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Classical and quantum correlative capacities of quantum systems
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How strongly can one system be correlated with another? In the classical world, this basic question concerning
correlative capacity has a very satisfying answer: The “effective size” of the marginal system, as quantified by the
Shannon entropy, sets a tight upper bound to the correlations, as quantified by the mutual information. Although
in the quantum world bipartite correlations, like their classical counterparts, are also well quantified by mutual
information, the similarity ends here: The correlations in a bipartite quantum system can be twice as large as
the marginal entropy. In the paradigm of quantum discord, the correlations are split into classical and quantum
components, and it was conjectured that both the classical and quantum correlations are (like the classical mutual
information) bounded above by each subsystem’s entropy. In this work, by exploiting the interplay between
entanglement of formation, mutual information, and quantum discord, we disprove that conjecture. We further
indicate a scheme to restore harmony between quantum and classical correlative capacities. The results illustrate
dramatically the asymmetric nature of quantum discord and highlight some subtle and unusual features of
quantum correlations.
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Correlations are ubiquitous and fundamental in sciences.
Traditionally, correlations are quantified by covariance and
correlation functionals of observables. With the development
of the Shannon communication theory and the emergence of
quantum information theory [1,2], various entropic quantities
gained a pivotal role in the characterization and quantification
of correlations.

In order for a system to establish correlations with another
one, a certain correlative capacity is required. For example, a
quantum system in any pure state cannot have any correlations
with another system. This premise for correlations is mathe-
matically synthesized by the fact that the von Neumann entropy
of a pure state vanishes. For a mixed quantum system, what
are its correlative capacities? In this work, we will distinguish
the classical and quantum correlative capacities of a quantum
system in terms of classical correlations and quantum discord
and will show that while the classical correlative capacity
is bounded by the system’s entropy, it is not true (or more
precisely, only 50% true) in general for the quantum correlative
capacity.

To be precise, let us start from the classical world in which
the state of a system is described by a probability distribution
p = {pi}, whose information content is well quantified by
the Shannon entropy H (p) := −∑

i pi log2pi. In view of
the Shannon noiseless coding theorem [1,2], H (p) may be
interpreted as the “effective size” or “informational capacity”
of p. For a classical bivariate probability distribution pab =
{pab

ij } shared by two parties a and b with marginal distributions
pa = {pa

i := ∑
j pab

ij } and pb = {pb
j := ∑

i p
ab
ij }, it is well

known that the amount of correlations (mutual information)
I (pab) := H (pa) + H (pb) − H (pab) in pab is bounded above
by the marginal entropies:

I (pab) � min{H (pa),H (pb)}. (1)
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This upper bound can apparently be achieved, for example,
by the perfectly correlated bivariate probability distribution
pab

ij = piδij .

But how about the quantum world? As a rule of thumb, the
quantum world is full of surprises, and indeed new phenomena
arise here. The quantum analog of pab is a density operator
ρab shared by two parties a and b with marginals ρa := trbρab

and ρb := traρab, and the straightforward generalizations of
the Shannon entropy and the mutual information are the
von Neumann entropy S(ρa) := −trρalog2ρ

a and the quan-
tum mutual information I (ρab) := S(ρa) + S(ρb) − S(ρab),
respectively. According to the Schumacher quantum coding
theorem [3], S(ρa) quantifies the effective size of ρa as
an information carrier. The (total) correlations in ρab are
usually quantified by the quantum mutual information [4,5].
Motivated by inequality (1), one might be tempted to guess
that I (ρab) � min{S(ρa),S(ρb)}. Amazingly, due to quantum
effects, which lead to stronger correlations than classically
possible, the above bound does not hold in general, and instead
one has the following weaker bound:

I (ρab) � 2 min{S(ρa),S(ρb)}, (2)

which is actually equivalent to the celebrated Araki-Lieb
inequality |S(ρa) − S(ρb)| � S(ρab) [2]. The interesting point
here is that now the correlations in ρab, although they
cannot be bounded above by the marginal entropies S(ρa)
and S(ρb), are bounded above by 2S(ρa) and 2S(ρb). The
factor 2 is apparently of a quantum origin. In particular, if
ρab = |�ab〉〈�ab| is a pure state, then I (ρab) = 2S(ρa) =
2S(ρb), which saturates inequality (2) and is a manifestation
of the Einstein-Podolsky-Rosen correlations. Noting that the
entanglement entropy of the pure state ρab is E(ρab) := S(ρa)
[6,7], we may regard that the total correlations in the pure
state ρab, as quantified by I (ρab), consist of equal quantum
(entanglement entropy) and classical (classical correlations)
parts.

