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We use quantum estimation theory to formulate bounds of errors in quantum measurement for arbitrary
quantum states and observables in a finite-dimensional Hilbert space. We prove that the measurement errors
of two noncommuting observables satisfy Heisenberg-type uncertainty relation, find the achievable bound, and
propose a strategy to achieve it.
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I. INTRODUCTION

Quantum theory features two types of uncertainty: indeter-
minacy of observables and complementarity of quantum mea-
surements. The indeterminacy [1] reflects the inherent nature
of a quantum system [2–4], whereas the complementarity [5]
involves quantum measurement, and estimation of a quantum
state from the measurement outcomes is essential [6–8].
However, how to optimize the measurement and estimation for
a given quantum system has remained an outstanding issue.
The purpose of this paper is to report the resolution to this
problem.

The complementarity implies that we cannot simulta-
neously perform precise measurements of noncommuting
observables. There must exist trade-off relations between
the measurement errors of the noncommuting observables.
Whereas a number of trade-off relations have been found, they
are neither achievable for all quantum states and observables
[8–12] nor applicable to all quantum systems [13–15]. Due to
advances in controlling quantum states, it is now possible to
implement a scheme that performs a projection measurement
on a part of samples and another projection measurement
on the rest [16–19]. However, the achievable bound of the
measurement errors for such a scheme is yet to be identified.

In this paper, we report the following three results. First,
we prove that for all measurements the measurement errors
of noncommuting observables are bounded from below by
their commutation relation. This implies that not only quantum
fluctuations but also measurement errors are bounded by the
same commutation relation. However, the bound cannot be
achieved for all quantum states and observables. Second,
we find the achievable bound for the measurements that
perform a projection measurement with or without noise on
a part of samples and another measurement on the rest. We
propose a scheme of the experimental setup that achieves
the bound. Third, we numerically show that the bound is
satisfied for all measurements. Therefore, we conjecture that
all measurements satisfy the proposed trade-off relation, and
that the measurements that achieve the bound are optimal for
obtaining information about two noncommuting observables.

*watanabe@cat.phys.s.u-tokyo.ac.jp

The complementarity in quantum measurement has often
been discussed in terms of the variance of the measurement
outcomes [9,10]. However, the variance of the measurement
outcomes per se does not necessarily give a quantitative error
concerning the measurement. To quantify this error in the
measurement, it is essential to invoke quantum estimation
theory (see Fig. 1). The measurement error is quantified
by the difference between the information obtained by the
measurement and that of the precise measurement concerning
the observable. The information content corresponding to
quantum estimation theory is the Fisher information that gives
precision of the estimated value calculated from measurement
outcomes. However, it is challenging to find the achievable
bound for the Fisher information. Several bounds of the
uncertainty relation have been derived by using the Fisher
information [8,11,12]. However, those bounds, in general,
cannot be achieved. The crucial point of our successful finding
of the achievable bound is that we express the relevant
operators in terms of generators of the Lie algebra su(d), where
d is the dimension concerning Hilbert space H. This greatly
facilitates the analysis of our results.

This paper is organized as follows. In Sec. II, we introduce
quantum estimation theory and define the measurement error
based on it. In Sec. III, we prove the trade-off relation between
the measurement errors of two noncommuting observables for
all quantum measurement. The obtained relation clarifies that
the errors in the measurement cannot violate Heisenberg-type
uncertainty relation. In Sec. IV, we derive the achievable
bound of the product of two measurement errors. This bound
is tighter than Heisenberg-type uncertainty relation and shown
to be achieved for a certain set of measurements that can
be experimentally implemented. In Sec. V, we show the
numerical evidence that the bound proved in Sec. IV is
satisfied by all measurements. In Sec. VI, we summarize
the main results of this paper and discuss some future
problems.

