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Information causality from an entropic and a probabilistic perspective
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The information causality principle is a generalization of the no-signaling principle which implies some of
the known restrictions on quantum correlations. But despite its clear physical motivation, information causality
is formulated in terms of a rather specialized game and figure of merit. We explore different perspectives on
information causality, discussing the probability of success as the figure of merit, a relation between information
causality and the nonlocal “inner-product game,” and the derivation of a quadratic bound for these games. We then
examine an entropic formulation of information causality with which one can obtain the same results, arguably
in a simpler fashion.
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I. INTRODUCTION

Quantum theory has many strange properties, but perhaps
the most surprising is that of nonlocality. Some quantum
states, known as entangled states, cannot be described by
giving a separate quantum state for each system, or even by a
probabilistic mixture of such states. This is not just an artifact
of the mathematical formalism; many entangled states give
rise to observable correlations which cannot be explained by
any local model [1–3]. However, an important caveat is that
these nonlocal correlations cannot be used for superluminal
signaling.

Although this area has been extensively studied, we still do
not have a good intuition about which nonlocal correlations
are achievable in quantum theory, and what they can be
used for. They are certainly helpful in some nonlocal tasks
[4,5], but it has been shown that even stronger correlations
are possible without generating superluminal signaling [6].
Furthermore, there have recently been a number of results
describing nonlocal tasks for which quantum entanglement is
not helpful at all, while stronger nonlocal correlations give
an advantage [7–9]. By gaining a better understanding of
quantum nonlocality, we hope to hone our intuitions about
its information-theoretic uses, and perhaps learn more about
why nature is quantum.

In this paper, we will discuss one particular nonlocal task
for which quantum nonlocality is not helpful (at least with the
original figure of merit), known as information causality [8].
This is an appealing principle which one would reasonably
expect to hold, and which quantum theory obeys, yet which can
be violated using correlations slightly stronger than quantum
theory permits [8,10].

Information causality relates to a particular type of game: A
bit string x of length n is chosen uniformly at random and given
to Alice, while Bob is given a random number k, (1 � k � n).
Alice may then send an m-bit message α to Bob, after which
Bob must try to guess xk , the kth bit of Alice’s original bit
string. Bob’s guess when his input is k is denoted βk . The
parties may decide on a joint strategy and may initially share
correlated resources but play from separate locations.
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The information causality principle states that

I ≡
n∑

k=1

Ic(xk : βk) � m, (1)

where Ic(X : Y ) denotes the classical mutual information of
variables X and Y [11]. The intuition behind this bound is that
the total information that Bob can access about Alice’s bits
cannot exceed the size of the message she sent. Indeed, the
inequality in (1) is saturated if Alice simply sends to Bob the
first m bits of x, so that Ic(xk : βk) = 1 if 1 � k � m, and 0
otherwise.

It is proven in [8] that information causality is obeyed
in both the quantum and classical world. However, it can
be violated in worlds governed by different physical laws
(such as “box world” [12,13], which permits all nonsignaling
correlations). In what follows, we first discuss probability of
success in the information causality game. We then derive
a bound which relates information causality to a different
nonlocal game, in which Alice and Bob must compute the
inner product of two bit strings. Finally, we will explore an
alternative formulation and derivation of information causality
based on entropy rather than mutual information.

II. PROBABILITY OF SUCCESS FOR
INFORMATION CAUSALITY

Although quantum entanglement gives no advantage over
a classical strategy in the information causality game when
I [defined by (1)] is the figure of merit, it is not true that
every quantum strategy can be classically simulated. In fact,
if probability of success is used as the figure of merit instead,
it can easily be seen that entangled quantum states allow one
to do better than in the classical world. For example, in a
simple version of the game in which n = 2 and m = 1, the
optimal classical probability of success is 3

4 (e.g., when Alice
sends Bob α = x1 and he guesses βk = α, they always win
when k = 1 and win half the time when k = 2). However, by
exploiting well-known quantum violations of Bell inequalities,
Alice and Bob can achieve a success probability of 2+√

2
4 . To

do this, Alice and Bob first generate bits a and b satisfying a ⊕
b = (x1 ⊕ x2)(k − 1) with probability 2+√

2
4 , where ⊕ denotes

addition modulo 2. This is equivalent to the quantum Tsirelson
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bound for the CHSH inequality [2,14]. Then Alice sends Bob
α = a ⊕ x1 and Bob outputs βk = b ⊕ α [8,15].