For a general bipartite mixed state, it is of particular
significance to separate its total correlations into classical and
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quantum parts and to inquire whether they are bounded by
marginal entropies. At present, we do not have a unique and
universally satisfying scheme for this. A plausible and widely
used method is based on the notion of quantum discord [8,9].
In this setting, the amount of classical correlations in ρab is
defined as

C(ρab) := sup
�b

I (�b(ρab)),

where the sup is over all von Neumann measurements �b :=
{�b

j } (family of orthogonal, one-dimensional projections
summing to the identity) on party b, and

�b(ρab) :=
∑

j

(
1a ⊗ �b

j

)
ρab

(
1a ⊗ �b

j

) =
∑

j

pjρ
a
j ⊗ �b

j ,

with pj := tr�b
jρ

b and ρa
j := trb(1a ⊗ �b

j )ρab(1a ⊗ �b
j )/pj .

The amount of quantum correlations in ρab, as quantified by
the quantum discord [8,9], is defined as

Q(ρab) := I (ρab) − C(ρab).

This quantity is playing an increasingly interesting and signif-
icant role in the recent investigations of quantum correlations
and various physical systems [10].

Now the total correlations are separated into classi-
cal correlations C(ρab) and quantum correlations Q(ρab),
and inequality (2) can be recast into C(ρab) + Q(ρab) �
2 min{S(ρa),S(ρb)}. From the perspective of correlative ca-
pacities, one is naturally led to the following conjecture, which
splits the preceding inequality [11]:

C(ρab) � S(ρa), (3)

C(ρab) � S(ρb), (4)

Q(ρab) � S(ρa), (5)

Q(ρab) � S(ρb). (6)

The formal meaning of this conjecture is that for a quantum
system, both the classical and quantum correlations are
bounded by the marginal entropies. It should be emphasized
that if ρab is pure, then the above conjecture is true, and
all four inequalities become equalities. This seemingly trivial
fact has the following important physical implication: In the
partition “(system) + (universe − system),” both the classical
and quantum correlative capacities (as well as entanglement)
coincide and are given by the system’s entropy.

The purpose of this work is to prove or disprove the above
inequalities, to put them in an intuitive context, to reveal some
fundamentally different characteristics between classical and
quantum correlative capacities, and to present a scheme to
restore harmony between them. It turns out that the above
conjecture is 75% true in the sense that inequalities (3),
(4), and (6) are true but inequality (5) fails in general (but
might be true for low-dimensional systems). Note that while
we have the above results for the asymmetrical definition of
quantum discord, we will also show that for two symmetrical
approaches, both (5) and (6) are (symmetrically) violated in
one case and satisfied in another.

Explicit proofs of inequalities (3), (4), and (6) were given
in Ref. [12], in which some sufficient conditions for inequality
(5) were also given. Inequalities (3) and (4) can also be derived

from Ref. [13]. Our main results are the (surprising) disproof of
inequality (5) based on a “peculiar” property of entanglement
of formation [5] and the (completely different) solutions
for two natural ramifications of the conjecture concerning
symmetric versions of quantum discord. The method of
purification plays an instrumental role here. For completeness
and preparation of notation, we also give alternative or
simplified proofs of inequalities (3), (4), and (6).

We first recall the entanglement of formation E(ρab) :=
inf

∑
i piE(|�ab

i 〉) of a bipartite state ρab [6,7], which will play
a crucial role in our approach. Here the inf is over all pure state
decompositions ρab = ∑

i pi |�ab
i 〉〈�ab

i |, and E(|�ab
i 〉) :=

S(trb|�ab
i 〉〈�ab

i |). The entanglement of formation is usually
regarded as a measure of entanglement, which in turn is
understood as some kind of quantum correlation. In particular,
E(|�ab〉) = 1

2I (|�ab〉). Inspired by the preceding identity and
the fact that Q(ρab) � I (ρab), it is tempting to assume that
the entanglement of formation is dominated by the total
correlations, namely, E(ρab) � I (ρab). However, the above
relation fails in general [5]. This fact will be one of the key
points in our disproof of inequality (5).

