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We consider a unified analytical approach for scattering and decay processes in one-dimensional resonant
tunneling systems using the formalism of resonant states to address the issue of the differences and similarities
in the time evolution of decay between the decay of an arbitrary state prepared initially within a system and the
formation and subsequent decay of a quasistationary state in the scattering of a Gaussian wavepacket on that
system. We find three distinctive regimes. A first regime, which refers only to the quasistationary state, that is
characterized by a buildup time of the probability density at a given position within the internal region of the
potential. Here we find that the buildup time has a dependence on position. A second regime, dominated by
the exponentially decaying terms, where the decay of the quasistationary state proceeds in an almost identical
fashion as for the initially prepared decaying state. And finally, a third regime that involves the transition to
nonexponential decay at long times and its ulterior behavior as an inverse power of time. Here we find that the
time scale of the transition occurs at different times, which implies a dependence on the parameters of the initial
state.
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I. INTRODUCTION

The simple theoretical treatments of quantum decay usually
refer to a particle confined initially by a barrier within an
interaction region from which it escapes via tunneling. The
early studies on α decay in radioactive nuclei, which led to
the derivation of the exponential decay law, were in fact based
on such simple models [1–3]. There, since the lifetime of
these systems is extremely large, the mode of formation of
the initial state is irrelevant [4]. It soon became clear that
scattering processes may allow us to study the formation and
the decay of unstable or quasistationary states. This has been
usually studied in a time-independent framework and refers
to systems where the lifetime is very short. In this case, the
quasistationary state manifests itself as a sharp resonance in
the cross section having a Lorentzian or Breit-Wigner shape,
where the width of the resonance is inversely proportional to
the lifetime of the state [4]. Subsequent work by Khalfin at the
end of the 1950s and since then by a number of authors pointed
out the approximate validity of the exponential decay law in
systems whose energy spectra is bounded from below, i.e.,
E ∈ (0,∞) [5]. It was argued that, in general, deviations from
the exponential decay law were expected at very short or very
long times compared with the lifetime of the system. These
theoretical predictions have been confirmed by experiment in
recent years [6,7].

In present times, the possibility of designing artificial
quantum structures [8] has opened new ways to study the
time evolution of scattering and decay in quantum systems.
One possible way to create the initial state in artificial
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one-dimensional semiconductor structures is, for example, by
laser excitation [9–11], that it is usually assumed to be an
instantaneous process, where the decaying particle seats in one
of the quantum wells of the system. Another way of creating
the initial state is via a scattering mechanism. There, decay
is preceded by a buildup process of the electronic probability
density inside the system [12,13].

Most of the theoretical treatments of decay do not incor-
porate into the description the formation of the initial state, a
point of view compatible with the former of the two processes
mentioned above. The scattering approach, on the other hand,
describes on the same footing the formation and subsequent
decay of the quasistationary state formed inside the system.
The Gaussian wave packet scattered by a one-dimensional
resonant tunneling system has been the model used to analyze
in this fashion the dynamics of the formation and decay
of a quasistationary state [12–15]. In particular, Støvneng
and Hauge [13] studied the dynamics of resonant tunneling
through a double barrier system using the tight-binding model.
They focused their work in analyzing the buildup time of
the probability density inside the system and found that it is
directly related to the spatial width of the wavepacket and
that, in general, it differs from the decay time. The work of
Peisakhovich and Shtygashev [14,15] addresses the formation
and decay of a quasistationary state on a finite lattice and
exemplify their findings by solving a periodic system formed
by N identical δ potentials. They consider an approximate
numerical approach involving the steepest descent and residue
theory methods. In this work we consider a resonant state
formalism [16,17] to compare in a unified form the process
of formation and subsequent decay of a quasistationary state
by scattering of a Gaussian wavepacket in one-dimensional
resonant systems and the decay of an arbitrary state prepared
initially within such systems. Our aim is to elucidate the com-
mon features as well as the relevant differences in both cases.
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The paper is organized as follows. Section II provides a
brief review of the resonant state formalism. It involves two
subsections: Sec. II A discusses the time evolution of decay of
an initial arbitrary state for a potential; Sec. II B refers to the
scattering of a Gaussian wavepacket to describe the formation
and decay of a quasistationary state along the internal region
of a potential. Section III deals with two examples and its
discussion: Sec. III A, the double barrier system; Sec. III B,
the quadruple barrier system. Finally, Sec. IV presents the
concluding remarks.

