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Preservation of loss in linear-optical processing
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We propose a measure of quantum efficiency of a multimode state of light that quantifies the amount of optical
loss this state has experienced, and prove that this efficiency cannot increase in any linear-optical processing with
destructive conditional measurements. Any loss that has affected a state can neither be removed nor redistributed
so as to further increase the efficiency in higher-efficiency modes at the expense of lower-efficiency modes. This
result eliminates the possibility of catalytically improving photon sources.

DOI: 10.1103/PhysRevA.84.042304 PACS number(s): 03.67.−a, 42.50.Dv, 03.65.Yz, 42.50.Ex

I. INTRODUCTION

A leading approach to quantum information processing is
via linear-optical quantum computing (LOQC), first proposed
in 2001 by Knill, Laflamme, and Milburn [1]. Major progress
has been made both on the theoretical and experimental
fronts toward implementation of LOQC. Modifications have
been proposed that greatly reduce the overhead costs [2], a
quantum error correction protocol has been introduced [3,4],
and experimental implementation of primary gates has been
demonstrated [5].

In spite of this progress, practical LOQC is still out of
reach. Many of the difficulties arise because the single-photon
sources required for LOQC, as well as computational circuits
themselves, suffer from losses. Although a certain degree of
tolerance to losses does exist in some LOQC schemes [4], the
efficiency of existing single-photon sources [6] as well as the
quality of individual circuit elements and waveguides are far
below the required minima.

Under these circumstances it appears beneficial to develop
a procedure that would reverse the effect of losses, perhaps
at a cost of introducing extra resources. It would be useful,
for example, to employ the outputs of N imperfect single-
photon sources to obtain K < N single-photon sources of
improved quantum efficiency. Accomplishing this task would
be straightforward if nonlinear-optical interactions with single
photons were readily available: for example, one could
employ nondemolition photon number measurements to select
only those modes that contain photons. However, achieving
such interactions is extremely technically challenging [7],
whereas linear-optical (LO) processing is easily achieved in
the laboratory.

It is therefore important to investigate whether elimination
of losses is possible under LO processing. Under this process-
ing we understand arbitrary interferometric transformations
and conditioning on results of arbitrary destructive measure-
ments on some of the optical modes involved. The efforts to
construct such a scheme began in 2004, mostly ending with
various no-go results [8–11]. The most general result to date
was obtained in Ref. [12]. In that work we quantified the
efficiency of a quantum optical state by the amount of loss
that state might have experienced. We then proved that the
efficiency in any single-mode optical state obtained through

LO processing cannot exceed the quantum efficiency of the
best available single-mode input [12].

However, those previous results had limited application
to multimode states. First, as we show below, extending the
definition of the efficiency of a quantum state to the multimode
case is not straightforward, particularly when the loss has been
“mixed” among the modes by interferometric transformations.
Second, our earlier results do not provide any information
on how the efficiencies can be distributed among the output
modes, aside from the general upper bound mentioned above.
For example, they leave open the possibility of a “catalytic”
scheme, in which some high-efficiency single photons are used
to obtain additional high-efficiency single photons.

In the present work we generalize our study of the
dynamics of optical losses to the multimode case. We introduce
the notion of quantum efficiency of a (possibly entangled)
multimode state which quantifies the amount of loss this
state may have experienced. We show that this efficiency
cannot increase under LO processing. That is, any loss
that has occurred at the input can neither be removed nor
redistributed so as to improve the efficiency in some of the
modes at the expense of lower-efficiency modes. This means
that there is a majorization relation between the efficiencies
at the input and the output. The LO processing can act to
average the efficiencies, but not to concentrate them. This
rules out, in particular, any possibility of catalytic efficiency
improvement.

II. SINGLE-MODE MEASURES OF EFFICIENCY

Before describing multimode measures of efficiency, we
discuss the properties and relationships for single-mode
measures of efficiency that have been previously proposed.
Usually efficiency is used to describe a process for producing
a state. However, it is also convenient to regard efficiency as
a measure on the state itself, regardless of the process used to
produce it [8–12]. Specifically, Ref. [12] uses the efficiency to
quantify the maximum amount of loss an optical mode carrying
the given state might have previously experienced:

E(ρ̂) := inf{p| ∃ ρ̂0 � 0 : Ep(ρ̂0) = ρ̂}, (1)
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where Ep is a loss channel with transmissivity p. That is, one
considers all hypothetical methods of producing the given state
ρ̂ via loss from some valid initial quantum state ρ̂0.