To establish inequality (3), it suffices to show that
I (�b(ρab)) � S(ρa) for any von Neumann measurement
�b = {�b

j } on party b, which follows readily from

I (�b(ρab)) = S(ρa) + S(�b(ρb)) − S(�b(ρab))

= S(ρa) −
∑

j

pjS(ρa
j ) � S(ρa).

To prove inequality (4), let |�abc〉 be a purification of ρab

and put ρabc := |�abc〉〈�abc|, ρbc := traρabc, etc.; then,

�b(ρabc) =
∑

j

(
1a ⊗ �b

j ⊗ 1c
)
ρabc

(
1a ⊗ �b

j ⊗ 1c
)

=
∑

j

pjρ
ac
j ⊗ �b

j , (7)

where ρac
j := trb(1a ⊗ �b

j ⊗ 1c)ρabc(1a ⊗ �b
j ⊗ 1c)/pj and

pj := tr�b
jρ

b. Since ρabc is pure, it follows that ρac
j is pure,

and we may denote ρac
j = |�ac

j 〉〈�ac
j |. Moreover, S(ρa

j ) =
S(ρc

j ). Here ρa
j := trcρac

j and ρc
j := traρac

j . Let σabc :=
�b(ρabc), σ ab := trcσ abc, and σbc := traσ abc, then

σab = �b(ρab) =
∑

j

pjρ
a
j ⊗ �b

j ,

σ bc = �b(ρbc) =
∑

j

pj�
b
j ⊗ ρc

j .

By the monotonicity of quantum relative entropy [2], we know
that quantum mutual information decreases under local partial
trace, that is,

I (σab) � I (σac:b). (8)

Here σac:b means that σabc is considered as a bipartite state
with the partition ac : b. Now from Eq. (7) and noting that ρac

j

and ρabc are pure, we have

I (σac:b) = S(ρac) −
∑

j

pjS
(
ρac

j

) = S(ρac) = S(ρb).
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Substituting the above equation into inequality (8) and re-
calling that σab = �b(ρab), we obtain I (�b(ρab)) � S(ρb),
which in turn implies that

C(ρab) = sup
�b

I (�b(ρab)) � S(ρb).

Next, we proceed to prove inequality (6). Noting that ρac
j

and ρabc are pure, we have

I (σab) − I (σbc)

=
[
S(ρa) −

∑
j

pjS
(
ρa

j

)] −
[
S(ρc) −

∑
j

pjS
(
ρc

j

)]

= [S(ρa) − S(ρc)] −
∑

j

pj

[
S
(
ρa

j

) − S
(
ρc

j

)]
= S(ρa) − S(ρc) = S(ρa) − S(ρab),

from which we obtain

C(ρab) = sup
�b

I (�b(ρab)) � I (σab) � I (σab) − I (σbc)

= S(ρa) − S(ρab).

Consequently,

Q(ρab) = I (ρab) − C(ρab) � I (ρab) − [S(ρa) − S(ρab)]

= S(ρb),

which establishes inequality (6).
Finally, we disprove inequality (5). Noting that ρabc is pure,

we have

Q(ρab) − S(ρa) (9)

=
[
I (ρab) − sup

�b

I (�b(ρab))
]

− S(ρa)

= inf
�b

∑
j

pjS(ρa
j ) − [S(ρa) + S(ρab) − S(ρb)]

= inf
�b

∑
j

pjS(ρa
j ) − [S(ρa) + S(ρc) − S(ρac)]

= inf
�b

∑
j

pjE(ρac
j ) − I (ρac)

� E(ρac) − I (ρac). (10)

Here E(ρac
j ) is the entanglement entropy of the pure state

ρac
j = |�ac

j 〉〈�ac
j |, and E(ρac) is the entanglement of forma-

tion of ρac = ∑
j pj |�ac

j 〉〈�ac
j |.

Now following the result in Ref. [5], we know that there
exist some bipartite states ρac such that

E(ρac) − I (ρac) > 0,

and in such a situation, we will have

Q(ρab) − S(ρa) > 0

in view of inequality (10). In particular, if we let |�abc〉 be a pu-
rification of such a state ρac, then for ρab := trc|�abc〉〈�abc|,
inequality (5) is reversed.

