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Quantum walk of light in frequency space and its controlled dephasing
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We implement, using a coherent source, a coined quantum walk of light in frequency space in a tabletop
experiment utilizing a series of modified Michelson interferometers that incorporate polarization optics and
acousto-optic modulators. Manipulating the phase of the radio frequency that governs the acousto-optic
interaction, we achieve symmetric or asymmetric quantum walks. Introducing rapid random phase shifts
electronically, while regulating the amplitude, we cause controlled dephasing and thus simulate a gradual
transition from the quantum walk to the classical random walk.
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I. INTRODUCTION

A discrete quantum walk is an analog of a classical
random walk where the quantum nature of both the coin
and the walker is manifest and the classical probabilities are
replaced by probability amplitudes. In other words, the coin
and the walker can each be in a superposition state of its
corresponding basis vectors, and the probability amplitudes of
various possible paths of the walker interfere. This results in
the probability distributions of the quantum walker being quite
distinct from that of a classical random walker. Ever since their
introduction [1–3] there has been immense interest in quantum
walks [4,5], motivated by the promise of faster execution
of a variety of computational tasks [6–9]. It has now been
shown that any quantum circuit can be effectively simulated by
continuous [10] or discrete quantum walks [11], making them
universal computational primitives. Quantum walks have also
been invoked to explain the efficiency of photosynthesis [12].
A related area of current interest, both from the theoretical
point of view and from the practical implementation angle, is
the transition from the quantum walk to the classical random
walk, brought about by decoherence [13–22].

Quantum walks have been experimentally demonstrated
in a variety of systems: ions [23,24], single atoms [25],
spin systems [26,27], and light [28–33]. Of these, light and
photons are of particular interest, as they are relatively easy
to produce, control, and measure. There are numerous ways
of manipulating light. Do et al. [31] used an array of beam
splitters, and Perets et al. [32] an array of waveguides, to
demonstrate the quantum walk of light in real space. Using
holographic phase plates, Zhang and coworkers [33] showed
the quantum walk of light in orbital angular momentum
space. Recent studies by Schreiber et al. [28] examined the
quantum walk of photons in time. The optical Galton board
experiment by Bouwmeester [34], done in a different context,
has been subsequently interpreted as a quantum walk of light
in frequency space [35]. Interest in the quantum walk of light
is rapidly increasing. Recent experiments have investigated
the quantum walk of correlated photons [30] and the transition
from the quantum to the classical [29,36].

In this paper we implement up to four steps of a quantum
walk of light in discrete frequency space using a cascade of
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modified Michelson interferometers (MMIs) that incorporate
polarization optics and acousto-optic modulators (AOMs).
Exercising a fine control over the phase of the light, we
go from an asymmetric to a symmetric quantum walk.
More importantly, by introducing rapid random phase shifts,
dephasing of the walk to various extents is achieved, leading
to a gradual transition to the classical random walk behavior.
Finally, a multipass scheme is discussed that simplifies the
experimental arrangement for single photons for a larger
number of steps of the walk.

II. DISCRETE QUANTUM WALKS

Typically, the Hilbert space for the one-dimensional quan-
tum walk is defined by a two-state coin basis and a one-
dimensional discrete position space. The state of the walker is
given by

� =

+∞∑
n=−∞

(an|n ⊗ X〉 + bn|n ⊗ Y 〉)
√√√√ +∞∑

n=−∞

(
a2

n + b2
n

)
, (1)

where |X〉 and |Y 〉 represent the two basis states of the coin and
n denotes the position in space. A single step of the quantum
walk is defined by the sequential operation of C, the Hadamard
coin operator, which is given by

C =
+∞∑

n=−∞
|n〉〈n| ⊗ (|X + Y 〉〈X| + |X − Y 〉〈Y |)/

√
2, (2)

and D, the conditional displacement, which is given by

D =
+∞∑

n=−∞
|n + 1〉〈n| ⊗ |X〉〈X|+|n − 1〉〈n| ⊗ |Y 〉〈Y |. (3)

The N -step unbiased Hadamard walk is given by (DC)N . By
suitably altering C and D while maintaining unitarity, quantum
walks of different kinds may be realized.

