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(Received 24 July 2011; published 6 October 2011)

We study the superdense coding capacity in the presence of quantum channels with correlated noise. We
investigate both the cases of unitary and nonunitary encoding. Pauli channels for arbitrary dimensions are treated
explicitly. The superdense coding capacity for some special channels and resource states is derived for unitary
encoding. We also provide an example of a memory channel where nonunitary encoding leads to an improvement
in the superdense coding capacity.
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I. INTRODUCTION

Superdense coding is one of the notable areas in which
quantum entanglement plays a crucial role. By this protocol,
due to the nonlocal properties of quantum entanglement, it is
possible to communicate two bits of classical information by
sending one qubit only [1]. The first attention, after proposing
the superdense coding protocol, was given to various scenarios
over noiseless channels and unitary encoding [2–4]. In this
case one starts from a d2-dimensional bipartite shared state
ρ between the sender Alice and the receiver Bob. Alice
performs with probability pi a local unitary operation Wi

on her subsystem to encode classical information through
the state ρi = (Wi ⊗ 1)ρ(Wi

† ⊗ 1). Subsequently, she sends
her subsystem to Bob (ideally via a noiseless channel). The
ensemble that Bob receives is {ρi,pi}. The maximal amount
of classical information that can reliably be transmitted in this
process is known as superdense coding capacity. It has been
shown that for noiseless channels and unitary encoding, the
capacity is given by C = log2 d + S(ρb) − S(ρ) [2,5]. Here,
ρb is Bob’s reduced density operator with ρb = tra ρ, and
S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy. Without
the additional resource of entangled states, a d-dimensional
quantum state can be used to transmit the information log2 d.
Hence, quantum states for which S(ρb) − S(ρ) > 0, i.e., those
which are more mixed locally than globally, are the useful
states for superdense coding.

A realistic quantum system usually suffers from unwanted
interactions with the outside world. Optical fibers and an
unmodulated spin chain [6] are examples of such quantum
channels which are suitable for long- and short-distance
quantum communication, respectively. Superdense coding in
the situation when the quantum states experience noise in the
transmission channels was studied in [7]. In [7] uncorrelated
noise (i.e., memoryless channels) was discussed. For those
cases (channels and states) where the von Neumann entropy
fulfills a specific condition, the superdense coding capacity
was derived. Explicitly, for the two-dimensional uncorrelated
depolarizing channel, it was shown that Alice and Bob do not
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win by sending classical information via a superdense coding
protocol with unitary encoding if there is too much noise.

In this paper, memory effects along the transmission
channel are taken into account. In this scenario the noisy
channel acting on two subsystems cannot be expressed
as a product of two independent channels acting on each
subsystem separately. In particular, we investigate the bipartite
superdense coding scenario for a correlated Pauli channel and
unitary or nonunitary encoding. Such kinds of channels were
originally analyzed from the point of view of optimization of
the classical information transmission [8–10].

The paper is organized as follows. In Sec. II we review
the Holevo bound as a key concept in finding the superdense
coding capacity. We discuss the mathematical definition of the
Holevo quantity in the presence of an arbitrary channel �.
Section III is devoted to the superdense coding capacity in the
presence of a correlated Pauli channel and unitary encoding.
We give examples of correlated channels and initial states
for which the capacity is explicitly determined. Section IV
is dedicated to the correlated Pauli channel and nonunitary
encoding. We compare the capacities related to both unitary
and nonunitary encoding and also discuss a case where
nonunitary encoding has an advantage over unitary encoding.
Finally, in Sec. V, we summarize the main results.

II. CAPACITY OF SUPERDENSE CODING

The performance of a given composite state ρ for super-
dense coding is usually quantified by the Holevo quantity,
maximized over all possible encodings on Alice’s side. A
theorem stated by Gordon [11] and Levitin [12], and proved
by Holevo [13], states that the amount of accessible classical
information (Iacc) contained in an ensemble {ρi,pi} is upper
bounded by the so-called χ quantity χ ({ρi,pi}), often also
referred to as the Holevo quantity. This upper bound holds for
any measurement that can be performed on the system and is
given by

Iacc � χ ({ρi,pi}) ≡ S(ρ) −
∑

i

piS(ρi), (1)

where ρ = ∑
i piρi is the average ensemble state and S(η) =

−tr(η log2 η) is the von Neumann entropy of η. From the
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concavity of the von Neumann entropy S(ρ), it follows that
the Holevo quantity is non-negative. The Holevo bound (1) is
achievable in the asymptotic limit [14,15].

