
PHYSICAL REVIEW A 84, 042313 (2011)

Quantum discord of two-qubit X states

Qing Chen,1,2,* Chengjie Zhang,1 Sixia Yu,1,2 X. X. Yi,1,3 and C. H. Oh1,†
1Department of Physics and Centre for Quantum Technologies, National University of Singapore, 117543, Singapore

2Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei, 230026 Anhui, China

3School of Physics and Optoelectronic Technology, Dalian University of Technology, 116024 Dalian, China
(Received 9 February 2011; revised manuscript received 8 July 2011; published 6 October 2011)

Quantum discord provides a measure for quantifying quantum correlations beyond entanglement and is very
hard to compute even for two-qubit states because of the minimization over all possible measurements. Recently
a simple algorithm to evaluate the quantum discord for two-qubit X states was proposed by Ali, Rau, and Alber
[Phys. Rev. A 81, 042105 (2010)] with minimization taken over only a few cases. Here we shall at first identify a
class of X states, whose quantum discord can be evaluated analytically without any minimization, for which their
algorithm is valid, and also identify a family of X states for which their algorithm fails. And then we demonstrate
that this special family of X states provides furthermore an explicit example for the inequivalence between the
minimization over positive operator-valued measures and that over von Neumann measurements.
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It is believed that entanglement is an essential resource
in quantum computation and communication. However, there
are also quantum tasks that display the quantum advantage
without entanglement, for example, the deterministic quantum
computation with one qubit [1]. Therefore, there is a need
to consider quantum correlations beyond entanglement [2].
The quantum discord has been introduced by Ollivier and
Zurek [3] and independently by Henderson and Vedral [4] to
quantify quantum correlations. Recently the quantum discord
has attracted much interest in quantum information theory
[5–9], such as its relation with the complete positivity [10]
and local broadcasting of the state [11]. Furthermore, both
Markovian and non-Markovian dynamics of quantum discord
have been analyzed not only in theory but also in experiments
[12–16]. Whether the quantum discord can be more robust
against decoherence [12,13] than entanglement or not [17] is
still an open problem [17].

The quantum discord is always nonnegative [3]. States
with vanishing quantum discord are relatively well understood,
and necessary and sufficient conditions are obtained to detect
nonzero quantum discord [18] as well as nonlinear witnesses
have been proposed both for a given state [19] and an unknown
state [20]. Unfortunately almost all quantum states have
nonzero quantum discords [12], which are notoriously difficult
to compute because of the minimization over all possible
positive operator-valued measures (POVMs) or von Neumann
measurements. In addition to a few analytical results including
the Bell-diagonal states [21], rank-2 states [22], and Gaussian
states [23], a thorough numerical calculation [24] has also
been carried out in the case of von Neumann measurements
for two-qubit states.

For an important family of two-qubit states, the so-called
X states [25], an algorithm has been proposed to calculate
their quantum discord with minimization taken over only a
few simple cases [26], which is unfortunately impeded by a
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counterexample [27]. In this paper we shall at first identify a
vast class of X states, whose quantum discord can be evaluated
analytically without any minimization at all, for which their
algorithm is valid, and also identify a family of X states
Xm, the so-called maximally discordant mixed states [24], for
which the above mentioned algorithm fails. And then for this
family of X states Xm, we construct a POVM showing that the
quantum discord obtained by minimization over all POVMs
is strictly smaller than that over all possible von Neumann
measurements.

For a given quantum state � of a composite system AB, the
total amount of correlations, including classical and quantum
correlations, is quantified by the quantum mutual information
I(ρ) = S(�A) + S(�B) − S(�), where S(�) = −Tr(� log2 �)
denotes the von Neumann entropy, and �A, �B are reduced
density matrices for subsystem A, B, respectively. An al-
ternative version of the mutual information can be defined
as

J̃A(�) = S(�B) − min
{EA

k }

∑
k

pkS(�B|k), (1)

where the minimum is taken over all possible POVMs {EA
k } on

subsystem A with pk = Tr(EA
k �) and �B|k = TrA(EA

k �)/pk .
Since J̃A(�) quantifies the classical correlation, the difference
[4]

D̃A(�) = I(ρ) − J̃A(�) (2)

defines the quantum discord that quantifies the quantum corre-
lation. Also the minimum in Eq. (1) can be taken over all von
Neumann measurements [3], and we denote the corresponding
classical correlation as JA(�) and quantum discord as DA(�),
respectively. Obviously D̃A(�) � DA(�), and it becomes an
equality for some states, such as Bell-diagonal states and a
family of filtered X states [28].