The outcome of a quantum walk is quite different from that
of a classical random walk in several respects. For example,
for an N-step classical random walk, the positional probability
distribution of the walker is maximum at the origin, and the
standard deviation goes as

√
N . In contrast, the probability
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distribution is suppressed at the origin (due to interference) in
the quantum walk and is peaked at the edges, with a standard
deviation varying linearly with N . The walker thus spreads
more rapidly; hence the importance of the quantum walk
for search algorithms. The outcome of a classical random
walk, because of the stochastic nature, is independent of
the initial state of the walker. The outcome of a quantum
walk, on the other hand, is governed by the initial state; for
example, symmetric or asymmetric walks result depending
on whether the initial state was (|0 ⊗ X〉 + |0 ⊗ Y 〉)/√2 or
(|0 ⊗ X〉 + i|0 ⊗ Y 〉)/√2. Further, being a unitary evolution,
the quantum walk is reversible, while the classical random
walk is not.

III. QUANTUM WALK OF LIGHT

A. Scheme for the quantum walk of a photon

Figure 1 depicts an MMI, which is the basic building block
of our quantum walk setup. Here the symmetric beam splitter
of a conventional Michelson interferometer is replaced by a
polarizing beam splitter (PBS) and each arm of the interfer-
ometer has an AOM. The AOM A+, in one arm, up-shifts the
frequency of the photon, and A−, in the other, down-shifts
the frequency by the same amount. Thus the combination of
the PBS and the AOMs enables state-dependent displacement

FIG. 1. (Color online) Schematic of a modified Michelson in-
terferometer (MMI): solid and dashed arrows depict the path of two
orthogonal polarization components, X and Y. Light is shown entering
the MMI from the right. H is a half-wave plate, with its fast axis at
22.5◦ to the |X〉 polarization, used to achieve a Hadamard operation;
PBS is a polarizing beam splitter; and Q’s are quarter-wave plates
that have their fast axes at 45◦ to the |X〉 polarization. A+ and A−
are frequency up-shifting and frequency down-shifting acousto-optic
modulators, D’s are beam dumps used to stop the undiffracted light,
L’s are lenses placed such that the acousto-optic modulators are at
their focus, and M’s are mirrors that are normal to the optical axis
and are placed at a focal distance behind the lens. H′ is a half-wave
plate at 45◦ to |X〉, used to flip the polarization of the light emerging
from face E. This compensates for the flip in polarization that light
suffers on the double transit through quarter-wave plates Q.

FIG. 2. (Color online) Probability distribution of a walker after
50 steps of different walks: (a) quantum walk with initial state (|0 ⊗
X〉 + i|0 ⊗ Y 〉)/√2; (b) quantum walk with initial state |0 ⊗ X〉;
(c) classical random walk; (d) biased quantum walk with initial state
(|0 ⊗ X〉 + i|0 ⊗ Y 〉)/√2; (e) biased quantum walk with initial state
|0 ⊗ X〉; (f) biased classical random walk. For the D operation in
(a) and (b), Eq. (3) is used, while in (d) and (e) Eq. (6) is used.

in frequency space. A half-wave plate, with the fast axis at
an angle of 22.5◦ to the vertical, is inserted before the PBS,
so as to obtain a Hadamard coin. By rotating the half-wave
plate, the bias of the coin may be altered. Quarter-wave plates
Q in the two arms of the MMI serve to bring the polarization
of the photon in each arm at exit to a state orthogonal to
that at entry into the arm. This ensures that the photons,
after executing a step in frequency space, exit through face
E of the PBS. The AOMs are in a standard “double-pass”
configuration. With (|0 ⊗ X〉 as input, the output after H’ will
be (|1 ⊗ X〉 + | − 1 ⊗ Y 〉)/√2. Thus traversal of an MMI by
a photon constitutes a single step of the quantum walk. A
multistep quantum walk can be executed in a cascade of such
MMIs.