We emphasize that the loss is just a way of mathematically
quantifying the efficiency of the state. It is not necessary that
the state were created by such a process. The efficiency is a
measure on the state, and should not be regarded as an intrinsic
feature of the mode.

Let us study a few examples. Ideally, single-photon sources
would produce a single-photon state |1〉 on demand. In prac-
tice, such sources may with some probability fail to produce
a photon, and there is no way to detect this failure without
destructive measurement. Therefore the state produced by a
generic single-photon source may be approximated as

ρ̂ = p|1〉〈1| + (1 − p)|0〉〈0|. (2)

Here the quantity p is commonly referred to as the efficiency
of the single-photon source. In the context of our definition,
state (2) can be obtained from the single-photon state by
transmitting a (perfect) single photon through a loss channel
with transmissivity p, and hence its efficiency equals p. In this
way, the efficiency of state (2) according to our new definition
is consistent with the traditional definition of the efficiency of
a single-photon source.

Coherent states have efficiency exactly equal to zero,
regardless of their amplitude. This is because coherent states
remain coherent states under loss. A coherent state of ampli-
tude α can be obtained from one of amplitude α/

√
p under

a loss channel of transmissivity p. Although one cannot take
p = 0 (because complete loss always results in the vacuum
state), possible values of p form an open set with zero infimum.

On the other hand, any pure state other than a coherent
state (or the vacuum state) must have efficiency 1. This is
because a state under loss is a mixture of the original state,
and the state with different numbers of photons lost. That is, a
pure state |χ〉 becomes a mixture of |χ〉, â|χ〉, â2|χ〉, and so
forth. The only way in which the state after loss can remain
pure is if |χ〉 ∝ â|χ〉. The only states for which this is true
are eigenstates of the annihilation operator, that is, coherent
states.

Determining the efficiency of a known single-mode state
is a straightforward computational task. The loss channel
Ep corresponds to a linear transformation known as the
generalized Bernoulli transformation. Provided the state ρ̂ can
be obtained via loss channel Ep from some initial operator, we
can define the inverse map E−1

p , which can be calculated as in
Ref. [13]. Therefore, we need to find the infimum of the values
of p such that the inverse Bernoulli mapping E−1

p (ρ̂) exists and
yields a valid quantum state, that is, can be represented by a
positive semidefinite density matrix.

A further interesting feature of a state’s efficiency is that
it equals zero if and only if the state is classical; that is,
it can be written as a statistical mixture of coherent states,
or, equivalently, its Glauber-Sudarshan P function has the
properties of a probability density. As discussed above, any
coherent state has efficiency zero, and hence so does any
statistical mixture of coherent states. To prove the converse,
let us suppose there exists a nonclassical state ρ̂ such that
E(ρ̂) = 0. Let �ρ̂(η) denote the Fourier transform of this

state’s P function P (α) over the phase space. According to
Bochner’s theorem [14], because P (α) is not a probability
density, there exist two sets of n complex numbers ηk and zk ,
such that

n∑
i,j=1

�ρ̂(ηi − ηj )ziz
∗
j < 0. (3)

Because E(ρ̂) = 0, for any p > 0 there exists state ρ̂0 such
that ρ̂ is obtained from ρ̂0 by means of attenuation by factor
p. Because attenuation corresponds to “shrinkage” of the P

function in the phase space [15], we have �ρ̂0 (η) = �ρ̂(η/
√

p)
and hence

n∑
i,j=1

�ρ̂0 (η′
i − η′

j )ziz
∗
j < 0, (4)

where η′
k = ηk

√
p. By choosing p close to zero, the set of

arguments of function �ρ̂0 in the above equation can be upper
bounded by an arbitrarily small value A.

