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Invalidity of a strong capacity for a quantum channel with memory
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The strong capacity of a particular channel can be interpreted as a sharp limit on the amount of information
which can be transmitted reliably over that channel. To evaluate the strong capacity of a particular channel one
must prove both the direct part of the channel coding theorem and the strong converse for the channel. Here we
consider the strong converse theorem for the periodic quantum channel and show some rather surprising results.
We first show that the strong converse does not hold in general for this channel and therefore the channel does
not have a strong capacity. Instead, we find that there is a scale of capacities corresponding to error probabilities
between integer multiples of the inverse of the periodicity of the channel. A similar scale also exists for the
random channel.
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I. INTRODUCTION

The full channel coding theorem provides a limit on the
rate at which a sender can communicate an encoded message
to a receiver, such that the probability of a decoding error
at the receiver’s side decays exponentially in the number of
channel uses. The theorem is composed of two parts: the
direct part of the theorem, which refers to the construction
of the code, and the converse to the theorem. The direct part
of the quantum channel coding theorem states that using n

copies of the channel, we can code with an exponentially
small probability of error at a rate R = 1

n
log2|M|, provided

R < C in the asymptotic limit, where M denotes the set of
possible codewords to be transmitted over the channel and
C denotes the capacity of the channel. If the rate at which
classical information is transmitted over a quantum channel
exceeds the capacity of the channel, that is, if R > C, then the
probability of decoding the information correctly goes to zero
in the number of channel uses. The latter is known as the strong
converse to the channel coding theorem. The weak converse,
on the other hand, states that if R > C, then the probability
of decoding the information correctly is bounded away from
1; that is, the error probability does not tend to zero, whatever
encoding-decoding scheme is used.

Shannon [1] first proposed the theorem for classical discrete
memoryless channels and the first rigorous proof of the direct
part of the theorem was provided by Feinstein [2] and the
strong converse by Wolfowitz [3].

However, it was observed that the existence of the strong
converse, and therefore strong capacity, for other types of
classical channels does not always hold [4]. See Ahlswede [5]
for a more complete discussion of converse results for various
types of classical channels.

The strong converse to the channel coding theorem for
memoryless classical-quantum channels with product state
inputs was determined independently by Winter [6] and by
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Ogawa and Nagaoka [7]. Their result implies that every
memoryless discrete classical-quantum channel has a strong
capacity which provides a sharp upper bound on the rate at
which classical information can be transmitted over this type
of channel using product states.

Recent results include a proof by Bjelaković and Boche
[8,9] of a full coding theorem for the discrete memoryless
compound classical-quantum channel. Wehner and König [10]
proved the fully general strong converse theorem for a family
of channels; that is, they proved that the strong converse
theorem holds for a family of quantum channels even in the
case when entangled state inputs are allowed.

In this article we relax the assumption that the communica-
tion channel in question is memoryless and we concentrate
on a particular quantum channel with memory, that is, a
channel with correlations between successive channel uses.
In our case the correlations between successive uses of the
channel can be described by a Markov chain. Communication
channels with memory are widely considered to be more
realistic than memoryless channels since real-world channels
may not exhibit independence between successive errors and
correlations are common. Noise correlations are also necessary
for certain models of quantum communication [11]. See, for
example, Kretschmann and Werner [12] and Mancini [13] for
models of quantum memory channels.

The article is organized as follows. We introduce notation
and necessary definitions and define the quantum periodic
channel in Sec. II. In Sec. III we prove that the periodic channel
does not have a strong capacity. The observation relies on a
result which is proved in the Appendix, involving a particular
instance of a periodic channel and consequently the strong
converse does not hold in general for the periodic channel.
In Sec. V we remark on a scale of capacities for the random
channel. We then state and prove the main result involving a
scale of capacities for the channel.

II. PRELIMINARIES

We begin by introducing some notation. A memoryless
channel is given by a completely positive trace-preserving
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(CPT) map � : B(H) → B(K), where B(H) and B(K) denote
the states on the input and output Hilbert spaces H and K,
respectively.