In order to reduce the number of optical components in our
implementation we have removed the AOM from one of the
arms of each MMI and the HWP at the exit face; i.e., A−
and H′ in Fig. 1 were removed, while A+ and H were retained.
This in no way alters the underlying nature of the walk, though
some changes do occur. As only one polarization component
executes a displacement in frequency space, the walk is biased
to one side; this is equivalent to a shift of the origin with each
step. The number of occupied sites remains the same but there
is a reduction in the frequency spread by a factor of 2. This
biased displacement operator is given by

B =
+∞∑

n=−∞
|n + 1〉〈n| ⊗ |X〉〈X| + |n〉〈n| ⊗ |Y 〉〈Y |. (4)
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FIG. 3. (Color online) Experimental setup for a four-step quan-
tum walk. Each dashed box constitutes a step of the walk. Note that
only one arm of each MMI has an AOM and that H′ of the MMI
(Fig. 1) has been removed; this reduces the requirement on the optics.

The removal of the half-wave plate H′ at the exit face is
equivalent to the introduction of a flip operator defined by

F =
+∞∑

n=−∞
|n〉〈n| ⊗ (|Y 〉〈X| + |X〉〈Y |). (5)

Hence for our implementation we have D = FB, given by

D =
+∞∑

n=−∞
|n〉〈n| ⊗ |X〉〈Y | + |n + 1〉〈n| ⊗ |Y 〉〈X|. (6)

The expected outcomes of the standard Hadamard quantum
walk [Eqs. (2) and (3)] and our implementation [Eqs. (2) and
(6)] are shown in Fig. 2, for 50 steps of the walk. Also given
are the outcomes for classical random walks, with and without
a bias for displacement.

We have implemented a four-step quantum walk [(DC)4,
with D as in Eq. (6) and C as in Eq. (2) ] using a cascade of four
MMIs as shown in Fig. 3. We performed the experiment using
coherent light, as both coherent light and single photons are
expected to yield the same results in a quantum walk [37,38].

B. Experimental details

Our experiment employed a single-mode, narrow-linewidth
laser light at 767 nm (Toptica DLX) and AOMs (Isomet),
driven by a radio-frequency (rf) signal from a versatile
frequency generator (VFG 150). The spectrum was analyzed
using a scanning Fabry-Perot interferometer (FPI). The output
light from the FPI was collected on a photodetector, suitably
amplified, and displayed on a fast digital storage oscilloscope.
About 30 mW of laser light was input to the MMI cascade. The
AOMs were operated at 80 MHz; in double-pass geometry, the
frequency of light is shifted by 160 MHz, which we denote as
one step in frequency space. The experiment was controlled
by LabVIEW. We use a coherent source of light, although the

scheme is suited for a single-photon implementation as well.
We note here that both coherent light and single photons are
expected to yield the same results in a quantum walk [37,38].

The cascade of interferometers, being mechanically very
sensitive, had to be shielded from air drafts and vibrations. For
alignment of the various components we found the following
steps to be crucial. First, the two paths within each stage
were matched by viewing the interference pattern at the exit
of a stage. For this the AOM was switched off (to avoid
frequency mismatch), the beam dump was removed (to allow
the undiffracted light to pass), and a glass plate was introduced
at the exit to reflect off a small part of the light to a screen.
A polarizer (at 45◦ to the vertical) kept in front of the screen
permits interference between light from the the two arms.
Mirror M2 was adjusted to obtain a single bright fringe on the
screen. (A bright fringe corresponds to light beams from both
arms exiting the stage in phase, and a dark fringe corresponds
to the two beams being exactly out of phase. Permitting both
bright and dark fringes on to a detector for measurement would
then wash out the interference effect, as, in that case, an average
intensity distribution would be obtained.)

The AOM was then switched on, and the spectrum of the
light from a single stage was viewed using the FPI. As the
AOMs operate typically at 80%; efficiency (which, on double
pass, reduces to about 60%;), the beams in the two arms suffer
unequal loss, as only one of them passes through an AOM.
To compensate for this and other losses (e.g., arising due
to imperfect polarization optics), filters were appropriately
introduced, to ensure that the two peaks, as seen using the
FPI, were of equal heights. The paths were then matched
across stages, with the AOMs switched on. These being in
double-pass configuration, the exit path of light is not altered
whether or not the AOM is switched on. For example, to match
paths across MMI-1 and MMI-2, we examined the light exiting
the second stage using the FPI, initially with mirror M1+ and
mirror M20 blocked, then with these unblocked and M10 and
mirror M2+ blocked instead. The alignment was adjusted till
the spectra in both cases were identical. In a similar fashion,
paths across all pairs of MMIs were aligned.