The classical correlations and quantum correlations, as
quantified by C(ρab) and the quantum discord Q(ρab), are
based on one-sided measurements. If we consider two-sided

measurements, then we have an alternative measure of classical
correlations:

C2(ρab) := sup
�a,�b

I ((�a ⊗ �b)(ρab))

and the corresponding measure of quantum correla-
tions Q2(ρab) := I (ρab) − C2(ρab). Here (�a ⊗ �b)(ρab) =∑

ij (�a
i ⊗ �b

j )ρab(�a
i ⊗ �b

j ), and the above sup is over all
von Neumann measurements �a = {�a

i } on party a and �b =
{�b

j } on party b. The Lindblad conjecture C2(ρab) � Q2(ρab)
was disproved in Ref. [14].

By the monotonicity of relative entropy, we know that
C2(ρab) � C(ρab) and thus Q2(ρab) � Q(ρab). Consequently,
in view of inequalities (3) and (4) and the violation of
inequality (5), if we consider correlative capacities in terms
of C2(ρab) and Q2(ρab), then

C2(ρab) � min{S(ρa),S(ρb)}
for the classical correlative capacity, but neither Q2(ρab) �
S(ρa) nor Q2(ρab) � S(ρb) is true in general for the quantum
correlative capacity in this context.

The definition of C2(ρab) is one way to symmetrize the
classical correlations and the quantum discord, but not the
only way. It is also intuitive and reasonable to define

Cm(ρab) := max{Ca(ρab),Cb(ρab)}
as a measure of classical correlations. Here Ca(ρab) :=
sup�a I (�a(ρab)) and Cb(ρab) := sup�b I (�b(ρab)).
The corresponding amount of quantum correlations is
Qm(ρab) := I (ρab) − Cm(ρab). Clearly, Cm(ρab) � C(ρab)
and Qm(ρab) � Q(ρab). Now, inequalities (3), (4), (5), and
(6) are all satisfied if C and Q are replaced by Cm and
Qm there. In fact, denote Qa(ρab) = I (ρab) − Ca(ρab) and
Qb(ρab) = I (ρab) − Cb(ρab); then, by two applications of
inequality (5) (interchanging the roles of a and b for the
second application), we have

Qm(ρab) = min{Qa(ρab),Qb(ρab)} � min{S(ρa),S(ρb)}.
This stands in sharp contrast to the asymmetric case and the
two-sided measurement case.

We make some remarks on the three measures C, C2, and
Cm of classical correlations from the measurement perspective
with the measurement order in mind. All quantum information
quantities are, inevitably, about measurements of some sort.
This includes the von Neumann entropy, which is the entropy
of the most predictable measurement. Similarly, C, as defined,
is not precisely about “one-sided measurements”; it does
correspond to an experiment in which both sides are measured:
Party b first measures {�b

j } and then communicates his result
to party a, who then gets to pick her most predictable
measurement (i.e., the diagonal basis of her conditional
density operator given b’s result). In contrast, C2 represents
a situation where party a must choose her measurement
in advance, without knowing what result party b got. This
description demystifies quantum discord a bit and more
accurately explains the difference between C and C2. It also
motivates the introduction of Cm, which corresponds to a case
where parties a and b want to maximize their correlations,
and they get to choose which of them will measure first and
which will measure second. It is remarkable that these subtle

042124-3



NAN LI AND SHUNLONG LUO PHYSICAL REVIEW A 84, 042124 (2011)

differences manifest themselves dramatically in the correlative
capacities and also imply immediately that C2 � C � Cm and
thus Q2 � Q � Qm.

To summarize, by investigating the correlative capacities
of quantum systems in three scenarios, we have revealed
some “peculiar” and extremely subtle features of quantum
correlations: Depending on the quantification of quantum
correlations, the quantum correlative capacity of a system may
or may not exceed the system’s entropy, while the classical
correlative capacity is always limited by the entropy. The key
point here is that these three scenarios are highly similar,
yet they illustrate dramatically different characteristics. In
particular, by exploiting an intimate link between quantum
discord and entanglement of formation, we have resolved
completely Conjecture 1 in Ref. [11]. The results, apart from

their own fundamental significance, may be useful in an
informational approach to quantum measurement theory and
decoherence theory.

Finally, since quantum correlations have many facets, it
will be interesting to further study the correlative capacities
of quantum systems in terms of other measures of quantum
correlations and their applications in physical systems.

The authors are very grateful to the referees for help-
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gesting the results about Cm and Qm and for proffering
the remarks about the intrinsic relations between C, C2,
and Cm. This work was supported by the National Center
for Mathematics and Interdisciplinary Sciences, Grant No.
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