Equivalently, we can describe a classical-quantum channel,
here also denoted �, as a mapping from the classical message
to the output state of the channel on B(K) as follows:

� : X �→ B(K), (2.1)

where the message is first encoded into a sequence belonging
the set X n, where X represents the input alphabet.

We can combine the two mapping descriptions as follows.
We wish to send classical information in the form of quantum
states over a quantum channel �. A (discrete) memoryless
quantum channel, �, carrying classical information can be
thought of as a map from a (finite) set, or alphabet, X into
B(K), taking each x ∈ X to �x = �(ρx), where the input
state to the channel is given by {ρx}x∈X and each ρx ∈ B(H).
Let d = dim(H) and a = |X |.

For a probability distribution P on the input alphabet X ,
the average output state of a channel � is given by

Pσ =
∑
x∈X

P (x)�(ρx). (2.2)

The conditional von Neumann entropy of � given P is defined
by

S(�|P ) =
∑
x∈X

P (x)S(�(ρx)), (2.3)

and the mutual information between the probability distribu-
tion P and the channel � is defined as follows:

I (P ; �) = S(Pσ ) − S(�|P ). (2.4)

An n-block code for a quantum channel � is a pair (Cn,En),
where Cn is a mapping from a finite set of messages M,
of length n, into X n; that is, a sequence xn ∈ X is assigned
to each of the |M| messages, and En is a Positive Operator
Valued Measure (POVM) that is, a quantum measurement, on
the output space K⊗n of the channel �n

xn . The maximum error
probability of the code (Cn,En) is defined as

pe(Cn,En) = max
{
1 − Tr

(
�n

Cn(m)E
n
m

)
: m ∈ M

}
. (2.5)

The code (Cn,En) is called an (n,λ)-code, if pe(Cn,En) � λ.
The maximum size |M| of an (n,λ)-code is denoted N (n,λ).
Define an finite alphabet X and sequences xn = x1, . . . ,xn ∈
X n and let

N (x|xn) = |{i ∈ {1, . . . ,n} : xi = x}| (2.6)

for x ∈ X . The type of the sequence xn is given by the
empirical distribution Pxn on X such that

Pxn (x) = N (x|xn)

n
. (2.7)

Clearly, the number of types is upper bounded by (n + 1)a ,
where a = ∣∣X ∣∣.

A. Coding theorem and strong converse

The strong capacity of a particular channel provides a sharp
threshold on the rate at which information may be transmitted
over that channel with exponentially decreasing probability

of decoding error in the number of channel uses. In order to
establish a strong capacity for a particular channel one must
prove both existence of a capacity achieving code and the
strong converse.

The direct part of the coding theorem for memoryless
quantum channels with product-state inputs was determined
independently by Holevo [14] and Schumacher and West-
moreland [15]. Winter [6] and Ogawa and Nagaoka [7]
independently proved the strong converse for memoryless
quantum channels.

In Sec. III we require a version of the strong converse
theorem proved by Winter [6] which holds for a single
codeword type. We therefore provide this version (Lemma II.1)
below, following both the direct part and the strong converse
theorems for memoryless classical quantum channels as stated
and proved in [6].

Theorem II.1 (direct part). For all λ ∈ (0,1) and δ > 0 there
exists n0(λ,δ) ∈ N such that for all n � n0 and every classical
quantum channel � and probability distribution P on X , there
exists an (n,λ)-code such that the number of messages satisfies

|Mn| � 2n(χ∗(�)−δ), (2.8)

where the Holevo capacity χ∗ is given by

χ∗(�) = sup
P

I (P ; �), (2.9)

the supremum being over all probability distributions P on X .
Theorem II.2 (strong converse). For all λ ∈ (0,1) and all

δ > 0 there exists n1(λ,δ) such that for all n � n1 and every
memoryless classical quantum channel � and the number of
messages of an (n,λ)-code is bounded by

|Mn| � 2n(χ∗(�)+δ). (2.10)

Remark. Winter, in fact, proved a stronger version of these
theorems in which δ is replaced by a constant times 1/

√
n.