A. Holevo quantity in the presence of noise

A quantum channel is a communication channel which can
transmit quantum information. Physically, a noisy quantum
channel is a communication channel that is affected by
interaction with the environment. Mathematically, a noisy
quantum channel can be described as a completely positive
trace preserving (CPTP) map acting on the quantum state that
is transmitted. We consider � : ρi → �(ρi) to be a CPTP map
that acts on the encoded state ρi = (Wi ⊗ 1)ρ(Wi

† ⊗ 1). For
{�(pi,ρi)} being the ensemble that Bob receives, the Holevo
quantity is given by

χ{�(ρi,pi)} = S(�(ρ)) −
∑

i

piS(�(ρi))

=
∑

i

piS(�(ρi)‖�(ρ)), (2)

where �(ρ) = ∑
i pi�(ρi) is the average state after transmis-

sion through the noisy channel and S(ρ ‖ σ ) = trρ(log2 ρ −
log2 σ ) is the relative entropy. The superdense coding capacity
C for a given resource state ρ and the noisy channel � is
defined to be the maximum of the Holevo quantity χ{�(pi,ρi)}
with respect to the unitary operators Wi , chosen with the
probabilities pi , namely,

C = max
{Wi,pi }

[χ{�(pi,ρi)}]

≡ max
{Wi,pi }

[
S(�(ρ)) −

∑
i

piS(�(ρi))

]
. (3)

In the following, we will concentrate on the optimization of
the Holevo quantity in order to find the superdense coding
capacity.

III. SUPERDENSE CODING VIA CORRELATED
PAULI CHANNELS

We will now consider quantum channels with memory,
where noise in consecutive uses of the channel is correlated.
We specifically consider correlated Pauli channels [8–10],
modeled as follows. Consider first a single Pauli channel,
whose action on a d-dimensional density operator ξ is given
by

�P(ξ ) =
d−1∑

m,n=0

qmnVmnξV †
mn, (4)

where qmn are probabilities (i.e., qmn � 0 and
∑

mn qmn = 1).
The unitary displacement operators Vmn are defined as

Vmn =
d−1∑
k=0

exp

(
2iπkn

d

)
|k〉〈k + m(mod d)|. (5)

The above operators satisfy trVmn = dδm0δn0 and VmnV
†
mn = 1,

and commute up to a phase,

VmnVm̃ñ = exp

(
2iπ (ñm − nm̃)

d

)
Vm̃ñVmn. (6)

As the operators Vmn in Eq. (4) are unitary, the Pauli channel
is unital, i.e., it preserves the identity. Now, let �P

a and �P
b

be two d-dimensional Pauli channels (4) with the elements
{qmn,Vmn} and {qm̃ñ,Vm̃ñ}, respectively. Based on the elements
of these two channels, a model of a correlated Pauli channel is
defined as

�P
ab(ξ ) =

d−1∑
m,n,m̃,ñ=0

qmnm̃ñ(Vmn ⊗ Vm̃ñ)ξ (V †
mn ⊗ V

†
m̃ñ), (7)

where the probability qmnm̃ñ is given by qmnm̃ñ = (1 −
μ)qmnqm̃ñ + μqmnδm,m̃δn,ñ, and the parameter μ (0 � μ � 1)
quantifies the correlation degree. For μ = 0 the two channels
�P

a and �P
b are uncorrelated and act independently on Alice’s

and Bob’s subsystems, respectively. For μ = 1, the global
channel (7) is called fully correlated and for other values of
μ, different from zero and one, the global channel is partially
correlated.

For a single sender, a single receiver, and a correlated Pauli
channel as well as unitary and nonunitary encoding, we derive
two explicit expressions for the superdense coding capacity.
We show that both unitary and nonunitary encoding problems
reduce to the problem of finding a single CPTP map (in the case
of unitary encoding this is a specific unitary transformation)
that minimizes the output von Neumann entropy after its
application and the action of the channel on the input state
ρ. For the case of unitary encoding we find examples for the
optimal unitary operator.