II. QUANTUM ESTIMATION THEORY OF ERROR IN
MEASUREMENT

A. Definition of error in measurement

Given n independent and identically distributed (i.i.d.)
unknown quantum states ρ̂ on the d-dimensional Hilbert space
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FIG. 1. (Color online) A measurement described by the positive
operator valued measure (POVM) measurement M is performed to
retrieve the information about the expectation value of an observable,
〈X̂〉, for a quantum state ρ̂. Since 〈X̂〉 does not, in general,
coincide with the value that is calculated from the distribution of the
measurement outcomes due to noises introduced in the measurement
process, it is necessary to estimate 〈X̂〉 from the outcomes. The
distribution of the estimated values is broader than the original one
for ρ̂ due to the measurement errors.

H, we perform the same measurement on each of them. Here,
we assume that the space of the possible quantum states is
that of all density matrices on H. If we want to know the
expectation value 〈X̂〉 := Tr[ρ̂X̂] of a single observable X̂, the
optimal strategy (optimality is shown in Ref. [20]) is to perform
the projection measurement P = {P̂i}di=1 corresponding to the
spectral decomposition of X̂ = ∑

i αiP̂i and then to calculate
the estimated value of 〈X̂〉 as

Xest(n) =
d∑

i=1

αi

ni

n
, (1)

where n = (n1, . . . ,nd ) with ni giving the number of times
the outcome i is obtained (

∑
i ni = n). The expectation value

E[Xest] of the estimator Xest is equivalent to 〈X̂〉,
E[Xest] :=

∑
n

Xest(n)p(n) = 〈X̂〉, (2)

where the summation is taken over all non-negative integers
ni � 0 that satisfy

∑
i ni = n, and

p(n) = n!
d∏

i=1

p
ni

i

ni!
(3)

is the probability that the outcome i is obtained ni times with
pi = Tr[ρ̂P̂i]. The estimators, such as (1), that satisfy (2) for
all quantum states are called unbiased estimators. The variance
of the estimator Xest, which quantifies the error in the whole
measurements and the estimation process, is calculated to be

Var[Xest] := E[(Xest)2] − E[Xest]2 = 1

n
(�X)2, (4)

where

(�X)2 := 〈X̂2〉 − 〈X̂〉2
(5)

characterizes the quantum fluctuation of observable X̂. Since
the variance decreases as n−1, we can estimate 〈X̂〉 from the
measurement outcomes of P if n is sufficiently large.

When we perform the positive operator-valued measure
(POVM) measurement M = {M̂i}mi=1, the estimator cannot,
in general, be written in the form of (1), and the variance is
asymptotically greater than that of the optimal one:

lim
n→∞ nVar[Xest] � (�X)2, (6)

where the left-hand side (LHS) and the right-hand side (RHS)
show the variance of the concerned estimator and that of the
optimal case per sample, respectively. The variance Var[Xest] is
caused by three different types of errors: quantum fluctuations,
errors in the n identical measurements, and errors in the
estimation process (see Fig. 1). The estimation error arises
unless we use optimal estimators that minimize Var[Xest] such
as the maximum likelihood estimator. To quantify the error in
single-shot measurements, it is necessary to use the estimator
that minimizes the variance. We define the measurement error
as

ε(X̂; M) := min
Xest

lim
n→∞ nVar[Xest] − (�X)2, (7)

where the minimization is taken over all consistent estimators
[21] that asymptotically converge to 〈X̂〉:

lim
n→∞ Prob(|Xest − 〈X̂〉| < δ) = 1 (8)

for all quantum states ρ̂ and arbitrary δ > 0. The condition
(8) implies that the POVM measurement does not involve
any systematic error and we can quantify the measurement
precisely. Examples of the consistent estimator include the
average of eigenvalues (1) for the projection measurement,
and the maximum likelihood estimator for the POVM mea-
surement. These quantities also minimize limn→∞ nVar[Xest].
If there exists no consistent estimator of 〈X̂〉, we define
ε(X̂; M) = +∞. Such a situation occurs, for example, when
the projection measurement of an observable that does not
commute with X̂ is performed.

We note that the measurement error ε(X̂; M) is defined as
the limit of n going to infinity. If n is finite and not sufficiently
large, we cannot use the statistical analysis to evaluate the
errors. Therefore, the definition (7) is meaningful for the case
in which n is infinite or, at least, sufficiently large.