In the following we follow the approach of Winter ( [6],
Theorem 13), in which the strong converse is derived from a
bound on the number of codewords of a given type P .

Lemma II.1 (single-type strong converse). For λ ∈ (0,1)
and δ > 0 there exists n1(λ,δ) such that for n � n1, every
(n,λ)-code for which all codewords are of the same type P ,

|Mn,P | � 2n[I (P ; �)+δ]. (2.11)

The strong converse follows immediately from this lemma
using the fact that the number of types is upper bounded by
(1 + n)a (see [16] Lemma 2.2).

Remark. In contrast to the strong converse where the
decoding error goes to 1 exponentially in the number of
channel applications if R > C, the weak converse states that
if R > C, then the probability of decoding the information
correctly is bounded away from 1.

B. Quantum channels with classical memory

Next, we provide definitions needed to describe quantum
channels with classical memory [17]. Let I denote a countable
set and let λi = P (X = i), where X is a random variable taking
values in the state space I . Let Q denote a transition matrix,
with entries labeled qj |i . A discrete time random process
denoted Xn can be considered to be a Markov chain with
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transition matrix Q and initial distribution λ, if and only if the
following holds for i0, . . . ,in−1 ∈ I ,

P (X0 = i0,X1 = i1, . . . ,Xn−1 = in−1)

= λi0qi1|i0qi2|i1 · · · qin−1|in−2 . (2.12)

In Ref. [18] Datta and Dorlas analyze a quantum channel of
length n with Markovian noise correlations, first defined by
Bowen and Mancini [19], as follows:

�n(ρn) =
∑

i0,...,in−1

qin−1|in−2 . . . qi1|i0λi0

(
�i0 ⊗ · · · ⊗ �in−1

)
(ρn),

(2.13)

where qj |i are the elements of the transition matrix of a
discrete-time Markov chain, and {λi} represents an invariant
distribution on the Markov chain.

In Sec. III we analyze a particular channel with classical
memory, namely, the periodic channel. We describe this
channel below.

A periodic channel acting on an n-fold input state can be
described as follows:

�n(ρn) = 1

L

L−1∑
i=0

(�i ⊗ �i+1 ⊗ · · · ⊗ �i+n−1)(ρn), (2.14)

where �i are CPT maps acting on the same Hilbert space and
the index is cyclic, modulo the period L, that is, �i+L = �i . In
this case the elements of the corresponding transition matrix
are given by qj |i = θi,j , where

θi,j =
{

1, if j = i + 1 mod L,

0, otherwise.
(2.15)

The product-state capacity of the channel, denoted Cp is given
by

Cp(�) = 1

L
sup
P

L−1∑
i=0

I (P ; �i). (2.16)

The proof of the direct part of the channel coding theorem
for the periodic quantum channel is provided in Appendix B
of [20]. This is, in fact, a special case of the main result proved
by Datta and Dorlas in Ref. [18]. Note that the proof of the
direct part of the coding theorem for this channel makes use
of a preamble to the code which the receiver uses upon receipt
to determine which branch of the channel was selected.

Another channel of the general type (2.13) is the random
channel. It is given by

�n(ρn) =
M∑
i=1

qi �⊗n
i (ρn), (2.17)

where �i (i = 1, . . . ,M) are CPT maps acting on the same
Hilbert space and q1, . . . ,qM is a probability distribution. In
this case the elements of the corresponding transition matrix
are given by qj |i = δij . It was shown in Ref. [21] that the
product state capacity of this channel is given by

Cp(�) = sup
P

M
min
i=1

I (P ; �i). (2.18)

We remark on this channel, which like the periodic channel
has long-term memory, in Sec. V.