The two-qubit X state usually arises as the two-
particle reduced density matrix in many physical systems
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possessing z-axis symmetry. In the computational basis
{|00〉,|01〉,|10〉,|11〉}, its density matrix

X =

⎛
⎜⎝

�00 0 0 �03

0 �11 �12 0
0 �∗

12 �22 0
�∗

03 0 0 �33

⎞
⎟⎠ (3)

has seven real parameters. Via local unitary transformations,
which preserve the quantum discord, elements �03 and �12 can
be brought into real numbers. Thus there are in fact only five
real parameters, which can be conveniently taken as

x = �00 + �11 − �22 − �33 = Tr
(
σA

z X
)
,

y = �00 − �11 + �22 − �33 = Tr
(
σB

z X
)
,

t = �00 − �11 − �22 + �33 = Tr
(
σA

z σB
z X

)
, (4)

s = 2(�12 + �03) = Tr
(
σA

x σB
x X

)
,

u = 2(�12 − �03) = Tr
(
σA

y σB
y X

)
,

where σA,B
x,y,z are three standard Pauli matrices. The positivity

requires (1 ± t)2 � (x ± y)2 + (s ∓ u)2 with all five param-
eters taking values in the interval [−1,1]. Without loss of
generality we shall assume |s| � |u| in what follows because
we can always change the sign of �03 by a local unitary
transformation.

The quantum discords of some X states have been nu-
merically calculated [14,15,29]. Most recently an algorithm
[26] has been proposed to calculate quantum discord for all
two-qubit X states in which the minimization is taken over
only a few simple cases instead of actually minimizing over
all possible measurements. In the case of a real X state with
|s| � |u|, the algorithm reads: for DA(X )

the optimal observable is either σA
x or σA

z . (5)

Recently a counterexample is found in [27] for this algorithm.
The following theorem identifies a region of parameters of an
X state, whose quantum discord can be evaluated analytically
without any minimization, for which the above mentioned
algorithm is valid.

Theorem. The optimal measurement for the quantum
discord DA(X ) and D̃A(X ) of a real X state X with |s| � |u|
is (i) σA

z if

(|�12| + |�03|)2 � (�00 − �11)(�33 − �22) (6)

and (ii) σA
x if |√�00�33 − √

�11�22| � |�12| + |�03|.
Proof. Considering a general POVM {μk(1 + �nk �σA)}Kk=1

with K � 4 [30] made on the first qubit, where
∑

k μk = 1,
�n2

k = 1, and
∑

k μk �nk = 0, we obtain the outcome k with
probability pk = μk(1 + xnkz). The second qubit is in the
conditioned state

XB|k = 1 + xnkz + snkxσ
B
x + unkyσ

B
y + (y + nkzt)σB

z

2(1 + xnkz)
. (7)

By denoting h(w) = − 1+w
2 log2

1+w
2 − 1−w

2 log2
1−w

2 and
�k = (1 − n2

kz)s
2 + (y + nkzt)2, we obtain

∑
k

pkS(XB|k) �
∑

k

pkh

(
μk

√
�k

pk

)
:= SX , (8)

where the inequality is due to the function h(w) being a
decreasing function for w � 0, and the equality can be attained
by taking nky = 0,∀ k. Note that in the case of von Neumann
measurements, any observable σA

n not in the x-z plane the
observable σA

n′ with �n′ = (
√

1 − n2
z,0,nz) will yield a smaller

value. Thus the optimal von Neumann measurement must lie
in the x-z plane.