Now let us recall that the Husimi Q function of any quantum
state does have the properties of a probability density. This
means that the Fourier transform �ρ̂0 (η) of the Q function of
state ρ̂0 must obey

n∑
i,j=1

�ρ̂0 (η′
i − η′

j )ziz
∗
j � 0. (5)

But the Q function is obtained from the P function by
convolving the latter with a Gaussian, e−|α|2/π [15]. This
means that the Fourier transforms of these functions are
connected by multiplication,

�ρ̂(η) = �ρ̂(η)e−|η|2 . (6)

By choosing p close to zero, one can make the factor e−|η|2

arbitrarily close to 1 within radius A. Accordingly, the left-
hand sides of Eqs. (4) and (5) are equal in the limit p → 0. We
arrive at a contradiction, which means that any nonclassical
state ρ̂ must have a finite efficiency E(ρ̂) > 0.

III. MULTIMODE MEASURES OF EFFICIENCY

Let us now generalize the notion of efficiency to an optical
state carried by multiple modes. A direct generalization can be
obtained by assuming that each mode has propagated through
its own loss channel, and taking the sum of the transmissivities:

Ed(ρ̂,K) := inf

{
K∑

	=1

p
↓
	

∣∣∣∣∣ ∃ ρ̂0 � 0 : E �p(ρ̂0) = ρ̂

}
. (7)

The notation p
↓
	 indicates the elements of the vector �p sorted

in nonincreasing order. The value of K can be less than
the number of modes constituting state ρ̂. In this way, the
efficiency is defined not only for the entire state, but also for
a subset of K modes with the lowest losses. This extension
facilitates comparison of efficiencies of states with different
number of modes.

A drawback of this definition is that it does not adequately
take account of loss that has been mixed between modes. For
example, consider two polarization modes carrying a single-
photon qubit in the state |ψ〉 = |1H 〉|0V 〉. The efficiency of the

042304-2



PRESERVATION OF LOSS IN LINEAR-OPTICAL PROCESSING PHYSICAL REVIEW A 84, 042304 (2011)

state in the horizontally polarized mode is 1, and that in the
vertically polarized mode 0, so Ed(|ψ〉〈ψ |,2) = 1. On the other
hand, writing the same state in terms of diagonal polarization
modes, we find |ψ ′〉 = (|1+45◦ 〉|0−45◦ 〉 + |0+45◦ 〉|1−45◦ 〉)/√2.
This state cannot be obtained by independent loss in the two
modes, and would have a different efficiency, Ed(|ψ ′〉〈ψ ′|,2) =
2, even though its utility for quantum information processing
is exactly the same as that of |ψ〉.

An alternative approach to quantifying the efficiency is to
treat each mode separately, and calculate the sum of single-
mode efficiencies for K highest-efficiency modes:

Es(ρ̂,K) :=
K∑

	=1

E(Tr∀k �=	ρ̂)↓. (8)

This definition is also problematic. First, similarly to the d-
efficiency [16], it depends on the choice of the mode basis. For
the example above, Es(|ψ〉〈ψ |,1) = 1, but Es(|ψ ′〉〈ψ ′|,1) =
1/2. Second, it may underestimate the efficiency in many
cases. For example, the s-efficiency of the state |φ〉 =√

1 − p|00〉 + √
p|11〉 equals Es(|φ〉〈φ|,1) = p, and can be

very small. On the other hand, conditioning on detection of
a photon in one of the modes of |φ〉 results in a perfect
single photon in the other mode, as is the case with producing
heralded single photons via parametric down-conversion. State
|φ〉 is thus much more useful than, for example, single-
mode state σ̂ = (1 − p)|0〉〈0| + p|1〉〈1|, which has the same
s-efficiency but cannot be processed to produce a high-quality
single photon.

We aim to provide a definition of efficiency that would
be invariant with respect to transformation of modes and
adequately reflect the state’s value for quantum information
purposes. To this end we modify the definition Ed by including
an optimization over interferometers. That is, we consider
simultaneous loss channels on each of the modes E �p, followed
by an arbitrary interferometer W , as shown in Fig. 1(a). The
efficiency is then the sum of the K largest values of p	:

Eu(ρ̂,K) := inf

{
K∑

	=1

p
↓
	

∣∣∣∣∣∃ ρ̂0 � 0,W : WE �p(ρ̂0) = ρ̂

}
.