A. Unitary encoding

This section treats the optimization of the Holevo quantity
for a correlated Pauli channel and unitary encoding. We first
introduce an upper bound on the Holevo quantity and we then
show that this upper bound is reachable and thus coincides with
the superdense coding capacity. This procedure is phrased in
the following lemma.

Lemma 1. Let

χ = S
(
�P

ab(ρ)
) −

∑
i

piS
(
�P

ab(ρi)
)

(8)

be the Holevo quantity with ρi = (Wi ⊗ 1)ρ(Wi
† ⊗ 1), the

average state �P
ab(ρ) = ∑

i pi�
P
ab(ρi) and �P

ab the correlated
Pauli channel defined via Eq. (7). Let Umin be the unitary
operator that minimizes the von Neumann entropy after
application of this unitary operator and the channel �P

ab
to the initial state ρ, i.e., Umin minimizes the expression
S(�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))). Then the superdense coding

capacity CP
un is given by

CP
un = log2 d + S

(
�P

b (ρb)
)

− S
(
�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))

)
, (9)
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where ρb = tra ρ and �P
b is the d-dimensional Pauli channel

(4) on Bob’s subsystem. The subscript “un” refers to unitary
encoding.

Proof: We start by introducing an upper bound on the
Holevo quantity (8). Since Umin is a unitary operator that leads
to the minimum of the output von Neumann entropy, for χ we
have

χ � S
(
�P

ab(ρ)
) − S

(
�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))

)
.

The von Neumann entropy is subadditive and the maximum
entropy of a d-dimensional system is log2 d. Therefore we can
write

χ � log2 d + S
(
tra�

P
ab(ρ)

)
− S

(
�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))

)
= log2 d + S

(
�P

b(ρb)
)

− S
(
�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))

)
, (10)

where we have used that tra �P
ab(ρ) = �P

b (ρb). This statement
can be proved as follows. By using the definition of a correlated
Pauli channel (7) and of the average state, and noting that Wi

acts on Alice’s side, we have

tra �P
ab(ρ) =

∑
i

pi

d−1∑
m,n,m̃,ñ=0

qmnm̃ñtra[(Vmn ⊗ Vm̃ñ)

× (Wi ⊗ 1)ρ(Wi
† ⊗ 1)(V †

mn ⊗ V
†
m̃ñ)]

=
∑

i

pi

d−1∑
m,n,m̃,ñ=0

qmnm̃ñVm̃ñρbV
†
m̃ñ

=
∑
m̃ñ

qm̃ñVm̃ñρbV
†
m̃ñ = �P

b(ρb), (11)

which completes this part of the proof. To show that the
upper bound (10) is achievable, we consider the ensemble
{p̃i = 1

d2 ,Ũi = ViUmin} with Vi(=mn) being the displacement
operators of Eq. (5). The Holevo quantity for this ensemble is
denoted by χ̃ and is given by

χ̃ = S

(∑
i

1

d2
�P

ab((Ũi ⊗ 1)ρ(Ũi
† ⊗ 1))

)

−
∑

i

1

d2
S
(
�P

ab((Ũi ⊗ 1)ρ(Ũi
† ⊗ 1))

)
. (12)

In [2], for an arbitrary bipartite state τ , it was shown that
1
d2

∑
i(Vi ⊗ 1)τ (Vi

† ⊗ 1) = 1
d

⊗ traτ . By using this property,
and noting that Umin acts only on Alice’s side, we find that the
argument in the first term on the right-hand side of Eq. (12) is
given by

∑
i

1

d2
�P

ab((Ũi ⊗ 1)ρ(Ũi
† ⊗ 1))

= �P
ab

∑
i

1

d2
[(ViUmin ⊗ 1)ρ(U †

minVi
† ⊗ 1)]

= �P
ab

(
1

d
⊗ ρb

)
= 1

d
⊗ �P

b (ρb). (13)

Furthermore, the second term on the right-hand side of Eq. (12)
can be expressed in terms of the unitary operator Umin and
the channel. By inserting the action of the correlated Pauli
channel, using Eq. (6), from which follows that Vi(=jk) and Vmn

commute up to a phase, and since the von Neumann entropy
is invariant under unitary transformation, we can write