It is imperative that all rf signals be synchronized to a
common clock to ensure frequency and phase matching. A
slight mismatch in frequencies of two of the AOMs gives rise
to beats in the interference of light beams emerging from these
AOMs. During alignment, the frequencies were intentionally
mismatched, and the alignment optimized for the largest beat
signal. Once aligned, the frequencies were set exactly equal.

C. Results of an N-step quantum walk

The results of our experiment are shown in Fig. 4, as an array
of frames. In each frame, given as a bar graph, is the expected
intensity distribution at different frequencies, as calculated
using Eqs. (2) and (6). Superimposed on these, in the form of
line plots, are the normalized intensities as measured using the
scanning FPI. The first column shows the outcome of an N-step
quantum walk, the second column gives the contribution from
the |X〉-polarized component, and the third column that of
the |Y 〉-polarized component. N increases as we go down a
column. As noted earlier, a single step of the quantum walk
is the sequential operation of C and D. At the right, next
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FIG. 4. Theoretically expected (gray bar) and experimentally obtained (bold curve) outcomes for various steps of the quantum walk in
Fig. 3, with initial state |X〉. The nine rows represent different stages of the walk, as indicated at the right. The total intensity and those of the
X-polarized and Y-polarized components are given in the different columns. The experimentally obtained curves are the normalized Fabry-Perot
measurement of a single scan.

to each row, is given the sequence of operations that were
performed to obtain the intensities given in that row. The match
between theory and experiment is good; the deviations from the
expected values arise mainly from the imperfect polarization
optics.

The input state of light in this experiment was |X〉. The
operator C serves to redistribute the total intensity into the
two components |X〉 and |Y 〉, while the D serves to shift it in
frequency space (see, e.g., the second and third rows in Fig. 4).
The interference therefore occurs at the C operation. This is
clearly illustrated in Fig. 4. As shown, the first indication
of interference occurs at C(DC)2. Comparing the frames in
the rows (DC)2 and C(DC)2, we see that the distribution of
the total intensity is peaked at frequency 1 and looks like
that of a classical random walk. However, the intensity of the
|X〉 component in C(DC)2 shows a suppression at frequency
1 and that for the |Y 〉 component shows an enhancement at
the same frequency over the values in the previous row. This
may be understood as follows: on the completion of steps
(DC)2, the |X〉 component has equal probability at frequencies
0 and 1, and the |Y 〉 at frequencies 1 and 2. Though both
the |X〉 and the |Y 〉 components have nonzero amplitude at
frequency 1, no interference takes place, as they are mutually
orthogonal. In a subsequent operation of C, both |X〉 and |Y 〉
go into superposition states, permitting interference. Thus,
the resulting probability amplitude [after C(DC)2] has a
cancellation in the |X〉 polarization and a reinforcement in
the |Y 〉 polarization. By the next step (DC)3, the asymmetric
nature of the walk is evident in the total intensity.

IV. PHASE MANIPULATION

A phase shift may be imparted to light in an interferometer
by altering the path length, e.g., by moving the end mirror or

introducing a phase retarder. To avoid mechanical operations,
and to enable rapid phase shifts, we make use of the acousto-
optic interaction, where the introduction of a phase shift of
θ to the rf being fed to the AOM will cause the phase of
the nth-order diffracted light to shift by nθ . Light traversing
the AOM arms of our MMIs suffer a first-order diffraction
twice, and thus we can impart a 2θ phase shift by applying a
θ phase shift to the rf. Exploiting this transfer of phase from
the rf to light, we have made a transition from a symmetric
to an asymmetric walk and have also introduced controllable
dephasing, as discussed below. In fact, this method permits
the introduction of identical or nonidentical phase shift to any
select number of AOMs in the setup.