B. Measurement error in terms of Fisher information

To express ε(X̂; M) in terms of the Fisher information, we
expand the Hermitian operators on the d-dimensional Hilbert
space by the generators of the Lie algebra su(d). The generators
λ̂ = {λ̂i}d2−1

i=1 are traceless, Hermitian, and orthonormal with
respect to the trace-norm:

λ
†
i = λi, Tr[λi] = 0, Tr[λ̂i λ̂j ] = δij . (9)

In terms of them, an arbitrary quantum state ρ̂ can be expanded
as

ρ̂ = 1

d
Î + θ · λ̂ = 1

d
Î +

d2−1∑
i=1

θi λ̂i , (10)
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where Î is the identity operator and θ ∈ Rd2−1 is a (d2 − 1)-
dimensional real vector. Since ρ̂ is unknown, θ is unknown,
and the dimension of the space 	 of all possible parameters
θ is d2 − 1. An arbitrary observable can also be expanded in
terms of the same set of generators as

X̂ = x0Î + x · λ̂. (11)

Then, the expectation value can be evaluated as

〈X̂〉 = x0 + x · θ . (12)

Therefore, estimating 〈X̂〉 amounts to estimating x · θ . For
any consistent estimator Xest of 〈X̂〉, the variance Var[Xest]
satisfies the following Cramér-Rao inequality [22]:

lim
n→∞ nVar[Xest] �

{
x · [J (M)]−1x, x ∈ supp[J (M)],
+∞, otherwise,

(13)

where J (M) is the Fisher information matrix whose ij

component is defined as

[J (M)]ij :=
m∑

k=1

pk(∂i ln pk)(∂j ln pk), (14)

where ∂i = ∂/∂θi and pk = Tr[ρ̂M̂k]. In general, J (M) does
not have the inverse. The inverse in (13) is defined by the
Moore-Penrose pseudoinverse [23,24]. In the rest of this paper,
the inverses of nonsquare matrices and matrices that have zero
eigenvalue are defined by the Moore-Penrose pseudoinverse.
If the RHS of (13) is finite, there exists some estimator, for
example, the maximum likelihood estimator, that achieves the
equality of (13). If the RHS of (13) is infinite, there exists no
consistent estimator of 〈X̂〉. Therefore, the measurement error
can be written as

ε(X̂; M) =
{

x · J (M)−1x − (�X)2, x ∈ supp[J (M)],
+∞, otherwise.

(15)

The matrix J (M) varies with varying the POVM, but it is
bounded from above by the quantum Cramér-Rao inequality
[25]:

J (M) � JQ, (16)

⇔ J (M)−1 � J−1
Q , (17)

where JQ is the quantum Fisher information matrix [26], which
is a monotone metric on the quantum state space with the
coordinate system θ . The quantum Fisher information matrix
is not uniquely determined, but from the monotonicity there
exist the minimum JS and the maximum JR [27], where JS

(JR) is the symmetric (right) logarithmic derivative Fisher
information matrix. Their ij elements are defined as

[JS]ij := 1
2 〈{L̂i,L̂j }〉, (18)

[JR]ij := 〈L̂′
j L̂

′
i〉, (19)

where the curly brackets {,} denote the anticommutator, and
a Hermitian L̂i and a non-Hermitian L̂′

i are defined to be the
solution to

∂i ρ̂ = 1
2 {ρ̂,L̂i}, (20)

∂i ρ̂ = ρ̂L̂′
i . (21)

It can be shown (see Appendix A) that[
J−1

S

]
ij

= Cs(λ̂i ,λ̂j ), (22)[
J−1

R

]
ij

= C(λ̂i ,λ̂j ), (23)

where

Cs(X̂,Ŷ ) := 1
2 〈{X̂,Ŷ }〉 − 〈X̂〉〈Ŷ 〉, (24)