II. FORMALISM

In this section we establish the notation to be used along
the paper and present the formalism employed to describe the
time evolution of decay. Our problem deals with solving the
time-dependent Schrödinger equation in one dimension,[

ih̄
∂

∂t
− H

]
�(x,t) = 0, (1)

for a given arbitrary initial state �(x,0), where the Hamiltonian
H of the system, for a particle of effective mass m, is defined
as

H = − h̄2

2m

∂2

∂x2
+ V(x), (2)

corresponding to an arbitrary finite range one-dimensional
potential V(x), i.e., V(x) = 0 for x < 0 and x > L.

We obtain analytically solutions �(x,t) of Eq. (1) along the
internal region (0 < x < L), for different ways of preparing
the initial state �(x,0). We consider two interesting cases:
(i) the purely decaying case, where �(x,0) is seated inside
the interaction region as a localized pulse in a quantum well,
and (ii) the scattering and decay case, where �(x,0) is an
incident cutoff Gaussian wave packet. Since �(x,0) comes
from outside the interaction region in the latter case, the decay
is preceded by a buildup process of the electronic probability
density inside the system.

In the next subsections, we present a résumé of the
analytical procedures leading to the formal solutions �(x,t)
for each of the above-mentioned cases. Both approaches are
based on a resonance formalism in one-dimension that invokes
the analytical properties of the outgoing Green’s function
G+(x,x ′; k) of the problem. Resonance expansions of G+ in
terms of its complex poles κn = αn − iβn distributed along
the third and fourth quadrants of the complex k plane in a
well-known manner [18] are used to obtain formal expressions
for the solutions.

A. Decay problem

For the purely decay problem, let us consider that, at the
time t = 0, the initial state of the particle, �(x,0), is arbitrary
but confined within the internal region of the potential V(x).
The solution at a later time t > 0 may be expressed in terms
of the retarded Green’s function g(x,x ′; t) as

�d (x,t) =
∫ L

0
g(x,x ′; t) �d (x ′,0) dx ′, t > 0. (3)

In order to obtain an analytical expression for the wave-
function given by Eq. (3), we must first evaluate the retarded

Green’s function g(x,x ′; t). One may proceed by relating
g(x,x ′; t) with its corresponding outgoing Green’s function
G+(x,x ′,k) using the Laplace transform method in momentum
k space [19], which yields

g(x,x ′; t) =
(

h̄2

2m

)
i

2π

∫ ∞

−∞
G+(x,x ′; k)e−ih̄k2t/2m 2k dk.

(4)

Following the work by Garcı́a-Calderón [20], we obtain
an expansion of G+(x,x ′; k) involving its complex poles {κn},
and their corresponding residues, which are proportional to the
resonance eigenfunctions {un(x)} [21],

G+(x,x ′; k) =
(

2m

h̄2

)
1

2k

∞∑
n=−∞

un(x)un(x ′)
k − κn

. (5)

The above expansion holds for 0 � (x,x ′)‡ � L, where the
symbol ‡ indicates the fact that the expansion is valid for
all values x, x ′ in the interval [0,L], except when x = x ′ =
0 or x = x ′ = L. The resonance functions un(x) satisfy the
stationary Schrödinger’s equation of the problem with complex
eigenvalues, i.e.,

[En − H] un(x) = 0, En = h̄2κ2
n

2m
. (6)

They obey outgoing boundary conditions at x = 0 and x = L,
given, respectively, by

d

dx
un(x)

∣∣∣∣
x=0

= −iκnun(0),

(7)
d

dx
un(x)

∣∣∣∣
x=L

= iκnun(L).

Notice that the complex poles κ−n, seated on the third
quadrant of the complex k plane satisfy, from time-reversal
considerations, κ−n = −κ∗

n . Similarly, the corresponding res-
onant states u−n(x) satisfy u−n(x) = u∗

n(x). The complex
energy poles may also be written as En = En − i	n/2 and,
hence, En = h̄2(α2

n − β2
n)/2m and 	n = h̄2(4αnβn)/2m. The

un(x) are also proportional to the residues of the function
G+(x,x ′; k) [21] around the complex poles κn [Eq. (5)],which
provides the normalization condition for resonance states
[17,19,21]:∫ L

0
u2

n(x) dx + i
u2

n(0) + u2
n(L)

2κn

= 1. (8)

The resonance states {un(x)} also fulfill the closure rela-
tionship,

1

2

∞∑
n=−∞

un(x) un(x ′) = δ(x − x ′); 0 � (x,x ′)‡ � L, (9)

and the sum rule,
∞∑

n=−∞

un(x) un(x ′)
κn

= 0; 0 � (x,x ′)‡ � L. (10)