(9)

An important property of the u-efficiency (9) is its invari-
ance with respect to interferometric transformation of modes.
Indeed, if state ρ̂ ′ can be obtained from state ρ̂ by applying
interferometric transformation U , so that ρ̂ ′ = Uρ̂, and we
have WE �p(ρ̂0) = ρ̂ in the context of Eq. (9), we also have
UWE �p(ρ̂0) = ρ̂ ′. But transformation UW can be treated as a
single interferometer, which means that Eu(ρ̂ ′,K) � Eu(ρ̂,K).
But because interferometric transformations are reversible,
we also have Eu(ρ̂,K) � Eu(ρ̂ ′,K) and hence Eu(ρ̂ ′,K) =
Eu(ρ̂,K).

Similar to the case for the efficiency E, the u-efficiency can
be calculated via inverting the channel. In finite dimension, the
channel given by the loss followed by the unitary operation W

may be represented by a matrix, which may be inverted to find
ρ̂0. The efficiency can then be found by a minimization over �p
and W such that ρ̂0 is a valid quantum state. For the other two
efficiencies, the calculation is simpler. For the d-efficiency, one

FIG. 1. A general setup for LO processing. (a) To determine the
efficiency of the input state ρ̂ we find an initial state ρ̂0 such that
ρ̂ may be obtained by attenuation and interferometer W according
to Eq. (9). (b) LO processing of the input state. The modes pass
through a general interferometer, and all but M of the output modes
are detected via a measurement. The state ρ̂out of the remaining
M modes can be conditioned on a particular measurement result.
(c) The upper limit on the efficiency of the output state is established
by choosing an interferometer X through which this state can be
transmitted such that the resulting state, carried by modes â′′

m, can be
obtained by multimode attenuation of another state.

only needs to minimize over �p, and for the s-efficiency one
can just determine the single-mode efficiencies for the reduced
density matrices in the individual modes.

Let us evaluate the multimode efficiency of the example
states studied above. State |ψ〉 is a tensor product and has
Es(|ψ〉〈ψ |,2) = Es(|ψ〉〈ψ |,1) = 1. As we show below, the
d-, s-, and u-efficiencies coincide for tensor product states,
so we also have Eu(|ψ〉〈ψ |,2) = Eu(|ψ〉〈ψ |,1) = 1. Since the
u-efficiency is invariant under interferometric transformations,
state |ψ ′〉 has the same u-efficiency. Analyzing each of the
modes of state |ψ ′〉 on its own, we find them to carry
the state (|1〉〈1| + |0〉〈0|)/2, so Es(|ψ ′〉〈ψ ′|,1) = 1/2 and
Es(|ψ ′〉〈ψ ′|,2) = 1. For state |φ〉, both the u- and d-efficiencies
equal 2. This is because, even if subjected to an interferometric
transformation, it is a pure state that is not coherent, and hence
cannot be obtained by attenuating another state.

IV. PROOF THAT THE u-EFFICIENCY CANNOT
INCREASE UNDER LO PROCESSING

In this section we show that it is impossible to increase the
u-efficiency using LO processing. A general LO scheme
is shown in Fig. 1(b). The input state ρ̂, carried by N

optical modes with annihilation operators â1, . . . ,âN , is passed
through a general interferometer which performs a unitary
operation Y on these mode operators. We retain M of the output
modes â′

i , and the remaining N − M modes are subjected to
a generalized destructive quantum measurement. We consider
postselection on a particular result of this measurement, and
determine the u-efficiency of the state ρ̂out carried by the
remaining output modes. Our goal is to prove that

Eu(ρ̂out,K) � Eu(ρ̂,K) (10)
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for any K � M .
In accordance with definition (9), we model the state ρ̂

as being obtained from some initial state ρ̂0 by combining
each of its modes b̂j with vacuum ŵj on a beam splitter with
transmissivity pj [Fig. 1(a)]:

â0
j = √

pj b̂j + √
1 − pj ŵj , (11)

followed by interferometer W . We assume that the settings are
chosen such that, for some ε > 0,

K∑
	=1

p
↓
	 � Eu(ρ̂,K) + ε. (12)

The introduction of ε takes account of the possibility that there
does not exist a setting which achieves the infimum.