III. CHANNEL WITHOUT A STRONG CONVERSE

The strong converse for the periodic quantum channel does
not hold in general because the following inequality holds:

Cp < Cp, (3.1)

where

Cp = 1

L

L−1∑
i=0

sup
P

I (P,�i). (3.2)

The strict inequality above can be shown explicitly for
a periodic channel consisting of two branches of qubit
amplitude-damping channels (see the Appendix below for
detailed proof). On the other hand, equality for expression (3.1)
can be shown to hold for a periodic channel with depolarizing
channel branches [22].

Let us now investigate whether we can prove a full coding
theorem for rates R such that

Cp < R < Cp. (3.3)

We first define the average probability of error as follows:

pe = 1

L

L−1∑
i=0

pi
e � λ, (3.4)

where pi
e denotes the probability of error for the ith channel

branch.
Our coding strategy is as follows. We choose a code,

that is, a particular encoding-decoding scheme, suitable for a
particular channel branch labeled by the index i ∈ {0, . . . ,L −
1}. Here a “branch” is defined as one term in the sum (2.14),
that is, �

(n)
i = �i ⊗ �i+1 ⊗ · · · ⊗ �i+n−1. According to the

coding theorem for memoryless channels, there is a code with
error probability tending to zero for this branch with rate R.
Indeed, for each j there exists a probability distribution Pj

of states optimizing χ∗
j = supP I (P ; �j ) and we can choose

states from a typical subspace for these distributions, which can
be interlaced at the positions j − i + kL, where k ∈ [ n

L
− 1].

The probability of choosing a particular branch correctly is
given by 1

L
and therefore the probability of error approaches

pe = L − 1

L
< 1. (3.5)

We thus have a λ-code for all λ > 1 − 1
L

. In particular, the error
probability is bounded away from 1, and the strong converse
does not hold.

On the other hand the strong converse does hold for
R > Cp. Indeed, the codewords can be decomposed into
sub-codewords corresponding to the different stages of a
period: xn = (xn

0 , . . . ,xn
L−1), where the components of the xn

i

are understood to be interlaced in xn. We distinguish types
P0, . . . ,PL−1 for the sub-codewords. Then we have an analog
of the single-type strong converse given by Lemma II.1.

Lemma III.1. For λ ∈ (0,1) and δ > 0 there exists n1(λ,δ)
such that for n � n1, every (n,λ)-code for which all sub-
codewords are of the same type P0, . . . ,PL−1, given that the
ith branch is selected,

|Mn,P0,...,PL−1 | � 2
n
L

∑L−1
k=0 [I (Pk ; �i+k )+δ]. (3.6)
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Clearly, for the complete channel, it follows that the number
of codewords such that the sub-codewords are of types
P0, . . . ,PL−1, satisfies

|Mn,P0,...,PL−1 | � 2
n
L

∑L−1
k=0 [supP I (P ;�i+k )+δ]. (3.7)

Summing over the types, we obtain the strong converse.
We can conclude that the strong converse holds for rates

R > Cp.

IV. A SCALE OF CAPACITIES

The above obviously raises the question of whether smaller
error probabilities can be attained for smaller rates, but still
above Cp. For this, we define a “pair capacity” C (2)

p as follows:

C (2)
p = 1

2L
max

0�i1<i2<L

L−1∑
k=0

sup
P

[I (P ; �i1+k) + I (P ; �i2+k)].

(4.1)

Suppose the maximum is attained at a certain pair (i1,i2).
With probability 2/L, one of the two branches i1 or i2 is
chosen. We attach a preamble to the code as in the proof of the
product-state capacity of the periodic channel (2.16). If, for
example, the branch i1 is selected by the channel, the receiver
can determine that this is the case by measuring the preamble
and can then choose states for each value of k from the typical
space corresponding to the maximizing distribution Pk for
the CPT map �i1+k . This constitutes an encoding with rate
given by the average of the mutual information I (P ; �i1+k)
for k = 0, . . . ,L − 1, which is greater than or equal to the pair
capacity C (2) given by Eq. (4.1). We have thus constructed a
λ-code for λ > 1 − 2

L
.