C(X̂,Ŷ ) := 〈X̂Ŷ 〉 − 〈X̂〉〈Ŷ 〉 (25)

are the symmetrized and unsymmetrized correlation functions
of two observables. From the classical and quantum Cramér-
Rao inequalities and

x · J−1
S x = x · J−1

R x = (�X)2, (26)

we find that the inequality

ε(X̂; M) = x · [
J (M)−1 − J−1

Q

]
x � 0 (27)

is satisfied for any quantum Fisher information.
We note that if the density matrix does not have full rank,

for example, if the state is pure, the Cramér-Rao inequality
(13) does not hold and needs a correction for the unbiasedness
of the estimator due to the semi-positivity of the quantum
states [28]. The measurement error defined in (7) satisfies
(15) only for those states whose density matrices have full
rank. However, all non-full-rank states can be approximated
by full-rank states with arbitrary precision, and all states that
can be generated realistically are mixed. Therefore, in the
following, we consider only the case in which the density
matrix has full rank.

III. TRADE-OFF RELATIONS ON MEASUREMENT
ERROR FOR AN ARBITRARY MEASUREMENT

The first result in this paper is the following theorem:
Theorem 1. For all observables X̂1, X̂2 and quantum states

ρ̂, an arbitrary POVM M satisfies

ε(X̂1; M)ε(X̂2; M) � 1
4 |〈[X̂1,X̂2]〉|2, (28)

where the square brackets [,] denote the commutator.
Proof. From the quantum Cramér-Rao inequality [25], we

have

J (M)−1 − J−1
R � 0. (29)

The matrix J (M) is real and symmetric, and JR is Hermitian.
Thus, the following inequality is satisfied for all observables
X̂μ = x0,μÎ + xμ · λ̂ and k ∈ R:

(x1 + ikx2)†[J (M)−1 − J−1
R ](x1 + ikx2) � 0

⇒ k2ε(X̂2; M) + k|〈[X̂1,X̂2]〉| + ε(X̂1; M) � 0. (30)

It follows from this inequality that the discriminant of the
quadratic polynomial on the LHS of (30) is always negative.
Therefore, (28) is proved. �

Heisenberg originally discussed the trade-off relation
between the measurement error of an observable and the
disturbance in another noncommuting observable caused by
the measurement. From this argument, it can be expected that
the trade-off relation between measurement errors exists. We
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FIG. 2. (Color online) (a) Plots of measurement errors of 109

randomly chosen POVMs for dimH = 4 (S = 3/2), ρ̂ = {Î /(2S +
1) + |S〉〈S|}/2, X̂1 = Ŝx , and X̂2 = (

√
3Ŝx + Ŝy)/2, where ημ :=

[ε(X̂μ; M)/(�Xμ)2 + 1]−1 with 0 � ημ � 1. The red dash-dotted,
blue dashed, black solid, and green dotted curves show the bounds
set by (28), (34), (42), and the inequality obtained in Ref. [12],
respectively. (b) The directions of spin observables Ŷ1 and Ŷ2 that
achieve the bound set by (42) for two spin observables X̂1 and X̂2.
The projection measurement of Ŷν can be implemented, for example,
by using cold atoms and a linearly polarized laser whose propagation
direction is specified by γν .

have proved this in the form of (28). Holevo proved a similar
trade-off relation for position and momentum for the coherent
state [8].

Equation (28) is satisfied for all quantum states and
observables on any finite-dimensional Hilbert space. However,
the equality in (28) cannot be achieved for all quantum states
and observables [see the dash-dotted curve in Fig. 2(a)]. For
example, for ρ̂ = Î /d,

〈[X̂1,X̂2]〉 = 0 (31)

for all observables X̂1 and X̂2, and thus the RHS of (28)
vanishes. For a POVM M to achieve the equality of (28), the
POVM must satisfy

ε(X̂1; M) = 0, (32)

ε(X̂2; M) < +∞. (33)

To satisfy (32), the POVM M must be the projection
measurement of X̂1. However, in this case, the error for X̂2

diverges and the conditions (33) cannot be satisfied unless X̂2

commutes with X̂1.