By denoting λk± = μk(1 + xnkz ± √
�k)/2 and its

marginal λk = λk+ + λk− = μk(1 + xnkz), we obtain

SX =
∑

k

λk log2 λk −
∑
k±

λk± log2 λk±. (9)

In the following we will find out the minimum of SX for
fixed {μ1, . . . ,μK}. Since

∑
k μk = 1 and μk � 0, we can

suppose without loss of generality that μK > 0. Because
of the condition

∑
k μknkz = 0, we can regard nKz as a

function of K − 1 independent variables nkz := nk with k =
1,2, . . . ,K − 1. Therefore SX is a multivariable function of
nk with k = 1, . . . ,K − 1, and its Hessian matrix, whose
elements are Wij = ∂2SX

∂ni∂nj
, reads

Wij

ln 2
=

K∑
k=1

λi
kλ

j

k

λk

−
K∑

k=1,±

λi
k±λ

j

k±
λk±

−
∑
k±

λ
ij

k± ln λk±

= −
K∑

k=1

�i
k�

j

k

λkλk+λk−
− s2(t2 − y2 − s2)

2

×
⎛
⎝δijμi√

�3
i

ln
λi+
λi−

+ μiμj

μK

√
�3

K

ln
λK+
λK−

⎞
⎠ , (10)

where λi
k±= ∂λk±

∂ni
, λ

ij

k±= ∂2λk±
∂ni∂nj

, and �i
k = λk−λi

k+ − λk+λi
k−.

If t2 � y2 + s2, which is equivalent to Eq. (6), the matrix W is
always negative semidefinite; thus the conditional entropy SX
is a concave function of niz. Therefore the minimum of SX is
attained on the boundary, i.e., niz = −1 or niz = 1,∀ i. Thus
for every given {μ1, . . . ,μK}, the optimal measurement is σA

z ,
which proves the first case of the theorem. For the proof of the
second case, we refer to [28]. �

As the first example we consider the Bell-diagonal states for
which we have x = y = 0. If |t | � |s| then we have case (i) so
that the optimal observable is σz, and if |t | � |s| then we have
case (ii) so that the optimal observable is σx (recalling that we
have assumed |s| � |u|); both reproduce the result in [21]. As
the second example we consider a 2-parameter family of X

states

X3 =

⎛
⎜⎝

ε/2 0 0 ε/2
0 (1 − ε)m 0 0
0 0 (1 − ε)(1 − m) 0

ε/2 0 0 ε/2

⎞
⎟⎠ , (11)

with 0 � ε and 2m � 1. In this case we have x = −y = (1 −
ε)(2m − 1), s = −u = ε, and t = 2ε − 1. According to the
two cases in the theorem, the optimal observable is σx or σz in
the case of BX(m,ε) � 0 or BZ(m,ε) � 0, respectively, where

BX(m,ε) =
√

m(1 − m) − ε

1 − ε
, (12)

BZ(m,ε) = ε

1 − ε
− 2m(1 − m). (13)
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FIG. 1. (Color online) Optimal observable for the state X3

parameterized by m and ε is (i) σx if BX(m,ε) � 0 (top red region)
or (ii) σz if BZ(m,ε) � 0 (bottom blue region). The black curve
corresponds to the state Xm.

If ε � 1/3 we have BX(m,ε) � 0, and if ε � 1/3 we have
illustrated in Fig. 1 those two regions (top red and bottom
blue) of parameters for which the optimal observable is either
σx or σz and in these regions the algorithm (5) is valid.

However there also exists a region (white) of parame-
ters about which our theorem does not say anything. To
find out the quantum discord DA(X3) in this region, we
have to do numerical calculations. Taking into consideration
the eigenvalues λ(X3) = {ε,(1 − ε)m,(1 − ε)(1 − m),0} and
λ(TrBX3) = {(1 ± x)/2}, we obtain the value

Dθ = SX3 (cos θ ) + h(x) − h(t) − (1 − ε)h(2m − 1) (14)

after the measurement of the observable along an arbitrary
direction �n = (sin θ,0, cos θ ) in the x-z plane. Here SX3 (cos θ )
is defined in Eq. (8) with nz = cos θ . The minimization
of Dθ over all possible angles gives the quantum discord,
i.e., DA(X3) = minθ Dθ := Dθopt . We note that D0 = ε and

SX3 (0) = h(
√

y2 + ε2).
A detailed numerical search for DA(X3) in the ranges

m ∈ [0.1,0.102] and ε ∈ [0.227,0.229] has been carried out
with results shown in Fig. 2. The parameters for which the
optimal observable is σx or σz are highlighted in red (top) or
blue (bottom), respectively. However these two regions are
separated by an intermediate region for which the optimal
observable is neither σx nor σz. As a result, though valid for
most of the parameters, the algorithm (5) fails for a region
with a finite measure. Moreover our numerical search shows
that there are about 0.05% of 5 × 107 randomly chosen X

states satisfying s = u that violate the algorithm (5). In our
search the difference between the true value of DA(X ) and
min{D0,Dπ