The set of {κn} and the corresponding {un(x)} that follow
from the solution of the above complex eigenvalue problem
may be obtained by well-known methods [21].
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Substituting Eq. (5) into Eq. (4), we obtain a resonance
expansion of g(x,x ′; t):

g(x,x ′; t) =
∞∑

n=−∞
un(x)un(x ′) M(yn). (11)

In the above infinite sum, the resonance functions un deal with
the spatial features along the internal region, while the time
evolution is given by the Moshinsky functions (or M functions)
M(yq), defined as

M(yq) = i

2π

∫ ∞

−∞

e−ih̄k2t/2m

k − κq

dk = 1

2
ω(iyq), (12)

where

yq = − exp(−iπ/4)

√
h̄

2m
κqt

1/2, (13)

with q = ±1, ± 2,... ± n and ω(z) = exp(−z2)erfc(−iz)
stands for the well-known Faddeyeva function [22,23].

Feeding Eq. (11) into Eq. (3) and using Eq. (12), one arrives
to an expression for the time-dependent wavefunction �d (x,t)
along the internal region [0,L] of the potential, namely,

�d (x,t) = 1

2

∞∑
n=−∞

Cn un(x) ω(iyn), (14)

where the expansion coefficients are given by

Cn =
∫ L

0
�(x,0)un(x) dx. (15)

The Cn fulfill useful relationships similar to Eqs. (9) and (10):

Re

( ∞∑
n=1

CnC̄n

)
= 1, (16)

and

Im

( ∞∑
n=1

CnC̄n

kn

)
= 0, (17)

where in the above expressions C̄n is defined as

C̄n =
∫ L

0
�∗ (x,0) un(x) dx. (18)

In the above expression, the relationship C−nC̄−n = (CnC̄n)∗
has been used. Notice that, if �d (x,0) is real, then C̄n = Cn.

It is convenient to rewrite Eq. (14) using the symmetry
relations u−n = u∗

n and κ−n = −κ∗
n , as well as the symmetry

relation for the Faddeyeva functions [22,23],

ω(iz) = 2e−z2 − ω(−iz), (19)

to obtain

�d (x,t) =
∞∑

n=1

Cnun(x)e−iEnt/h̄e−	nt/2h̄ + Rn(x,t), (20)

which exhibits explicitly the exponential decay behavior of
the wavefunction. The term Rn(x,t) in Eq. (20) stands for
the nonexponential contribution, which becomes a relevant
contribution both at very short and very long times compared

with the lifetime of the system. It may be shown that at very
long times �d (x,t) ∼ 1/t3/2 [16,17].

In particular, as discussed in Ref. [24], the expression for
the wavefunction in the case of a multibarrier system with
minibands having M-resonance levels each, i.e., a system with
M + 1 barriers, may be written as

�d (x,t) ≈
M∑

n=1

Cnun(x)e−iEnt/h̄e−	nt/2h̄. (21)

Hence, the corresponding probability density |�(x,t)|2 may
be written as

|�d (x,t)|2 ≈ ρ
exp
d (x,t) + IRabi

d (x,t), (22)

where ρ
exp
d (x,t) stands for purely exponentially decaying

contributions,

ρ
exp
d (x,t) =

M∑
n=1

|Cn|2|un(x)|2e−	nt/h̄, (23)

and IRabi
d (x,t) describes the interference contribution formed

by decaying Rabi-type oscillatory contributions,

IRabi
d (x,t) = 2

M∑
n,m>n

|C∗
mCnu

∗
m(x)un(x)|e−	̄mnt/h̄

× cos[�mn(x,t)], (24)

with

�mn(x,t) = mnt + θmn(x) + ϑmn, (25)

where the different phases above are defined through the ex-
pressions u∗

m(x)un(x) = |u∗
m(x)un(x)| exp[iθmn(x)], C∗

mCn =
|C∗

mCn| exp(iϑmn) and mn stands for the Rabi frequency
defined as

mn = (Em − En)/h̄. (26)

Also, in Eq. (24), 	̄mn is the mean of the widths of the
corresponding interacting resonances,

	̄mn ≡ (	m + 	n)/2. (27)

B. Scattering problem

For the scattering problem, we suppose that the initial state
of the particle �s(x,0) satisfies the so-called quantum shutter
setup [25], i.e.,

�s(x,0) =
{

ψ0(x), x < 0

0, x > 0
. (28)

Notice that, in contrast to the purely decaying case of the
previous subsection where the initial state was seated inside
the system, here the initial state is seated outside the interaction
region. Under this condition, the formal time-dependent
solution �(x,t) may be written as

�s(x,t) =
∫ ∞

−∞
dk φ0(k)ψ+(x; k)e−ih̄k2t/2m, (29)

where φ0(k) is the Fourier transform of the initial state Eq. (28)
and ψ+(x; k) the corresponding scattering state of the problem
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corresponding to incidence from left to right and normalized
according to∫ ∞

−∞
dx ψ+∗(x; k′)ψ+(x; k) = δ(k − k′).