IV. ATTAINABLE BOUND OF THE MEASUREMENT
ERRORS

A simple but not optimal way to estimate 〈X̂1〉 and 〈X̂2〉 is
to perform one projection measurement P1 on n1 samples and
another projection measurement P2 on n2 = n − n1 samples.
This measurement scheme is asymptotically equivalent to the
POVM measurement that randomly performs those two pro-
jection measurements with probabilities qμ = nμ/n (ν = 1,2).
If X̂1 and X̂2 cannot be simultaneously block-diagonalizable,
the measurement errors satisfy

ε(X̂1; M)ε(X̂2; M) = (�X1)2(�X2)2. (34)

However, this measurement scheme does not exploit possible
correlations between the observables X̂1 and X̂2. To utilize
them, it is sufficient to perform projection measurements of
two observables Ŷν with probability qν (ν = 1,2) with q1 +
q2 = 1, where Ŷ1 and Ŷ2 are linear combinations of X̂1 and
X̂2. Therefore, we consider the following classes of POVM.

First, we define a set of projection measurements PX̂1,X̂2

as that of all projection measurements corresponding to the
spectral decompositions of the observables that are linear
combinations of X̂1 and X̂2:

PX̂1,X̂2
=

{
P = {P̂i}di=1

∣∣∣ ∃a1,a2,βi ∈ R,

a1X̂1 + a2X̂2 =
∑

i

βiP̂i

}
. (35)

The set of the measurement schemes that probabilistically
perform projection measurements with PX̂1,X̂2

is defined as

Mrandom := {q1 P1 + q2 P2 | P1,P2 ∈ PX̂1,X̂2
,

q1,q2 � 0, q1 + q2 = 1}, (36)

where

q1 P1 + q2 P2 = {qνP̂ν,i}i=1,...,d
ν=1,2 (37)

for Pν = {P̂ν,i}di=1.
In real experimental setups, measurements always suffer

from noises which deteriorate the precision of projection
measurement P . Such a noisy measurement can be expressed
as

M = F P =
⎧⎨
⎩

∑
j

Fij P̂j

⎫⎬
⎭

i

, (38)

where F is the so-called information processing matrix or
probability transition matrix whose elements satisfy

Fij � 0,
∑

i

Fij = 1. (39)

The measurements described by F P cover a broad class of
experimentally realizable measurements. For example, a typ-
ical scheme of quantum nondemolition (QND) measurement
belongs to this class [16–18]. We note that the noise of a
measurement in this class is described by a classical noise
that is characterized by a classical noisy channel with Fij . We
define a set of measurements,

Mnoisy :=
{

F M

∣∣∣∣∣ M ∈ Mrandom,Fij � 0,
∑

i

Fij = 1

}
,

(40)

which include random measurements consisting of noisy pro-
jection measurements. Note that the classes of measurements
described above satisfy

Mrandom ⊂ Mnoisy ⊂ Mall, (41)

where Mall denotes the totality of POVM measurements.
The second main result in this paper is the following

theorem:
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Theorem 2. For all observables X̂1, X̂2 and quantum states
ρ̂, an arbitrary POVM M ∈ Mnoisy satisfies

ε(X̂1; M)ε(X̂2; M)�(�QX1)2(�QX2)2−[CQ(X̂1,X̂2)]2. (42)

Moreover, the measurements that achieve the equality of (42)
exist for all quantum states and observables.

Here �Q and CQ are defined as follows. Let Ha (a =
1,2, . . .) be the simultaneous irreducible invariant subspace
of X̂1 and X̂2 (H = ⊕aHa), and P̂a the projection operator
on Ha . We define the probability distribution as pa := 〈P̂a〉
and the post-measurement state of the projection measurement
{P̂1,P̂2, . . .} as

ρ̂a := 1

pa

P̂aρ̂P̂a. (43)

Then, �Q and CQ are defined as

(�QXμ)2 :=
∑

a

pa

(〈
X̂2

μ

〉
a
− 〈X̂μ〉2

a

)
, (44)

CQ(X̂1,X̂2) :=
∑

a

pa

(
1

2
〈{X̂1,X̂2}〉a−〈X̂1〉a〈X̂2〉a

)
, (45)

where 〈X̂〉a = Tr[ρ̂aX̂]. If X̂1 and X̂2 are simultaneously
block-diagonalizable, then quantum fluctuations and correla-
tions of observables are determined by the diagonal blocks of
ρ̂. (Note that 〈X̂μ〉 is independent of the off-diagonal blocks
of ρ̂.) If two observables commute with each other, the RHS
of (42) vanishes.