It is also possible to obtain very different values of I for
strategies with the same probabilities of success. As above,
Alice can send Bob her first bit to obtain I = 1 and probability
of success 3

4 ; alternatively, Alice and Bob can randomly “mix”
this strategy with one where Alice sends Bob her second bit
and he outputs it, so that the overall probability of success is
the same but

I = Ic(x1 : β1) + Ic(x2 : β2)

= 2
[
1 − H

({
3
4 , 1

4

})]
≈ 0.38. (2)

Furthermore, it is clear that a small amount of noise added
to the first strategy will do better than the second strategy in
terms of I , but worse in terms of success probability, so these
two figures of merit are not monotonically related.

The optimal classical strategy to maximize the probability
of success in the case when m = 1 has already been derived
for general n, in the context of random-access coding [16].
It is attained by using the “majority-vote” strategy, in which
Alice simply sends Bob the bit that most frequently occurs in
her string. This gives success probability,

P C
success = 1

2

[
1 + 1

2n−1

(
n − 1

� n−1
2 �

)]
. (3)

Using Stirling’s approximation, one can derive the asymp-
totic behavior of this probability:

P C
success ≈ 1

2

(
1 +

√
2

πn

)
. (4)

We show in the next section that the optimal quantum
probability of success for the same situation is

P Q
success = 1

2

(
1 +

√
1

n

)
, (5)

which is always strictly larger than the classical limit. This
extends a result obtained in [17] for particular n [18].

Interestingly, Eq. (5) is also the optimal success probability
when Alice is allowed to send a qubit to Bob instead of a
classical bit, but Alice and Bob do not share an entangled
state [16,17].

The probability of success has a clean operational interpre-
tation as a figure of merit: It is the asymptotic fraction of games
one would expect to win over many independent repetitions.
Although it sounds appealing, the operational meaning of I is
less natural. In particular, suppose Alice and Bob play the game
many times, then Alice is told Bob’s input k for each round,
and she sends him some supplementary classical information
which (together with his guesses βk) he must use to output
the correct value of xk for each round. The average amount
of supplementary information per round which Alice must
send Bob is (1 − I/n). This follows from a result of [19]
that the asymptotic amount of information (using coding over
many rounds) required to learn xk given that you hold βk is
H (xk|βk) = H (xk) − I (xk : βk).

However, although I is a less natural a priori figure of merit
than success probability, its appeal lies in the simplicity of the

bound given by (1). In particular, the maximum value of I is
the same for classical or quantum strategies, and can be simply
stated for any message length m [by contrast, the maximum
success probabilities given by (3)–(5) are complicated, depend
on n, and only apply when m = 1].

III. INFORMATION CAUSALITY AND THE INNER
PRODUCT GAME

Given that the mutual information is a complicated nonlin-
ear function of the associated probabilities, it is surprising that
the bound given by information causality can be used to derive
the Tsirelson bound, which can be understood as a bound
on the quantum success probability for a particular nonlocal
game [20]. Even more surprisingly, information causality can
be used to generate part of the curved surface of the set of
achievable quantum correlations [10].

To investigate this, we note that the proof of the Tsirelson
bound given in [8] can be decomposed into several steps.
The first is to prove that the information causality principle
I � m implies a bound

∑n
k=1[1 − h(Pk)] � m on the binary

entropy [21] of the success probability Pk given a particular
input for Bob. This entropic bound can be transformed into
a quadratic bound on the bias Ek = (2Pk − 1) achieved in

the game by noting that 1 − h(Pk) � E2
k

2 ln 2 . The information
causality principle can therefore be used to generate the bound,

n∑
k=1

E2
k � 2m ln 2. (6)

Finally, the authors consider a particular strategy for playing
the game in which m = 1 and n is a power of 2, and show
that the ability to generate correlations violating the Tsirelson
bound would allow one to violate (6) for sufficiently large n.
Hence, given information causality, the Tsirelson bound holds.

As the quadratic bound given by Eq. (6) plays a key role
in deriving the Tsirelson bound from information causality, it
is interesting to investigate such bounds directly in quantum
theory. To facilitate this, we first consider a seemingly
unrelated nonlocal game, in which the aim is to produce the
inner product of two bit strings. In this inner product game,
Alice and Bob are given uniformly random n-bit strings x and
y, respectively. Then without communicating, Alice and Bob
must output bits a and b, respectively, such that a ⊕ b = x · y,
where x · y = x1y1 ⊕ x2y2 . . . ⊕ xnyn.

The ability to win the inner product game perfectly would
allow the parties to nonlocally compute any function of
their inputs [15], and therefore to solve any communication
complexity problem with only a single bit of communication.