∑
i

1

d2
S
(
�P

ab(Ũi ⊗ 1)ρ(Ũi
† ⊗ 1)

)

= 1

d2

∑
kj

S

(
(Vjk ⊗ 1)

[ ∑
m,n,m̃,ñ

qmnm̃ñ(Vmn ⊗ Vm̃ñ)

× (Umin ⊗ 1)ρ(U †
min ⊗ 1)(V †

mn ⊗ V
†
m̃ñ)

]
(V †

jk ⊗ 1)

)

= S
(
�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))

)
. (14)

Inserting Eqs. (13) and (14) into Eq. (12), one finds that
the Holevo quantity χ̃ is equal to the upper bound given
in Eq. (10) and consequently, this is the superdense coding
capacity. �

By Lemma 1, we proved that in order to determine the
superdense coding capacity, it is enough to find an optimal
Umin that minimizes the channel output von Neumann entropy
S(�P

ab((Umin ⊗ 1)ρ(U †
min ⊗ 1))). In the next two sections we

give examples of channels and initial states for which Umin

can explicitly be determined.

B. Correlated quasiclassical channel

A d-dimensional quasiclassical depolarizing channel (or
simply quasiclassical channel) is a particular form of a d-
dimensional Pauli channel [9,10], as given in Eq. (4). For this
channel, the probabilities of the displacement operators Vmn

are equal for m = 0 and any phase shift labeled by n, and they
differ from the rest of the probabilities which are also equal,
i.e.,

qmn =
{

1−p

d
, m = 0

p

d(d−1) , otherwise.
(15)

The quasiclassical channel is characterized by a single proba-
bility parameter 0 � p � 1. With probability p, a displace-
ment occurs and with probability 1 − p, no displacement
occurs to the quantum signal. As in the classical case, p can
also be seen as the amount of noise in a channel.

In the following we will consider as a resource
state a Werner state ρw = η|�+〉〈�+| + 1−η

4 1 with |�+〉 =
1√
2
(|00〉 + |11〉). In the presence of a correlated quasiclassical

channel, as defined via Eqs. (7) and (15), we find Umin.
Thus the dimension is d = 2. For two-dimensional systems
the displacement operators, defined in Eq. (5), are either the
identity or the Pauli operators, i.e.,

σ0 =
(

1 0

0 1

)
, σ1 =

(
0 1

1 0

)
,

(16)

σ2 =
(

0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.
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The correlated quasiclassical channel is in this case

�
Q
ab(ξ ) =

∑
m,n

qmnσm ⊗ σn(ξ )σm ⊗ σn, (17)

where qmn = (1 − μ)qmqn + μqnδmn with q0 = q3 = 1−p

2 and
q1 = q2 = p

2 . To find Umin, we start with the most general
2 × 2 unitary operator U

U =
(

a b

−b∗ a∗

)
, (18)

where a and b are complex variables which satisfy |a|2 +
|b|2 = 1. The output of a correlated quasiclassical channel
for an arbitrary input state ρ is invariant under the unitary
transformation σ3 ⊗ σ3 [9], i.e.,

�
Q
ab(ρ) = �

Q
ab((σ3 ⊗ σ3)ρ(σ3 ⊗ σ3)). (19)

By the above property (19), the channel outputs for the input
states (U ⊗ 1)ρW (U † ⊗ 1) and (σ3U ⊗ σ3)ρW (U †σ3 ⊗ σ3) are
equal and therefore we can conveniently use the average of
both states instead of only (U ⊗ 1)ρW (U † ⊗ 1). This average
is given by

1

2
(U ⊗ 1)ρW (U † ⊗ 1) + 1

2
(σ3U ⊗ σ3)ρW (U †σ3 ⊗ σ3)

=

⎛
⎜⎜⎜⎜⎝

η aa∗
2 + 1−η

4 0 0 η a2

2

0 η bb∗
2 + 1−η

4 η−b2

2 0

0 η−(b∗)2

2 η bb∗
2 + 1−η

4 0

η (a∗)2

2 0 0 η aa∗
2 + 1−η

4

⎞
⎟⎟⎟⎟⎠

= |a|2
(

η|�1〉〈�1| + 1 − η

4
1

)