A. Transition from a symmetric to an asymmetric
quantum walk

Linearly polarized light gives rise to an asymmetric walk,
with the displacement being peaked at the high-frequency or
the low-frequency side, depending on whether the input was
polarized along the |X〉 or the |Y 〉. On the other hand, with
circularly polarized light as the input, a symmetric walk is
expected. Usually, the change in linear polarization is achieved
by use of a half-wave plate, while the introduction of helicity
is achieved by use of a quarter-wave plate. These retard one
component with respect to the other. In our experiment, the out-
comes after the first step (DC) for the various input states are

DC|0 ⊗ X〉 = 1√
2
|0 ⊗ X〉 + 1√

2
|1 ⊗ Y 〉, (7)

DC|0 ⊗ Y 〉 = − 1√
2
|0 ⊗ X〉 + 1√

2
|1 ⊗ Y 〉, (8)

DC

∣∣∣∣0 ⊗ X + iY√
2

〉
= 1 − i

2
|0 ⊗ X〉 + 1 + i

2
|1 ⊗ Y 〉. (9)
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FIG. 5. Oscilloscope traces, as a function of time, to show the
effect of the phase noise. (a) Voltage vs time of the trigger pulses.
The trigger pulse increments the phase difference between the AOMs
in MMI-1 and MMI-2 by 10◦ + Mδφ(t), where M lies between 0
and 1 and δφ(t) is a string of random values between −90◦ and
90◦. The corresponding phase shift suffered by light passing through
the AOM is twice as much due to the double-pass. The numbers
at the bottom indicate the phase shift of light with M = 0. (Only
the upward ramp is shown.) The output of the Fabry-Perot is given
as function of time for the cases (b) M = 0, (c) M = 0.5, and
(d) M = 1. Insets: The expanded waveform of a single scan of the
Fabry-Perot showing peaks at three distinct frequencies. Both from
the envelope of (b), (c), and (d) and from the insets, the transition
from the quantum (b) to the classical (d) is evident with increased
dephasing.

We note that in all the cases, the |X〉 component is at frequency
0, while the |Y 〉 component is at frequency 1 after the first
step. The difference in the outcomes for the various input
polarizations is only the relative phase between the |X〉 and
the |Y 〉 components. In our implementation, the same phase
retardation or phase advance may be obtained electronically
by introducing a phase shift in the rf to the AOM in the
first MMI. Thus a transition from the left asymmetric walk,
to the symmetric walk, to the right asymmetric walk can
be achieved electronically. This effect has been illustrated
in Fig. 5, which is explained in detail in the following
section.

B. Controlled dephasing

In a similar fashion, dephasing of the walk may be effected
by introducing arbitrary independent phase shifts to the rf
inputs to the various AOMs. As the first signature of the
quantum walk appears after operation C(DC)2, in the form
of a suppression of the central peak in the |X〉 component
and a corresponding enhancement in the |Y 〉 component, we
illustrate the transition from the quantum to the classical
behavior at this stage. White noise of the desired amplitude is
sampled (at short intervals, t = 500 ns) and added to the phase
of the rf input of one of the two AOMs, leading to relative
dephasing of the light components passing through them.
By controlling the amplitude of the white noise, dephasing
of the quantum walk to different extents is achieved and a
gradual transition from the quantum walk behavior to that for
a classical random walk is demonstrated. The results are shown
in Fig. 5, which includes four oscilloscope traces. The topmost
trace [Fig. 5(a)] is the trigger pulse, which occurs at regular
intervals, T = 2 ms. This causes two things to happen.

(1) A shift in phase, by an amount 10◦ + Mδφ(t), is
introduced to the rf in one of the AOMs. Here M , the amplitude
of the phase noise, lies between 0 and 1; δφ(t), the phase
deviation, is a string of random values between −90◦ and 90◦
and changes very rapidly, i.e., t 	 T .

(2) A single scan of the FPI is initiated, of duration T . The
frequency range of the scan is much larger than the frequency
spread of the walker. As T 
 t ( i.e., the period of the scan is
much larger than the time scale of the random phase jumps),
the scan is essentially a time-averaged recording.