We can derive a bound on the inner product game which
is very similar to (6). Assume that Alice and Bob share an
initial entangled state |ψ〉, and their outputs are obtained
by measuring the operators âx and b̂y, respectively (with
eigenvalues 0,1). The bias they achieve in the game when
they are given inputs x and y is

Exy = 〈ψ |(−1)âx+b̂y+x·y|ψ〉, (7)
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where

P Q
success = 1

2

(
1 + 1

22n

∑
xy

Exy

)
. (8)

Similarly, the average bias they achieve when Bob is given y
and we average over Alice’s input is given by Ey = 1

2n

∑
x Exy.

To derive a quadratic bound, we adopt a similar approach
to [7]. We define the normalized states:

|A〉 = 1√
2n

∑
x

(−1)âx |ψ〉 ⊗ |x〉, (9)

|By〉 = 1√
2n

∑
x

(−1)b̂y+x·y|ψ〉 ⊗ |x〉, (10)

where the |By〉 states form an orthonormal set satisfying
〈By|By′ 〉 = δyy′.

It follows that∑
y

E2
y =

∑
y

〈A|By〉2

= 〈A|
(∑

y

|By〉〈By|
)

|A〉

� 1, (11)

where in the last step we have used the fact that
∑

y |By〉〈By|
is a projector and |A〉 is normalized. A similar result
was obtained independently by Pawlowski and Winter, us-
ing a different method, and described very recently in
Refs. [22,23].

We can also obtain a bound on the probability of success
from (11), by taking

P Q
success = 1

2

(
1 + 1

2n

∑
y

Ey

)

� 1

2

(
1 +

√
1

2n

∑
y

E2
y

)

� 1

2

(
1 + 1√

2n

)
. (12)

When n = 1, the inner-product game is equivalent to the
CHSH game [2], and this bound on the success probability
corresponds to the usual Tsirelson bound.

The bound given by Eq. (11) actually holds regardless of the
probability distribution over Bob’s input y. This generalization
allows us to derive a bound on a nonlocal version of the
information causality game, in which Alice is given a random
n-bit string x, Bob is given a random number k satisfying
1 � k � n, and they attempt to produce bits a and b such
that a ⊕ b = xk without communicating. If Bob’s bit string in
the inner-product game is chosen at random from the set of
bit strings containing a single one (i.e., from the bit strings
of Hamming weight 1), with k denoting the position of the
nonzero bit in y, then x · y = xk . In this case, the inner-product
game is the same as the nonlocal information causality game
and (11) gives ∑

k

E2
k � 1. (13)

Note that this is a stronger bound than (6), which was obtained
from information causality. Similarly, an analogous derivation
to (12) gives

P Q
success � 1

2

(
1 +

√
1

n

)
. (14)

We now show that the bound given by (13) can be saturated
in quantum theory for any choice of Ek . It was proved in [24]
(and used in [22]) that for any set of real vectors ux and vy of at
most unit length, we can find a quantum state |ψ〉 of a bipartite
system, and binary-valued operators âx and b̂x (which can be
measured locally on subsystems A and B), such that

〈ψ |(−1)âx+b̂x |ψ〉 = uT
x vy, (15)

and hence

Exy = (−1)x·yuT
x vy. (16)

For any desired biases Ey satisfying
∑

y E2
y � 1 we can

consider the vectors,

ux =
∑

y

(−1)x·yEyey, (17)

vy = ey, (18)

where ey denotes an orthonormal basis for a real vector space
with dimension equal to the number of different inputs for
Bob. This gives Exy = Ey, and hence we can achieve any set
of biases satisfying (11). In particular, we could obtain an equal
bias for all of Bob’s possible inputs in the nonlocal information
causality game (Ek = 1√

n
) which would achieve the optimal

probability of success 1
2 (1 + 1√

n
) given by (14).

Although these results apply to the nonlocal version of the
information causality game, any strategy can be transferred to
the original version of the game with m = 1, with the same
probability of success. Alice simply sends the message α =
a to Bob, and he outputs β = a ⊕ b. This is not the only
type of strategy which is possible in the original information
causality game (e.g., Bob’s measurement could depend on
Alice’s message). However, in [17] an identical inequality
to (14) is derived for the original game, hence the optimal
strategy for the nonlocal version of the game is also optimal
when transferred to the original game. Note that the strategies
used in [8] to derive the Tsirelson bound, and to achieve perfect
success given arbitrary nonsignaling resources, are also of this
form.