Because interferometers W and Y are adjacent to each
other, we can without loss of generality treat them as a
single interferometer, corresponding to unitary transformation
U = YW . The action of this interferometer can be written as

â′
i =

N∑
j=1

Uij â
0
j =

N∑
j=1

Uij

√
pj b̂j +

N∑
j=1

Uij

√
1 − pj ŵj .

(13)

We see that each vacuum mode contributes to each of the
output modes, including those that are subjected to conditional
measurements. These measurements may “compromise” the
vacuum contributions to the output state [17], so the output
efficiency cannot be calculated directly from the matrix
elements Uij . We address this issue by performing an RQ
decomposition on the matrix Uij

√
1 − pj such that

Uij

√
1 − pj =

N∑
	=1

Ri	Q	j , (14)

where Q is unitary and R is an upper triangular matrix, so
Ri	 = 0 for 	 < i. Then we get

â′
i =

N∑
	=1

Ui	

√
p	b̂	 +

N∑
	=1

Ri	v̂	, (15)

where

v̂	 :=
N∑

j=1

Q	j ŵj (16)

are obtained by transforming modes ŵj in a fictitious inter-
ferometer Q. Because all the ŵj correspond to vacuum states,
so do the v̂	. The subset {v̂1, . . . ,v̂M} of these modes does not
contribute to the set of output modes {â′

M+1, . . . ,â
′
N } that is

subjected to measurement, and thus directly leads to the loss
of efficiency in the output state.

Without loss of generality, we append another interfer-
ometer X acting on the M output modes. Because the
u-efficiency is independent of linear interferometers, this
interferometer does not affect the u-efficiency at the output.
To determine the interferometer to use, we perform a singular
value decomposition on the upper left M × M block of R such
that

R = X†R′Q′, (17)

where the upper left M × M block of R′ is diagonal, and
unitaries X and Q′ are equal to the identity outside the upper
left M × M block. We choose the unitary matrix X for the
final interferometer to be that given by this decomposition.

Denoting the annihilation operators for the modes after the
interferometer X by â′′

k , we have, for k � M ,

â′′
k =

M∑
i=1

Xkiâ
′
i

=
M∑
i=1

Xki

(
N∑

	=1

Ui	

√
p	b̂	 +

N∑
	=1

Ri	v̂	

)

=
M∑
i=1

N∑
	=1

XkiUi	

√
p	b̂	 +

M∑
i=1

N∑
	=M+1

XkiRi	v̂	

+
M∑
i=1

M∑
	=1

Xki

M∑
k′,n=1

[X†]ik′R′
k′nQ

′
n	v̂	

=
K∑

i=1

N∑
	=1

XkiUi	

√
p	b̂	

+
M∑
i=1

N∑
	=M+1

XkiRil v̂	 + R′
kkv̂

′′
k , (18)

where

v̂′′
k :=

N∑
	=1

Q′
k	v̂	. (19)

As the set {v̂′′
k } may be regarded as being obtained from

initial vacuum modes {ŵk} via a unitary transformation,
they represent an orthonormal set of bosonic modes in the
vacuum state. Furthermore, those v̂′′

k that contribute to â′′
k do

not contain any contribution from the compromised vacuum
modes. Indeed, they only contain contributions from v̂	 for
	 � M , whereas the operators for the measured modes only
contain contributions from v̂	 for 	 > M . As a result, these
vacuum contributions are equivalent to loss.

To make this result explicit, we write the annihilation
operator in the form â′′

k = B̂ ′′
k + V̂ ′′

k , where

B̂ ′′
k =

M∑
i=1

N∑
	=1

XkiUi	

√
p	b̂	 +

M∑
i=1

N∑
	=M+1

XkiRil v̂	 (20)

and

V̂ ′′
k = R′

kkv̂
′′
k . (21)

We then find that

[V̂ ′′
k ,(V̂ ′′

k′ )†] = δkk′ |R′
kk|2, (22)

[B̂ ′′
k ,(B̂ ′′

k′)†] = δkk′(1 − |R′
kk|2). (23)

The first line follows immediately from Eq. (21). The second
line is obtained because B̂ ′′

k = â′′
k − V̂ ′′

k and [â′′
k ,(â

′′
k′)†] = δkk′ .

