kk〉〈kk|. For the 1 → 2 learning
or cloning of the measurement we can decide to use the
same estimation stage, but prepare two measurements based
on outcome V . This strategy is described by a generalized
quantum instrument

Rij =
∫

dV
(
π

(V )
i ⊗ π

(V )
j

)T ⊗ TV

=
∑

k

∫
dV (V ∗)⊗2 ⊗ V |ijk〉〈ijk|(V T )⊗2 ⊗ V † ⊗ |k〉〈k|.

(85)
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We can now insert the above expression into Eq. (31) and as a
consequence of Schur’s lemmas for representation V ∗ ⊗ V ∗ ⊗
V we can write the figure of merit as

F [R] = 1

d2

∑
(ab,c)∈L

n(ab,c)
∑

ν

1

dν

Tr
[(

�ν
ab,c

)2]
, (86)

where we used �ν
ab,c defined in Eq. (53) and the notation

introduced after remark 1. The direct evaluation of Eq. (86)
gives the following value of fidelity:

Fe&p = d2 + 6d + 10

d2(d + 1)(d + 2)
(87)

for the estimate and prepare strategy.

VII. CONCLUSIONS

In the present paper we focused on 1 → 2 cloning
and 1 → 2 learning of von Neumann measurements. Even
though both problems can be easily formulated in the usual
language of quantum mechanics, the necessity to handle
the measurement outcome in the remaining part of the
scheme makes the optimization complicated and requires
suitable mathematical tools. We represented the unknown
measurement to be replicated as a measure and prepare

channel and we employed framework of quantum combs to
perform the network optimization. Thanks to symmetries of
the figure of merit the problem was simplified and solved for
arbitrary dimension of the measurement’s Hilbert space d. For
1 → 2 cloning of a measurement we found that the optimal
fidelity is 4

3d
, while the optimal fidelity for 1 → 2 learning

scales as 3
2d2 and outperforms just slightly the estimate and

prepare strategy in which one first estimates the unknown
measurement and prepares the duplicate based on that result.
As Fig. 1 suggests, in higher dimensional Hilbert spaces the
single use of the unknown measurement device provides just a
small piece of information needed for its accurate replication
and hence efficient cloning and learning of measurement
become impossible. In Sec. V A we proposed a realization
of optimal 1 → 2 cloning of measurements. The proposed
scheme has some similarities to optimal cloning of unitary
transformations, since they both begin by the control-SWAP

operation, which reflects the presence of quantum parallelism.
In this paper we exploit the measure and prepare representation
of von Neumann measurement that allowed us to deal with
feed forward of classical information in quantum networks.
This tool could be in principle used to tackle other quantum
information processing tasks in which classical information
is involved, for example, estimation and cloning of quantum
instruments.
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