+ |b|2
(

η|�2〉〈�2| + 1 − η

4
1

)
, (20)

with |�1〉 and |�2〉 being

|�1〉 = 1√
2

(
a

|a| |00〉 + a∗

|a| |11〉
)

, (21a)

|�2〉 = 1√
2

(
b

|b| |01〉 − b∗

|b| |10〉
)

. (21b)

After applying the quasiclassical channel, using Eqs. (19)
and (20), and the concavity of the von Neumann entropy, we
find the following lower bound:

S
(
�

Q
ab((U ⊗ 1)ρW (U † ⊗ 1))

)
� |a|2S

(
�

Q
ab

(
η|�1〉〈�1| + 1 − η

4
1

))

+ |b|2S
(

�
Q
ab

(
η|�2〉〈�2| + 1 − η

4
1

))

� S

(
�

Q
ab

(
η|�+〉〈�+| + 1 − η

4
1

))
. (22)

In the last line we have used that both S(�Q
ab(η|�1,2〉〈�1,2| +

1−η

4 1)) are lower bounded by S(�Q
ab(η|�+〉〈�+| + 1−η

4 1)).
The proof for this statement is as follows. We can rewrite

|�1〉 (a similar argument holds for |�2〉) up to a global phase
as

|�1〉 = 1√
2

[|00〉 + exp(iφ)|11〉]. (23)

After applying the correlated quasiclassical channel �
Q
ab to the

state η|�1〉〈�1| + 1−η

4 1, we arrive at

�
Q
ab

(
η|�1〉〈�1| + 1 − η

4
1

)
= 1 − η

4
1 ⊗ 1

+ η

4
{[μ + (1 − μ)(1 − 2p)2]σ3 ⊗ σ3

+μ(1 − 2p) sin φ(σ1 ⊗ σ2 + σ2 ⊗ σ1)

+μ cos φ(σ1 ⊗ σ1 − σ2 ⊗ σ2) + 1 ⊗ 1}. (24)

The von Neumann entropy of a quantum state is defined via
its eigenvalues. The eigenvalues of Eq. (24) are

ν1,2 = η(1 − μ)p(1 − p) + 1 − η

4
,

ν3,4 = η

2
{1 − 2(1 − μ)p(1 − p)

±
√

μ2[1 − 4p(1 − p)sin2 φ]} + 1 − η

4
. (25)

To minimize the von Neumann entropy S(�Q
ab(η|�1〉〈�1| +

1−η

4 1)) = −∑
i νi log2 νi , the eigenvalues should diverge as

much as possible with respect to the parameter φ. The eigenval-
ues ν1,2 are independent of φ. Thus, the von Neumann entropy
is minimized when we maximize ν3 while we minimize ν4.
This is the case for φ = 0 and it leads |�1,2〉 to be the Bell
state |�+〉 which proves the above statement, namely,

S

(
�

Q
ab

(
η|�1,2〉〈�1,2| + 1 − η

4
1

))

� S

(
�

Q
ab

(
η|�+〉〈�+| + 1 − η

4
1

))
. (26)

�
The lower bound on the von Neumann entropy (22) is

reachable. It is not difficult to see that the variables a = 1
and b = 0, which correspond to U being the identity operator.

We have thus found a unitary operator that minimizes the
output entropy. Therefore, the superdense coding capacity for
a Werner state in a correlated quasiclassical channel, according
to Eq. (9), is given by

CQ,W
un = 2 − S

(
�

Q
ab(ρW )

)
. (27)

For η = 1, the Werner state ρW reduces to a Bell state
|�+〉. Therefore, the superdense coding capacity, according to
Eq. (27), for a Bell state and in the presence of a correlated
quasiclassical channel is given by

CQ,B
un = 2 − S

(
�

Q
ab(|�+〉〈�+|)). (28)

In Figs. 1 and 2, we visualize the superdense coding
capacity for the correlated quasiclassical channel as a function
of the parameters μ, η, and p [Eq. (27)]. In Fig. 1, we consider a
Bell state, i.e., η = 1, as a function of the noise parameter p and
the correlation degree μ. In Fig. 2, the noise parameter is fixed
to p = 0.05 and we vary μ and the parameter η characterizing
the Werner state.
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FIG. 1. (Color online) Superdense coding capacity for a corre-
lated quasiclassical channel and a Bell state (η = 1), as a function of
the noise parameter p and the correlation degree μ.