On the other hand, let R > C (2)
p and suppose that (Cn,En)

is a sequence of (n,λ)-codes with λ < 1 − 1
L

, and assume that

1

n
log2|Mn| � R > C (2)

p . (4.2)

First note that we may assume that the number of codewords
with sub-codewords of types P0, . . . ,PL−1 is bounded by

1

n
log2|Mn,P0,...,PL−1 | � 1

L

L−1∑
k=0

[I (Pk,�i+k) + δ] (4.3)

for some fixed i = 0, . . . ,L − 1. Indeed, otherwise, by
Lemma III.1, pi

e > λ for all i and hence pe > λ.
We now claim that for every other j �= i, and ε > 0 small

enough,

1

n
log2|Mn,P0,...,PL−1 | >

1

L

L−1∑
k=0

[I (Pk,�j+k) + ε]. (4.4)

If this were not the case then the pair capacity for a single type
Pk can be written as

1

n
log2|Mn,P0,...,PL−1 | � 1

2L

L−1∑
k=0

[I (Pk,�i+k)

+ I (Pk,�j+k) + δ] (4.5)

and hence

1

n
log2|Mn,P0,...,PL−1 | � 1

2L

L−1∑
k=0

(
sup
P

{I (P,�i+k)

+ I (P,�j+k)} + δ
)
. (4.6)

Summing over the types P0, . . . ,PL−1 leads to a contradiction
with (4.2).

Now, expression (4.4) implies with Lemma III.1 that, if the
j th branch is selected by the channel, then the error probability
p

j
e > 1 − η for any η > 0. Since with probability 1 − 1

L
one

of the branches j other than i is selected, we conclude that the
error probability pe > (1 − 1

L
)(1 − η) > λ if η < 1 − 1

L
− λ

is small enough.
It is now clear that this argument can be generalized to

prove the following theorem.
Theorem IV.1. Define, for r = 1, . . . ,L, a scale of capacities

C(r)
p by

C(r)
p = 1

rL
max

0�i1<···<ir<L

L−1∑
k=0

sup
P

r∑
m=1

I (P ; �im+k). (4.7)

(Note that C(1)
p = Cp and C(L)

p = Cp.) Then, if λ > 1 − r
L

and
R < C(r)

p , there exists a sequence of (n,λ)-codes with rate
R. Conversely, if λ < 1 − r−1

L
, there exists no sequence of

(n,λ)-codes with rate R > C(r)
p .

V. THE RANDOM CHANNEL

The situation for the random channel is similar, but more
complicated due to the fact that different branches can have
different probabilities qi . We can, in general, distinguish break
points at values of the error probability given by

q(�) =
∑
i∈�

qi, � ⊂ {1, . . . ,M}. (5.1)

We have an analog of the detailed theorem for periodic
channels above.

Theorem V.1. Define, for � ⊂ {1, . . . ,M}, a scale of
capacities C�

p by

C�
p = sup

P

min
i∈�

I (P ; �i). (5.2)

Then, if λ > 1 − q(�) and R < C�
p , there exists a sequence

of (n,λ)-codes with rate R.
For the converse to the theorem, we introduce another scale

as follows:

C�
p = sup

P

max
i∈�

I (P ; �i). (5.3)

Then, if λ < 1 − q(�) there exist no (n,λ)-codes with rate
R > C�

p .
The situation is less clear cut than it seems, however. In

fact, not every q(�) is necessarily a point of discontinuity for
the capacity, because C�

p is, in general, not monotonic in the
probabilities q(�)!
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VI. DISCUSSION

One of the most surprising and interesting results which
has emerged from Shannon theory is the observation that
the strong information-carrying capacity of a memoryless
channel is independent of the upper bound on the maximum
error probability of that channel, usually denoted λ. The
independence of the parameter λ is crucial to the existence
of a so-called strong capacity for the channel [3].