For qubits (dimH = 2), (42) can be proven for all POVM
measurements, as stated in the following theorem:

Theorem 3. For all quantum states ρ̂ and observables X̂μ

on the two-dimensional Hilbert space, (42) is satisfied for all
POVMs M ∈ Mall.

Inequality (42) is stronger than (28) and the trade-off rela-
tions obtained by Nagaoka [12] [see Fig. 2(a)], and it reduces to
the trade-off relation found in Ref. [13] for dimH = 2 and ρ̂ =
Î /2. The optimal measurement of Englert’s complementarity
[14] for dimH = 2 achieves the bound set by (42).

We emphasize that the bound set by (42) can be achieved
for all quantum states and observables, whereas the bound set
by (28) cannot. For example, for

ρ̂ = r

(2S + 1)
Î + (1 − r)|S〉〈S|, (46)

X̂1 = Ŝx, X̂2 = Ŝx cos ϕ + Ŝy sin ϕ, (47)

q1 = q2 = 1/2, (48)

the measured observable

Ŷν = Ŝx cos γν + Ŝy sin γν (49)

is determined by the solution to

cos ϕ + cos ϕ cos2(γ1 − γ2) − 2 cos(γ1 + γ2 − ϕ)

× cos(γ1 − γ2) = 0, (50)

where Ŝi is the spin operator of total spin S in the i (= x,y,z)
direction, and |S〉 is the eigenstate of Ŝz with eigenvalue S. The
RHS of (28) and that of (42) are given by [ 1

2 (1 − r)S sin ϕ]2

and [rS(2S − 1)/6 + S/2]2 sin2 ϕ, respectively. Such an op-
timal measurement can be implemented, for example, by

using cold atoms [16–19]. By letting an ensemble of atoms
interact with a linearly polarized off-resonant laser whose
propagation direction is parallel to the direction specified by
γν in Ŷν [see Fig. 2(b)], the angle of a paramagnetic Faraday
rotation of the laser polarization carries information about
〈Ŷν〉. The rotation angle can be detected by a polarimeter using
a polarization-dependent beam splitter. If the intensity of the
laser is sufficiently strong, this scheme achieves the projection
measurement of Ŷν .

In the following, we prove Theorems 2 and 3:
Proof of Theorem 2. If two POVMs satisfy M ′ = F M with

an information processing matrix F , they satisfy

J (M ′) � J (M). (51)

Hence, we have only to consider the case in which M ∈
Mrandom.

Let X̂μ = xμ,0Î + xμ · λ̂ be a linear combination of Ŷν =
yν,0Î + yν · λ̂ (ν = 1,2), and A = (aμν) be its coefficient:

X̂μ =
∑

ν

aμνŶν . (52)

We consider the POVM measurement M = q1 P1 + q2 P2 ∈
Mrandom, where Pν = {P̂ν,i} corresponds to the spectral
decompositions of the observables Ŷν = ∑

i βν,i P̂ν,i .
As shown in Appendix A, the inverse of J (M) can be

obtained as

yν · J (M)−1 yν = (�Yν)2 + (q−1
ν − 1)(�QYν)2, (53)

y1 · J (M)−1 y2 = Cs(Ŷ1,Ŷ2) − CQ(Ŷ1,Ŷ2). (54)

Let

J̃ (M) := [RTJ (M)−1R]−1, (55)

J̃S := [
RTJ−1

S R
]−1

, (56)

ε̃(M) := J̃ (M)−1 − J̃−1
S (57)

be 2 × 2 matrices, where

R := ( x1 x2 ) (58)

is a (d2 − 1) × 2 matrix. From (52), (53), and (54), we obtain

J̃S =
(

(�X1)2 Cs(X̂1,X̂2)
C(X̂1,X̂2) (�X2)2

)