C. Fully correlated Pauli channel

In this section we give another example for which we
determined Umin. That is the case of a fully correlated Pauli
channel and a Werner state. As mentioned above, a fully
correlated Pauli channel is a special form of a correlated Pauli
channel (7) when μ = 1. For d = 2, it is given by

�
f

ab(ξ ) =
∑
m

qm(σm ⊗ σm)(ξ )(σm ⊗ σm), (29)

where
∑

m qm = 1 and σm are either the identity or the Pauli
operators.

We again consider the Werner states ρW = η|�+〉〈�+| +
1−η

4 1 as resource states. For a fully correlated Pauli channel
(29) we determine the operation Umin. To do so, we derive a
lower bound on S(�f

ab((U ⊗ 1)ρW (U † ⊗ 1))), where U is an
arbitrary unitary operator. By using the concavity of the von
Neumann entropy and also by using the invariance of the von

FIG. 2. (Color online) Superdense coding capacity for a corre-
lated quasiclassical channel and a Werner state, as a function of the
correlation degree μ and the parameter η. The noise parameter is
p = 0.05.

Neumann entropy under unitary transformations, the lower
bound on S(�f

ab((U ⊗ 1)ρW (U † ⊗ 1))) takes the form

S
(
�

f

ab((U ⊗ 1)ρw(U † ⊗ 1))
)

= S

(∑
m

qm(σm ⊗ σm)(U ⊗ 1)

×
(

ηρ+ + 1 − η

4
1

)
(U † ⊗ 1)(σm ⊗ σm)

)

� S

(
ηρ+ + 1 − η

4
1

)
, (30)

where we use the notation ρ+ = |�+〉〈�+|.
By using the invariance of a Bell state under the action of a

fully correlated Pauli channel, i.e., �
f

ab(ρ+) = ρ+, it follows
that the lower bound (30) is reachable by the identity operator.
Then Umin = 1 and the superdense coding capacity, according
to Eq. (9), is given by

Cf,W
un = 2 − S

(
�

f

ab(ρW )
)
. (31)

The Werner state ρW reduces to a Bell state ρ+ for η = 1.
Since the Bell state is invariant under the action of a fully
correlated Pauli channel, its von Neumann entropy S(�f

ab(ρ+))
is zero. Therefore, using Eq. (31), the superdense coding
capacity for a shared Bell state and a fully correlated Pauli
channel (29) is two bits. It is the maximum information transfer
for d = 2. This shows that no information at all is lost to the
environment and this class of channels behaves like a noiseless
one. This behavior corresponds to the results of [8,9].

IV. NON-UNITARY ENCODING

So far, we have assumed that the encoding in the superdense
coding protocol is unitary. The superdense coding protocol
with nonunitary encoding for noiseless channels has been
discussed by Horodecki and Piani [16], Horodecki et al. [17],
and Winter [18]. In this section we consider the possibility of
performing nonunitary encoding in the presence of a correlated
Pauli channel. Let us consider �i to be a CPTP map. Alice
applies the map �i on her side of the shared state ρ, thereby
encoding ρ as ρi = [�i ⊗ 1](ρ) := �i(ρ). The rest of the
scheme is similar to the case of unitary encoding. Alice sends
the encoded state ρi = �i(ρ) with the probability pi to Bob
through the correlated Pauli channel �P

ab. Now, the question
is, which ensemble of CPTP maps achieves the superdense
coding capacity? In other words, what is the optimum Holevo
quantity with respect to the encoding �i and pi? To answer
this question, first we give the definition for the superdense
coding capacity with a correlated Pauli channel and nonunitary
encoding:

C = max
{�i,pi }

[
S

( ∑
i

pi�
P
ab (�i(ρ))

)

−
∑

i

piS
(
�P

ab(�i(ρ))
)]

, (32)

where �P
ab(ρ) is defined via Eq. (7). Similar to the unitary

encoding case in Sec. III A, we find an upper bound on the
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Holevo quantity (32) and then we show that this upper bound
is reachable by a preprocessing before unitary encoding. The
above statement will be expressed in the following lemma.