The dependency of some channel capacities on this param-
eter λ, including nonstationary discrete memoryless classical
channels, led to the definition of a capacity function [5]. Note
that recently Ahlswede [23] proved that the capacity functions
can now be thought of as so-called capacity-sequences.

For the case of the quantum periodic channel, and also the
random channel, we have shown that an analogous parameter-
dependent capacity can be defined, which takes the form of a
scale of capacities applicable for various ranges of the error
parameter.

Note added. It appears that similar results to ours were
obtained by Datta, Hsieh, and Brandão [24], using different
methods.

APPENDIX: THE PERIODIC CHANNEL WITH
AMPLITUDE-DAMPING CHANNEL BRANCHES

The qubit amplitude-damping channel acting on the state

ρ = ( a b

b 1 − a
) is given by

�amp(ρ) =
(

a + (1 − a)γ b
√

1 − γ

b
√

1 − γ (1 − a)(1 − γ )

)
. (A1)

The expression for the product-state capacity of the qubit
amplitude-damping channel is given as follows,

χ (�amp({pj ,ρj }))

= S

⎡
⎣∑

j

(
pj [aj + (1 − aj )γ ] pjbj

√
(1 − γ )

pjbj

√
(1 − γ ) pj (1 − aj )(1 − γ )

)⎤
⎦

−
∑

j

pj S

(
aj + (1 − aj )γ bj

√
1 − γ

bj

√
1 − γ (1 − aj )(1 − γ )

)
.

(A2)

We now investigate whether the following equation holds
for a periodic channel with two amplitude-damping channel
branches:

1

2
sup

{pj ,ρj }

1∑
i=0

χi({pj ,ρj }) = 1

2

1∑
i=0

sup
{pj ,ρj }

χi({pj ,ρj }). (A3)

Let γ0 and γ1 represent the error parameters for two amplitude-
damping channels �0 and �1, respectively. We have argued
[25] that the Holevo quantity for the qubit amplitude-damping
channel can be increased using an ensemble containing two
mirror-image pure states, each with probability 1

2 . Using this
minimal ensemble we investigate both sides of Eq. (A3), for a
periodic channel with two qubit amplitude-damping channel
branches.

Clearly the left-hand side of Eq. (A3) will be attained
for a single parameter which we denote by amax. However,

the right-hand side of Eq. (A3) cannot be obtained by a
single amax. Instead, the supremum for each channel will
be attained at a different value of the input state parameter
a. We denote by amax0 and amax1 the state parameter that
achieves the product-state capacity for the channels �0 and
�1, respectively. Let χ0(a) and χ1(a) denote the Holevo
quantities of the channels �0 and �1, respectively. Denoting
xi =

√
1 − 4γi(1 − γi)(1 − a2) the eigenvalues for each of the

amplitude-damping channels can be written as

λampi± = 1
2 (1 ±

√
1 − 4γi(1 − γi)(1 − a)2). (A4)

The values for amax0 and amax1 can be determined by separately
solving the following equation for each channel:

dχi(a)

da
= (1 − γi) ln

(
(1 − a)(1 − γi)

a + (1 − a)γi

)

+ 2γi(1 − γi)(1 − a)

xi

ln

(
1 + xi

1 − xi

)
= 0. (A5)

Let χ∗
avg(γ0,γ1,amax0 ,amax1 ) denote the average of the supre-

mum of the Holevo capacities of the channels �0 and �1, that
is,

χ∗
avg

(
γ0,γ1,amax0 ,amax1

) = 1
2

[
χ∗

0

(
amax0

) + χ∗
1

(
amax1

)]
. (A6)

It is not difficult to show that

χ∗(γ0 = 1,γ1,amax) = χ∗
avg

(
γ0 = 1,γ1,amax0 ,amax1

)
. (A7)

Similarly, we can show that

χ∗(γ0,γ1 = 1,amax) = χ∗
avg

(
γ0,γ1 = 1,amax0 ,amax1

)
.