The bound
∑

y E2
y � 1 for the inner product game seems to

capture a great deal about the possible quantum correlations,
yet note that this inequality can also be saturated by a classical
strategy. In particular, if Alice and Bob output a = α · x and
b = 0, they will achieve a bias of 1 when y = α and 0 in every
other case.

IV. INFORMATION CAUSALITY FROM ENTROPY

Given the above, it appears that the particular mathematical
form of the mutual information is not central in defining
the boundary of the set of quantum correlations (as the
proof proceeds via a quadratic bound), and the choice of
I rather than probability of success as the figure of merit
seems somewhat arbitrary. However, the fact that quantum
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theory obeys information causality actually follows from
the existence of a natural extension of the classical mutual
information to quantum states. Can we focus on this as a
defining property of quantum theory?

In general probabilistic theories, the state of a system is
characterized by a complete description of the probability of
each measurement outcome, for any possible measurement
on that system [12,25,26]. A specific probabilistic theory is
defined by allowing certain types of systems, and certain states
on those systems: For example, classical theory consists of
systems specified by a single probability distribution (such as
a ball in one of several boxes). In any such theory, it was shown
in [8] that the information causality principle I � m will hold
if an analog of the mutual information I (X : Y ) can be defined
for all systems X and Y (which may be composite) with the
following properties:

(i) Consistency: Whenever X and Y are classical systems,
I reduces to the classical mutual information, I (X : Y ) =
Ic(X : Y ).

(ii) Data processing: Whenever a transformation is per-
formed on Y alone, �I (X : Y ) � 0.
(iii) Chain rule: For all tripartite systems X, Y , Z,

I (X : YZ) − I (X : Z) = I (XZ : Y ) − I (Z : Y ).

(iv) Symmetry: I (X : Y ) = I (Y : X).
(v) Non-negativity: I (X : Y ) � 0.

It is well known that all of these properties are satisfied
by Iq and Ic, the quantum and classical versions of the
mutual information. The proof of information causality also
assumes the validity of some natural operations, in particular,
the ability to discard a system, or to prepare a system
in a state determined by the value of a classical variable.
These transformations can be defined for any theory in
the general probabilistic framework of [12]. If we consider
discarding both X and Y , we can actually derive non-negativity
from the symmetry and data-processing conditions, since
(denoting a discarded system by ∅) I (X : Y ) � I (X : ∅) =
I (∅ : X) � I (∅ : ∅) = 0, hence condition (v) can easily be
eliminated [27].

However, while the other properties seem intuitively rea-
sonable, property (iii) seems like a strange demand. Further-
more, the fact that the mutual information necessarily concerns
a pair of systems makes it a somewhat complicated quantity.

In the remainder of this section, we show that the informa-
tion causality principle follows more simply from the existence
of “good” measure of entropy in a general theory. In particular,
the entropy only concerns a single system (although this may
be composite), and is only required to obey two conditions.

(I) Consistency: If system X is classical, H (X) reduces to
the classical entropy, H (X) = Hc(X).

(II) Evolution with an ancilla: For any two systems X and
Y , whenever a transformation is performed on Y alone,

�H (XY ) � �H (Y ). (19)

Condition (I) says that H gives the asymptotic compression
rate for classical data. Condition (II) can be understood
intuitively as saying that a local transformation can generate
more uncertainty than its effect on an individual subsystem

would suggest, as it can destroy but not create correlations. If
we also define a conditional entropy analogously to the quan-
tum and classical quantity, as H (X|Y ) = H (XY ) − H (Y ),
we can alternatively re-express (19) as �H (X|Y ) � 0. We
can also express (II) symmetrically as the requirement that
�H (XY ) � �H (X) + �H (Y ) under local transformations
on X and Y .

Given an entropy function obeying the above conditions, we
can define a mutual information analogously to the quantum
and classical case as

I (X : Y ) = H (X) + H (Y ) − H (XY ). (20)

This automatically ensures that conditions (iii) and (iv) are
satisfied, removing the awkwardness of having to postulate
the chain rule, and (i) and (ii) follow trivially from (I) and (II),
respectively.

The existence of an entropy function with properties (I)
and (II) is therefore sufficient to derive information causality.
Conversely, in any theory in which one can violate Tsirelson’s
bound, it must be impossible to define an entropy which
satisfies assumptions (I) and (II). Several entropies which can
be applied to any probabilistic theory, and which always obey
(I), have been proposed in [28–30]. A different set of entropic
conditions which can be used to derive information causality
were discussed in [29].