Lemma 2. Let χ be the Holevo quantity (32), and let
�min(ρ) := [�min ⊗ 1](ρ) be the map that minimizes the
von Neumann entropy after application of this map and
the correlated Pauli channel �P

ab to the initial state ρ, i.e.,
�min minimizes the expression S(�P

ab(�min(ρ))). Then the
superdense coding capacity is given by

CP
nonun = log2 d + S

(
�P

b (ρb)
) − S

(
�P

ab(�min(ρ))
)
, (33)

where ρb = tra ρ and �P
b is the d-dimensional Pauli channel

Eq. (4) on Bob’s subsystem.
Proof: The von Neumann entropy is subadditive and the

maximum entropy of a d-dimensional system is log2 d, and
since �min is a map that leads to the minimum of the entropy
after applying it and the channel to the initial state ρ, we have
the upper bound

χ � S

(∑
i

pi�
P
ab(�i(ρ))

)
− S

(
�P

ab(�min(ρ))
)
,

� log2 d + S

(
tra

(∑
i

pi�
P
ab(�i(ρ))

))

− S
(
�P

ab(�min(ρ))
)
.

By using tra (
∑

i pi�
P
ab(�i(ρ))) = �P

b (ρb), we find the upper
bound

χ � log2 d + S
(
�P

b (ρb)
) − S

(
�P

ab(�min(ρ))
)
. (34)

We now show that the ensemble {p̃i ,�̃i(ρ)} with p̃i = 1
d2 and

�̃i(ρ) = (Vi ⊗ 1)�min(ρ)(V †
i ⊗ 1) where Vi(=mn) is defined in

Eq. (5), reaches the upper bound (34). In other words, the
optimal encoding consists of a fixed preprocessing with �min

and a subsequent unitary encoding. This is analogous to the
case of noiseless channels and uncorrelated Pauli channels
[7,16]. Below we prove the above claim.

The Holevo quantity of the ensemble {p̃i ,�̃i(ρ)} is

χ̃ = S

(∑
i

1

d2
�P

ab(�̃i(ρ))

)
−

∑
i

1

d2
S
(
�P

ab(�̃i(ρ))
)
. (35)

With an argument similar to the case of unitary encoding, the
first term on the right-hand side of Eq. (35) is given by

∑
i

1

d2
�P

ab(�̃i(ρ)) = 1

d
⊗ �P

b (ρb). (36)

Furthermore, for the second term on the right-hand side of
Eq. (35) we have

∑
i

1

d2
S
(
�P

ab(�̃i(ρ))
) = S

(
�P

ab(�min(ρ))
)
. (37)

Inserting Eqs. (36) and (37) into Eq. (35), one finds that the
Holevo quantity χ̃ is equal to the upper bound given in Eq. (34).
Consequently, the superdense coding capacity with nonunitary
encoding is determined by Eq. (33). �

A comparison of Eqs. (33) and (9) shows that applying an
appropriate preprocessing �min on the initial state ρ before the
unitary encoding {Vi} may increase the superdense coding
capacity, with respect to only using unitary encoding for
the case of a correlated Pauli channel. However, for some
examples, no better encoding than unitary encoding is possible.
For instance, since two bits is the highest superdense coding
capacity for d = 2, our results derived in Sec. III C for fully
correlated Pauli channel and the Bell state provide an example
where no preprocessing can improve the capacity. However,
examples exist for which nonunitary preprocessing is useful
to increase the superdense coding capacity. In the next section
we provide an explicit example.

A. Preprocessing can improve capacity

Here, we show that for a two-dimensional Bell state in the
presence of a correlated quasiclassical channel, a nonunitary
preprocessing �, which is not necessarily �min, can improve
the superdense coding capacity. To show this claim, consider
the completely positive trace preserving preprocessing �, with
the Kraus operators E1 = |0〉〈1| and E2 = |0〉〈0|. Alice applies
� on her side of the Bell state ρ+ = |�+〉〈�+| and transforms
the Bell state to �(ρ+) = |0〉〈0| ⊗ 1

2 . Therefore, according
to Eq. (33), for a correlated quasiclassical channel, a Bell
state, and a preprocessing �, the amount of information that is
transmitted by this process is given by

C
Q,B
� = 1 + p log2 p + (1 − p) log2(1 − p), (38)

where p is the noise parameter for a quasiclassical channel
(15). Since � is not necessarily the optimal preprocessing,
C