Next, we show separately for (a) γi = 0 and for (b) 0 < γi < 1
that the following inequality holds:

χ∗(γ0,γ1,amax) < χ∗
avg

(
γ0,γ1,amax0 ,amax1

)
. (A8)

(a) Taking γ0 = 0, the expression χ∗(γ0,γ1,amax) becomes

χ∗(γ0 = 0,γ1,amax) = Hbin
(
amax1

)+ Hbin
[(

1 − amax1

)
(1 − γ1)

]
− S[�1(ρamax)]. (A9)

Denoting χ∗
avg(γ0,γ1,amax0 ,amax1 ) by χ∗

avg(γ1) the right-hand
side becomes

χ∗
avg

(
γ1,amax1

) = Hbin
(
amax1

) + Hbin
[(

1 − amax1

)
(1 − γ1)

]
− S

[
�1

(
ρamax1

)]
. (A10)

Clearly, amax0 = 1
2 . To show that amax < amax1 , we must show

that d
da

∑
i χi(a) < 0 at a = amax1 = 1

2 .
For γ0 = 0 the Holevo quantity of the channel �0 becomes

χ0(a) = S

(
a 0

0 (1 − a)

)
− S(ρ). (A11)

However, ρ is a pure state and therefore S(ρ) = 0. Therefore,
from Eq. (A5),

dχ0(a)

da
= ln

(
(1 − a)

a

)
. (A12)

We have previously shown that the maximizing state parameter
for the amplitude-damping channel is achieved at a � 1

2 [25].

042318-5



TONY DORLAS AND CIARA MORGAN PHYSICAL REVIEW A 84, 042318 (2011)

We are considering the case where γ0 �= γ1, that is, γ1 �= 0;
therefore, amax1 > 1

2 . The expression χ0(a) now represents the
binary entropy, H (a), and is therefore maximized at a = 1

2 . It
was shown above that the entropy S(a) is a strictly concave
function for γ0 = 0 and χ0(a) is therefore decreasing at a =
amax1 .

The capacity χ∗
1 (a) is achieved at a = amax1 . Therefore,

dχ1(a)
da

is equal to zero at this point.
We can now conclude that d

da

∑
i χi(a) < 0 when a = amax1

and therefore

χ∗(γ0 = 0,γ1,amax) < χ∗
avg

(
γ0 = 0,γ1,amax0 ,amax1

)
. (A13)

(b) We now show that an inequality exists between the
expressions χ∗(γ0,γ1,amax) and χ∗

avg(γ0,γ1,amax0 ,amax1 ) for
fixed γ0, such that 0 < γ0 < 1.

In Ref. [25] we proved that if γ0 < γ1, then χ (γ0) > χ (γ1),

and therefore amax0 < amax1 . Therefore, dχ0(a)
da

< 0 at a = amax1

and amax < amax1 . Similarly, if γ0 > γ1, then amax0 > amax1 and
dχ0(a)

da
> 0 at a = amax1 and amax > amax1 .

As a result, amax will always lie in between amax0 and
amax1 . We have previously shown [25] that the Holevo quantity
for the qubit amplitude-damping channel is concave in its
single state parameter. Therefore amax > ã, where ã is the
parameter value associated with χ∗

avg(γ,γ1,amax0 ,amax1 ), that is,∑
i supa χi(a) = χ∗

γ0,γ1
(ã). This proves that χ∗(γ0,γ1,amax) <

χ∗
avg(γ,γ1,amax0 ,amax1 ).

In conclusion, if γ0 = 1 or γ1 = 1, then amax = amax0

or amax = amax1 , respectively, and χ∗(γ0,γ1,amax) =
χ∗

avg(γ,γ1,amax1 ,amax1 ). However, if γ0,γ1 �= 1, then
χ∗(γ0,γ1,amax) < χ∗

avg(γ,γ1,amax1 ,amax1 ).
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