Defining

p′′
k := 1 − |R′

kk|2, b̂′′
k := B̂ ′′

k /

√
p′′

k , (24)
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FIG. 2. A rearrangement of the interferometer. The vacuum
modes {v̂′′

1 , . . . ,v̂
′′
M,v̂M+1 . . . v̂N } can be obtained via an interferome-

ter (not shown) from the original vacuum modes ŵ	. The modes b̂	

and {v̂M+1, . . . ,v̂N } are combined in the interferometer to produce
{b̂′′

1 , . . . ,b̂
′′
M}, as well as {â′

M+1, . . . ,â
′
N }, which are measured, and

some modes which are discarded. The modes {b̂′′
1 , . . . ,b̂

′′
M} are then

combined with vacuum modes {v̂′′
1 , . . . ,v̂

′′
M} to generate the output

state.

we have [18]

â′′
k =

√
p′′

k b̂
′′
k +

√
1 − p′′

k v̂
′′
k . (25)

Therefore, the output state may be obtained by an interferome-
ter that produces the modes with annihilation operators b̂′′

k , then
combining with vacua on beam splitters with transmissivities
p′′

k , as shown in Fig. 2.
Without loss of generality we can assume X and Q′ to have

been chosen such that the numbers p′′
k are in nonincreasing

order. The u-efficiency at the output is therefore upper bounded
by

Eu(ρ̂out,K) �
K∑

i=1

p′′
k . (26)

To determine the sum (26), we can define the unitaries

U ′ := XU, Q′′ := Q′Q. (27)

It follows from Eq. (17) that R′ = XR(Q′)†. Therefore,
according to Eq. (14),

R′
k	 =

N∑
m=1

U ′
km

√
1 − pm(Q′′

	m)∗. (28)

Then we obtain

K∑
k=1

p′′
k � K −

K∑
k=1

K∑
	=1

|R′
k	|2

= K −
N∑

k=1

K∑
	=1

N∑
m,j=1

U ′
km

√
1 − pm(Q′′

	m)∗

× (U ′
kj )∗

√
1 − pjQ

′′
	j

= K −
K∑

	=1

N∑
m,j=1

δmj

√
1 − pm(Q′′

	m)∗
√

1 − pjQ
′′
	j

= K −
K∑

	=1

N∑
j=1

(1 − pj )|Q′′
	j |2

=
K∑

	=1

N∑
j=1

pj |Q′′
	j |2 �

K∑
	=1

p
↓
	 . (29)

The last inequality in Eq. (29) is obtained because Q′′
ij is

unitary, so |Q′′
ij |2 is a doubly stochastic matrix, and thus vector

p	 majorizes vector [19]

q	 :=
N∑

j=1

pj |Q′′
ij |2. (30)

Now, according to Eqs. (12), (26), and (29), and because
we can choose ε to be arbitrarily close to zero, we obtain

Eu(ρ̂out,K) � Eu(ρ̂,K). (31)

This is the main result of this work: the universal measure
of quantum efficiency of a multimode state, the u-efficiency,
cannot increase under LO processing.

V. COMPARISON OF EFFICIENCY MEASURES

We now use the above result to prove some additional
properties of the different measures of multimode efficiency
defined in Sec. III. First, we show that these efficiencies are
related according to

Es(ρ̂,K) � Eu(ρ̂,K) � Ed(ρ̂,K). (32)

To examine the s-efficiency we can again assume that state ρ̂

is obtained via a set of beam splitters with transmissivities pj

and an interferometer W as in Fig. 1(a), such that the sum of
the K largest values of pj is no more than Eu(ρ̂,K) + ε. Then
the operators for the state ρ̂ are given by

âj = B̂j + V̂j , (33)

with

B̂j :=
N∑

	=1

Wj	

√
p	b̂	, V̂j :=

N∑
	=1

Wj	

√
1 − p	ŵ	. (34)

corresponding to operators carrying signal and vacuum fields,
respectively.