= A

(
(�Y1)2 Cs(Ŷ1,Ŷ2)
C(Ŷ1,Ŷ2) (�Y2)2

)
AT, (59)

ε̃(M) = A

(
q2

q1
(�QY1)2 −CQ(Ŷ1,Ŷ2)

−CQ(Ŷ1,Ŷ2) q1

q2
(�QY2)2

)
AT. (60)

The measurement error of the observable X̂μ can be written as

ε(X̂μ; M) = [ε̃(M)]μμ. (61)

Because ε̃(M) is symmetric, we have

ε(X̂1; M)ε(X̂2; M) � det[ε̃(M)]

= det

(
(�QY1)2 CQ(Ŷ1,Ŷ2)
CQ(Ŷ1,Ŷ2) (�QY2)2

)
(det A)2

= (�QX1)2(�QX2)2 − [CQ(X̂1,X̂2)]2.

(62)
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The condition for the equality to hold is that the off-diagonal
elements of ε̃(M) vanish. The observables Ŷν that satisfy this
condition exist for all ρ̂. �

Next we prove (42) for the two-dimensional Hilbert space.
We first prove the following two lemmas:

Lemma 1 For all POVM M ∈ Mall,

Tr
[
J (M)J−1

S

]
� d − 1 (63)

is satisfied. This lemma was also shown in Ref. [29].
Proof. Let the spectral decomposition of each element of

M = {M̂i} be

M̂i =
∑

j

kij |ψij 〉〈ψij |, (64)

and we define an associated POVM,

N = {N̂ij = kij |ψij 〉〈ψij |}i,j . (65)

From the fact that there always exists an information process-
ing matrix F such that M = F N ,

J (M) � J (N) (66)

is satisfied. By denoting

N̂ij = kij

d
Î + vij · λ̂, pij = 〈N̂ij 〉, (67)

from the facts that

N̂2
ij = kij N̂ij ,

∑
ij

kij = d, (68)

we obtain

Tr
[
J (M)J−1

S

]
� Tr

[
J (N)J−1

S

] =
∑
ij

p−1
ij vij · J−1

S vij

=
∑
ij

(�N̂ij )2

〈N̂ij 〉
=

∑
ij

kij 〈N̂ij 〉 − 〈N̂ij 〉2

〈N̂ij 〉
=

∑
ij

(kij − 〈N̂ij 〉) = d − 1.

�
Lemma 2. Let K := J̃

−1/2
S J̃ (M)J̃−1/2

S . For the two-
dimensional Hilbert space (d = 2), the following inequalities
hold:

Tr[K] � 1 ⇔ det[K−1 − I ] � 1. (69)

Proof. Because

P := J (M)−1/2R[RTJ (M)−1R]−1RTJ (M)−1/2 (70)

is a projection matrix (P 2 = P � I ), we have

Tr[K] = Tr
[
[RTJ (M)−1R]−1RTJ−1

S R
]

= Tr
[
PJ (M)1/2J−1

S J (M)1/2
]

� Tr
[
J (M)J−1

S

]
. (71)

Therefore, from Lemma 1, the statement is proved. �
Proof of Theorem 3. If X̂1 and X̂2 commute with each other,

(�QXμ)2 = CQ(X̂1,X̂2) = 0, (72)

and therefore the RHS of (42) vanishes. Hence, we have only
to consider the case in which X̂1 and X̂2 do not commute. It

follows from the fact that ε̃(M) is symmetric and from Lemma
2 that

ε(X̂1; M)ε(X̂2; M) � det[ε̃(M)]

= det[K−1 − I ] det
[
J̃−1

S

]
� det

[
J̃−1

S

]
= (�X1)2(�X2)2 − Cs(X̂1,X̂2)2. (73)

From the facts that

�QXμ = �Xμ, (74)

CQ(X̂1,X̂2) = Cs(X̂1,X̂2), (75)