Q,B
� is not also necessarily the capacity. We name Eq. (38)

the transferred information. We now compare the transferred
information (38) with the capacity (28) which is achieved by
applying only unitary encoding. In the range of 0.3 � μ � 1
we find that the capacity CQ,B

un is always higher than the
transferred information C

Q,B
� , i.e., C

Q,B
� < CQ,B

un . Therefore,

FIG. 3. (Color online) The dashed red curve is the correlation
degree μ̃(p) as a function of the noise parameter p. The superdense
coding capacity CQ,B

un and the transferred information C
Q,B
� coincide

for μ = μ̃(p) (see main text). For μ < μ̃(p), the blue (light gray)
area, the nonunitary preprocessing � increases the superdense coding
capacity of a quasiclassical channel and a Bell state, in comparison
to just unitary encoding.
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FIG. 4. (Color online) Comparison between the superdense cod-
ing capacity (28) and the transferred information (38) as functions
of the noise parameter p, with the correlation degree μ = 0.2. The
dashed red curve corresponds to the capacity CQ,B

un given by Eq. (28),
while the solid blue curve represents the transferred information C

Q,B
�

given by Eq. (38). As we can see, for μ = 0.2, in the range of the
noise parameter 0.007 < p < 0.293, we reach a higher capacity by
applying the nonunitary preprocessing �, the solid blue curve.

in this range, the chosen preprocessing � does not improve
the capacity. In the range of 0 � μ < 0.3, the capacity with
unitary encoding (28) and the transferred information with the
preprocessing � (38) coincide for μ = μ̃(p), shown as the
dashed red curve in Fig. 3. Note that μ̃(p) corresponds to
the Root[CQ,B

un − C
Q,B
� ]. The function μ̃(p) is invariant under

the simultaneous exchange p ↔ 1 − p since both functions
CQ,B

un and C
Q,B
� are symmetric under the exchange p ↔ 1 − p.

Our results show that for μ < μ̃(p), the blue (light gray) area
in Fig. 3, the transferred information (38) leads to a higher
value, in comparison to the capacity given by Eq. (28), i.e.,
C

Q,B
� > CQ,B

un . In Figs. 4 and 5, we visualize the superdense
coding capacity corresponding to unitary encoding and the
transferred information corresponding to the preprocessing �,
Eqs. (28) and (38). In Fig. 4, the correlation degree is μ = 0.2,
while we vary the noise parameter p. In Fig. 5, the noise
parameter is p = 0.05 and μ is varied.

V. CONCLUSIONS

In summary, we discussed the superdense coding protocol
in the presence of a correlated Pauli channel, considering both
unitary and nonunitary encoding. Regarding unitary encoding,

FIG. 5. (Color online) Another comparison between the super-
dense coding capacity (28) and the transferred information (38)
as functions of the correlation degree μ, with the noise parameter
p = 0.05. The dashed red curve corresponds to the capacity CQ,B

un

given by Eq. (28). The solid blue line represents the transferred
information C

Q,B
� given by Eq. (38). As we can see, for p = 0.05 and

μ < 0.294, the nonunitary preprocessing � is useful to enhancing the
capacity, compared to only unitary encoding.

it was shown that the problem of finding the superdense coding
capacity reduces to the easier problem of finding a unitary op-
erator which is applied to the initial state such that it minimizes
the von Neumann entropy after the action of the channel. It
was proven that for the two-dimensional quasiclassical channel
and two-dimensional fully correlated Pauli channel with Bell
states and Werner states as resources the unitary operator which
minimizes the von Neumann entropy is the identity. For those
examples, the superdense coding capacities were analytically
derived. We also showed that when considering nonunitary
encoding, the optimal strategy is to apply a preprocessing
before unitary encoding. If the map that minimizes the von
Neumann entropy is known, we found an expression for
the superdense coding capacity. We also found an explicit
example of nonunitary preprocessing � which can improve
the superdense coding capacity, in comparison to only unitary
encoding, for a range of the correlation degree of the channel.
We also provided an example for which no better encoding
than unitary encoding is possible. Therefore, based on the
current results, the usefulness of nonunitary preprocessing in
superdense coding depends on the quantum channel (e.g., its
type, noise parameter, and correlation degree) and the resource
state.
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