To determine the s-efficiency we determine the efficiency
for each mode individually. When determining the efficiency
for mode âj , we can regard modes âk for k �= j as being
discarded. The vacuum operators V̂k for k �= j are not
orthogonal to V̂j ; however, since those modes are discarded,
the addition of vacuum V̂j is equivalent to loss. Therefore, the
efficiency of the state in mode âj is no greater than

p′
j := [B̂j ,B̂

†
j ] =

N∑
	=1

|Wj	|2p	. (35)

The sum of the K largest values of p′
j upper bounds the s-

efficiency; that is,

Es(ρ̂,K) �
K∑

j=1

p′↓
j . (36)
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Because W is unitary, |Wj	|2 is a doubly stochastic ma-
trix, and the vector of values �p majorizes �p′. That means
that

K∑
j=1

p′↓
j �

K∑
j=1

p
↓
j � Eu(ρ̂,K) + ε. (37)

Because this holds for all ε > 0, we have Es(ρ̂,K) �
Eu(ρ̂,K).

The second inequality in Eq. (32) is because the definition
of Eu(ρ̂,K) in Eq. (9) looks for the minimum in a larger set of
states than that of Ed(ρ̂,K) in Eq. (7).

For tensor product states, the s- and d-efficiencies are the
same. To see this, use the definition (8) on the tensor product
state

ρ̂ =
N⊗

j=1

ρ̂j . (38)

One obtains

Es(ρ̂,K) =
K∑

	=1

E(ρ̂	)↓. (39)

Therefore there exists a set of states ρ̂0
j and transmissivities pj

such that the sum of the K largest values of pj is no more than
Es(ρ̂,K) + ε, and the final states ρ̂j may be obtained via loss
channels with transmissivities pj from initial states ρ̂0

j . This
would also provide a scheme for producing ρ̂ for the definition
of Ed(ρ̂,K), and therefore

Ed(ρ̂,K) �
K∑

j=1

p
↓
j � Es(ρ̂,K) + ε. (40)

Because this is true for all ε > 0, we obtain Ed(ρ̂,K) �
Es(ρ̂,K). Combining this with Eq. (32), we find that
Ed(ρ̂,K) = Es(ρ̂,K) for tensor product states, and all inequal-
ities in (32) saturate.

This result leads us to an important conclusion. Suppose
we start with N separable states [for example, imperfect single
photons as in Eq. (2)] with efficiencies p	, which we subject
to LO processing, resulting in a set of modes in which the
efficiencies, when analyzed separately, are given by p′

	. Using

the result that LO processing cannot increase the u-efficiency,
and Eq. (32), we have for any integer K ,

K∑
	=1

p′
	 �

K∑
	=1

p
↓
	 . (41)

In other words, the LO processing can act to average the
efficiencies, but not to concentrate them. One consequence
is the exclusion of any possibility for “catalytic” efficiency
improvement, in which some highly efficient sources are used
to increase the efficiency in other optical modes, without
themselves suffering from loss.

These results do not rule out increases in the individual
efficiencies; for example, if the largest efficiency is decreased,
it is possible for the second largest efficiency to be increased.

VI. SUMMARY

We have introduced a number of measures that enable us to
quantify the efficiency in multimode systems. The u-efficiency
is a powerful general measure that takes account of how
loss may have been mixed between the different modes.
It is unchanged under linear interferometers, and cannot
increase under more general LO processing with destructive
measurements. We have used this result to show that catalytic
improvement of photon sources is not possible with LO
processing. If one starts with independent optical sources
(which produce a tensor product of states), then the efficiencies
in the individual output modes are weakly majorized by the
efficiencies in the input. This means that it is not possible to
concentrate the efficiencies, such that the sum of the highest
K output efficiencies is greater than the sum of the highest K

input efficiencies.
It is clearly possible to increase the u-efficiency if one uses

nonlinear optical elements. For example, a standard method of
producing single photons is via parametric down-conversion (a
nonlinear process), and postselection on detection of a photon
in one of the output modes. The initial beam is coherent, with
efficiency zero, but the final output (ideally) has unit efficiency.
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with vacuum v̂ on a beam splitter. One of the beam splitter
output modes (â − v̂)/
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