(42) is proved. �

V. NUMERICAL RESULTS OF FINDING ACHIEVABLE
BOUND FOR ALL POVM MEASUREMENTS

Our trade-off relation (42) is rigorously proven for the
measurements in Mall for dimH = 2 and Mnoisy for dimH �
3. For higher-dimensional Hilbert spaces from dimH = 3 to
7, we numerically calculate the measurement errors of 109

randomly chosen POVMs in Mall for randomly chosen 10
pairs of quantum states and 2 observables (ρ̂,X̂1,X̂2). We
find that the calculated measurement errors satisfy (42). A
typical example of the numerical calculation is shown in Fig.
2 (a). The area within the bound is blacked out by 109 data
points with no point found outside of the bound. The range
dimH = 3 to 7 includes prime numbers (dimH = 3,5,7), a
power of prime (dimH = 4), and a composite number that is
not a power of prime (dimH = 6). Therefore, we conjecture
the following:

Conjecture 1. For all observables X̂1, X̂2 and quantum states
ρ̂, all POVMs M ∈ Mall satisfy (42).

VI. CONCLUSION AND DISCUSSION

To summarize, we have formulated the complementarity of
quantum measurement in a finite-dimensional Hilbert space
by invoking quantum estimation theory. To quantify the
information retrieved by the measurement, it is essential to
take into account the estimation process. We have shown that
the measurement errors of noncommuting observables satisfy
the Heisenberg-type uncertainty relation, and find the stronger
bound (42) that can be achieved for all quantum states and ob-
servables. The measurement schemes that achieve this bound
can be implemented experimentally in cold-atom systems.

The bound set by (42) is proved for the measurement
schemes that perform two projection measurements proba-
bilistically. We numerically show that randomly generated
POVM measurements satisfy the bound. Thus, we conjecture
that (42) is satisfied for all quantum measurements. The
rigorous proof of the conjecture remains a future problem.
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APPENDIX: INVERSE OF FISHER INFORMATION
MATRIX

In this section, we show how to calculate the inverses of
classical and quantum Fisher information matrices.

First, we show J (M)−1. By expanding each element of M
as

M̂k = rk + vk · λ̂, (A1)

the Fisher information matrix can be expressed as

J (M) =
m∑

k=1

vkv
T
k

pk

= V P −1V T, (A2)

where V and P defined by

V = ( v1 · · · vm ), (A3)

P = diag(p1, . . . ,pm) (A4)

are (d2 − 1) × m and m × m real matrices, respectively. The
inverse J (M)−1 can be obtained as

J (M)−1 = (V T)−1[P − PA(A−1PA)−1A−1P ]V −1, (A5)

where A is a real matrix whose column vectors ai

are linearly independent and satisfy V ai = 0. Then, A

satisfies

V A = V (AT)−1 = 0, (A6)

V −1V = V T(V T)−1 = I − AA−1, (A7)

A−1A = AT(AT)−1 = I. (A8)

Next, we show (22) and (23). By expanding L̂i as

L̂i = ai Î + bi · λ̂, (A9)

and from (20), we obtain

ai + θ · bi = 0,

aiθ + Gθ bi = ei ,
(A10)

⇒ bi = (Gθ − θθT)−1ei , (A11)

where ei is a unit vector whose ith element is 1, and Gθ is a
symmetric matrix whose ij element is defined as

[Gθ ]ij := 1
2 〈{λ̂i ,λ̂j }〉. (A12)

Therefore, the symmetric logarothmic derivative Fisher infor-
mation can be written as

JS = (Gθ − θθT)−1, (A13)

and its inverse can be obtained as (22).
To derive (23), we expand L̂′

i as

L̂′
i = ci Î + di · λ̂. (A14)

Since L̂′
i is non-Hermitian, ci is complex and di is a complex

vector. From (21), these coefficients satisfy

ci + θ · di = 0,

ciθ + (Gθ − Fθ )di = ei ,
(A15)

⇒ di = (Gθ − Fθ − θθT)−1ei , (A16)

where Fθ is a Hermitian matrix whose ij element is defined as

[Fθ ]ij := 1
2 〈[λ̂i ,λ̂j ]〉. (A17)

Therefore, the right logarithmic derivative Fisher information
can be written as

JR = (Gθ + Fθ − θθT)−1, (A18)

and (23) is derived.
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