It’s not hard to deduce some other standard properties of
the entropy from conditions (I) and (II):

Subadditivity. By discarding Y , we find from (II) that the
entropy is subadditive:

H (XY ) � H (X) + H (Y ). (21)

When X and Y are independent systems, we can also prepare
Y locally, which implies that H (X,Y ) = H (X) + H (Y ) in this
case.

Strong subadditivity. By discarding Z from the composite
YZ in the tripartite system XYZ, we obtain strong subaddi-
tivity:

H (XYZ) + H (Y ) � H (XY ) + H (YZ). (22)

This inequality is equivalent to subadditivity of the conditional
entropy. It can also be iterated for a larger number of systems
to give

H (X1 . . . Xn|Y ) � H (X1|Y ) + · · · + H (Xn|Y ). (23)

Positivity of classical entropy. Uncertainty about the state
of a classical system X can never be negative, even when one
conditions on an arbitrary system Y .

System X is classical ⇒ H (X|Y ) � 0. (24)

We argue this last result in the following way: The state of X

is described by a probability distribution on a finite set E of
outcomes, and for each outcome e ∈ E there is a corresponding
reduced state σY |e of Y . We can therefore obtain the joint state
of system XY by a local transformation on Y from a classical
system that is initially perfectly correlated with (and identical
to) X. Before the transformation the conditional entropy is
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given by H (X|X), and so is non-negative by (I). Then by
(II), after the transformation H (X|Y ) must also be non-
negative.

Information causality can be proven from the existence
of an entropy satisfying (I) and (II) by first constructing
the mutual information and then applying the proof of [8].
However, it can also be proved more directly using the
properties of the entropy derived above, and this yields a slight
generalisation of the information causality principle.

Bob’s guess βk is derived solely from Alice’s message α

and Bob’s system B before that message is sent. Thus whatever
the strategy, there is a transformation from (α,B) to βk for each
k: ∑

k

Hc(xk|βk) �
∑

k

H (xk|α,B)

� H (x|α,B)

= H (x,α,B) − H (α,B)

� H (x,α,B) − H (B) − H (α)

= H (x,α,B) − H (x,B) + H (x) − H (α)

= H (α|x,B) + H (x) − H (α)

� Hc(x) − Hc(α). (25)

This is a generalized form of the information causality
principle which makes no assumption on the distribution
on Alice’s input x. It can be interpreted as saying that the
remaining uncertainty that Bob has about Alice’s bits after
guessing must be more than the original uncertainty about
her inputs minus the information gained by the message.
In the special case in which Alice’s inputs are indepen-
dent, Hc(x) = ∑

k Hc(xk), and we can rearrange (25) to
get

∑
k

I (xk : βk) � Hc(α) � m, (26)

as in [8].

V. CONCLUSIONS

Considering probability of success in the information
causality game, we see that quantum theory gives an advantage
which is not captured by the figure of merit I which is bounded
by (1). Investigating how these probabilities are involved in

deriving Tsirelson’s bound from information causality [8]
leads us to a quadratic quantum bound,∑

y

E2
y � 1, (27)

on the biases achieved given different inputs for Bob in the
nonlocal inner product game. This applies for an arbitrary
distribution over Bob’s inputs, and hence to the nonlocal
version of the information causality game. This is another
example of a bound which quantum and classical correlations
can both saturate, but stronger nonlocal correlations can
violate. Furthermore, the fact that quantum correlations allow
one to achieve any set of biases satisfying this rule means
that it captures a significant amount about the set of quantum
correlations. Can we construct useful quadratic bounds on
quantum performance in other nonlocal tasks?

Instead of considering information causality as a constraint
on possible physical theories, it may be helpful to think of it as
a consequence of the existence of a “good” measure of entropy
in the theory. Indeed, we have shown that information causality
can be derived given any extension of the entropy from
classical to more general systems which satisfies �H (XY ) �
�H (X) + �H (Y ) under local transformations. Conversely,
any theory which violates information causality (such as box
world) cannot have an entropy defined in it which obeys the
above evolution law and agrees with the Shannon entropy for
classical systems.

Given the above results, as well as those of [28–30], it
seems that the existence of a “good” entropy for quantum
theory, which shares so many of the properties of the classical
entropy, is very special within the class of general probabilistic
theories. Are there other theories for which one can define an
entropy satisfying (I) and (II), or is this a defining feature
of quantum theory [31]? The existence of such an entropy
potentially places stronger bounds on quantum theory than
information causality alone. It would be interesting to look
for other games where quantum theory can do no better than
classical when such an entropy exists.

Note added in proof. Very recently, similar results to those
in Sec. IV have been obtained independently in [32].
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