2
} can reach as high as 0.0029 in the case of

x = −0.8812, y = 0.9407, s = 0.2898, and t = −0.9383.
In particular we have considered in more detail a subfamily

of the X state Xm of X3 with ε determined by the condition
D0 = Dπ

2
, or more explicitly

h(
√

x2 + ε2) + h(x) − h(t) − (1 − ε)h(2m − 1) = ε, (15)

FIG. 2. (Color online) Optimal observable σx sin θopt + σz cos θopt

for the quantum discord DA(X3).

recalling that x = (1 − ε)(2m − 1) and t = 2ε − 1. This spe-
cial family of X states Xm is exactly a family of so-called
maximal discordant states investigated in [24]. As a function
of m the solution ε(m) of the above equation is plotted as a
black curve in Fig. 1.

In Fig. 3 the optimal angle θopt (solid blue line) and the
difference � = D0 − Dθopt (dashed red line) are plotted as
functions of ε. As ε(m) increases, � increases at first from 0
to its maximum of about 1.07 × 10−4 at ε 
 0.115699 and
then decreases to zero. Except at the end points (m,ε) =
(0,0),(1/2,1/3) for which any observable is optimal, we have
� > 0 which means that σx and σz are not optimal. Most
interestingly the optimal angle θopt takes values in [0,π/4]
continuously. This fact strengthens the theorem proposed in
Ref. [27], i.e., it is impossible to find a universal finite set of
optimal von Neumann measurements even for the real X states.
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FIG. 3. (Color online) As the functions of ε, the optimal angle
θopt for DA(Xm), the difference � = ε − DA(Xm), and the difference
�̃ = ε − D̃

upper
A (Xm) are plotted in solid blue, dashed red, and dotted

red curves, respectively.
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FIG. 4. (Color online) J -D diagram for Xm with its quantum
discord taken as D0 (as in [24]) (solid black line), Dθopt (dashed red
line), and D̃

upper
A (Xm) (dotted red line).

In Ref. [24], by maximizing the quantum discord for
given classical correlations over all states X3, whose quantum
discord is taken to be min{D0,Dπ

2
}, the stateXm turns out to be

a family of a maximally discordant mixed state that lies on the
boundary of the J -D diagram of the classical correlation vs
quantum discord. Since DA(Xm) < min{D0,Dπ

2
} except at the

endpoints, the J -D diagram for Xm is shifted right downward
as shown in Fig. 4. Thus whether the state Xm is still on
the boundary or not needs further numerical calculation to
substantiate.

Finally let us consider the quantum discord D̃A(Xm)
obtained by minimization over all possible POVMs. For each
given state Xm there is an optimal angle θopt for DA(Xm)
obtained by von Neumann measurements, and we perform a
3-outcome POVM {μk(1 + �nk �σA)}3

k=1 made on the first qubit

on the subsystem A, where

μ1 = cos θopt

1 + cos θopt
, �n1 = {0,0, − 1},

μ2 = 1

2(1 + cos θopt)
, �n2 = {sin θopt,0, cos θopt}, (16)

μ3 = 1

2(1 + cos θopt)
, �n3 = {− sin θopt,0, cos θopt}.

We denote by D̃
upper
A (Xm) the corresponding suboptimal value

for the quantum discord and obviously D̃A(Xm) � D̃
upper
A (Xm).

The difference �̃ = D0 − D̃
upper
A (Xm) is shown in Fig. 3 as a

dotted red line, and we have � < �̃ (except at end points),
which means that the J -D diagram for Xm must be shifted
further right downward as shown in Fig. 4 by the dotted red
line. The boundaries of the J -D diagrams for POVMs and
von Neumann measurements would be different if Xm were
still the maximally discordant states.

To summarize, we have presented some positive results as
well as negative results on the quantum discord of an X state.
We have identified a vast class of X states whose quantum
discords can be evaluated analytically and also a family of
maximally discordant mixed states Xm that invalidate the
algorithm [26]. If the state Xm were still on the boundary of
the J -D diagram [24], then this part of the boundary would be
shifted right downward and even further for POVMs. Thus the
state Xm provides an explicit example for the inequivalence
between the minimization over POVMs and that over von
Neumann measurements for X states. Recently, more examples
[31] have been given.
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