Figures 5(b)–5(d) are the signals recorded for different
values of M when the light, after the operation C(DC)2,
is directed through an |X〉 polarizer onto the scanning FPI.
Figure 5(b) gives the result for the case M = 0, that is, when
there is no relative noise between the two MMIs. Each trigger
pulse increments the phase of the rf to one AOM by 10◦. We
recall here that the phase shift suffered by light is twice that
applied to the rf. The oscilloscope trace shows a number of
spikes. Each spike actually consists of the three peaks recorded
during a single scan of the FPI; the insets give the expanded
trace. Initially, the central peak is suppressed, as is expected in
the quantum walk for the |X〉 component after the operation
C(DC)2. If we advance the phase of the AOM in the first
MMI by π/2 (phase of light by π ), the outcome should
be what would have been obtained had the input been |Y 〉.
This is exactly what we obtain when a 180◦ phase shift has
been applied to the light. An additional phase shift of 180◦ to
the light once again gives the outcome expected for the |X〉
component. When a 90◦ phase shift has been applied to light
in one of the MMIs, the output obtained corresponds to the
quantum walk of circularly polarized light. In this case (i.e.,
C(DC)2), both the |X〉 and the |Y 〉 polarized components have
the same resultant intensities. For a larger number of steps, the
distribution of intensity over frequency for the |X〉 component
is the mirror image of that for the |Y 〉 component.

Figure 5(c) gives the output of the FPI for M = 0.5. The
contrast in the fringes (relative peak heights, i.e., interference
in frequency space) has decreased. In Fig. 5(d), the phase
noise has increased in amplitude to M = 1, and the walk
is now classical: no interference takes place. The output is
independent of the relative phase shifts.
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FIG. 6. (Color online) Multipass modified Michelson interferom-
eter scheme for a compact implementation of the quantum walk of
light in frequency space. B1 is a nonpolarizing beam splitter with a
high reflectivity; H is a half-wave plate, with its fast axis at 22.5◦ to
the |X〉 polarization, used to achieve a Hadamard operation; PBS is
a polarizing beam splitter; and Q’s are quarter-wave plates that have
their fast axes at 45◦ to the |X〉 polarization. A+ and A− are frequency
up-shifting and frequency down-shifting acousto-optic modulators,
D’s are beam dumps used to stop the undiffracted light, L’s are lenses
placed such that the acousto-optic modulators are at their focus, M’s
are mirrors that are normal to the optical axis, and MF’s are mirrors
used to fold the path of light and effect the multipass.

V. DISCUSSION

Our implementation of the quantum walk utilizes a coherent
source. The use of a single-photon source would make our
realization a truly quantum walk. The easiest method to do this
would be to use a highly attenuated light source and postselect
events that satisfy the existence of a single photon in the setup.

In the present experimental setup, the number of optical
components increases linearly as N , the number of steps in
the walk. Further, to achieve a quantum-to-classical transition
for an N-step quantum walk, all interfering paths have to
be decohered, requiring independent phase control of ∼N
AOMs. Both of these disadvantages can be eliminated by
the implementation of a folded geometry as shown in Fig. 6.
This has a single MMI with two additional mirrors and a

nonpolarizing beam splitter with a high reflectivity. Photons
may reach the detector after 0,1,2, . . . ,N steps. The time
taken for a photon to complete an N -step walk is τ =
NτI + τS + τD , where τI is the time taken for a photon
starting from the beam splitter B1 to return to the same point,
having made a single transit of the MMI, τS is the time of
travel from the source to B1, and τD from B1 to the detector.
Photons may be injected at a rate less than 1/τ and the random
phase-shifts timed to within 1/τI intervals to target individual
steps. By careful path matching of path lengths and beam
alignment, one may ensure a cavity implementation leading
to higher probabilities for walks with a large number of steps.
The limited efficiency of AOMs (∼60%; in the double-pass
configuration) would be the main source of loss in MMI-based
schemes.

After N steps, a classical walk has a probability distribution
peaked at the center, while a quantum walker has it peaked at
the end(s). A more uniform spread of the quantum walker is
obtained when a small amount of decoherence is introduced
[14]. This uniform spread is of importance in search-based
algorithms. Our experiment provides a way of introducing
decoherence via dephasing in a controlled manner, and is both
rapid and amenable to electronic control. With the ability to
give different phase shifts to the two basis states, one can
easily create time-dependent coins and time-dependent walk
steps and anisotropic walks.

The quantum walk of a photon in frequency space is an
ideal way of creating a photon in a superposition of frequency
states. Interaction of such a photon with a multilevel atom
would give rise to many interesting variants of superposition
and entanglement, of possible utility in practical applications
like quantum logic gates. For such atom-light entanglement,
a few steps of a quantum walk, as in our experiment, would
suffice, as selection rules for dipole transitions restrict the
number of allowed transitions.
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