As is well known, the scattering state ψ+(x; k) outside the
potential region read

ψ+(x,k) = 1√
2π

{
eikx + r(k)e−ikx, x � 0

t(k)eikx, x � L
, (30)

where r(k) and t(k) stand, respectively, for the reflection and
transmission amplitudes. The internal solution is related with
the corresponding outgoing Green function of the problem
as [17,26]

ψ+
int(x; k) =

(
h̄2

2m

)
2ik√

2π
G+(x,0; k), 0 < x < L. (31)

Following recent work by Cordero and Garcı́a-Calderón [27],
we may expand G+(x,0; k) exp(−ikx) [instead of G+(x,0; k)]
over the resonance states to find

ψ+
int(x; k) = ik√

2π

∞∑
n=−∞

rn(x)e−iκnx

k − κn

eikx, 0 < x � L, (32)

where

rn(x) = un(0)un(x)

κn

, (33)

with κn and un(x) being the nth complex pole and resonant
state, respectively.

Substituting Eq. (32) into Eq. (29), and using the relation-
ship

k

k − κn

≡ 1 + κn

k − κn

, (34)

one may write the time-dependent solution �int along the
internal interaction region 0 � x � L as

�int(x,t) = i

∞∑
n=−∞

rn(x)e−iκnx�f (x,t)

+ i

∞∑
n=−∞

rn(x)κnQ0(x,t ; κn)e−iκnx, (35)

where

�f (x,t) = 1√
2π

∫ ∞

−∞
dk φ0(k)eikx−ih̄k2t/2m (36)

is the corresponding free evolution, and

Q0(x,t ; κn) = 1√
2π

∫ ∞

−∞
dk φ0(k)

eikx−ih̄k2t/2m

k − κn

(37)

is a term that depends on each complex pole κn of the system.
Let us consider the particular case in which the initial state

is an incident cutoff Gaussian wavepacket. For this initial
condition, one may write

ψ0(x) = A0

(
1

2πσ 2

)1/4

e−(x−x0)2/4σ 2
eik0x, (38)

where

A0 =
(

2

erfc(x0/
√

2σ )

)1/2

. (39)

In the above expressions, x0 < 0 and σ stand, respectively,
for the center and the effective width of the Gaussian and we
make use of E0 = h̄2k2

0/2m, the energy of the wavepacket.
The Fourier transform of Eq. (38) is given by

φ0(k) = 1

(2π )1/4

(
σ

ω(iz0)

)1/2

ω(iz), (40)

where

z = x0

2σ
− i(k − k0)σ, (41)

and

z0 = x0√
2σ

, (42)

with ω(z) the Faddeyeva function [22,23].
Let us place the initial wave packet along the region

x < 0. As pointed out above, here we shall be concerned with
the physically relevant situation where the tail of the initial
Gaussian wave packet is very small near the interaction region.
It is then convenient to consider the symmetry relationship
for the Faddeyeva function given by Eq. (19) and follow
an argument given by Villavicencio et al. for the free and
δ potential cases [28], which may be applied also to the
interaction potential case [29], that consists in approximating
ω(iz) as

ω(iz) ≈ 2e−z2
, (43)

provided that ∣∣∣ x0

2σ

∣∣∣ 
 1. (44)

The condition given by Eq. (44) is the usual condition used
for scattering of Gaussian wavepackets. It simply means that
initially the tail of the Gaussian wavepacket is negligible along
the interaction potential region.

Substituting Eq. (43) into Eqs. (36) and (37) yields
expressions satisfying the condition given by (44) that we
denote, respectively, by �a

f (x,t) and Qa
0(x,t ; κn), and are given

by [29]

�a
f (x,t) = 1

(2π )1/4

1

σ 1/2

ei(k0x−h̄k2
0 t/2m)eimx ′2/2h̄t ′

√
1 + it/τ

(45)

and

Qa
0(x,t ; κn) = −iσπ1/2

√
1 + it/τ�a

f (x,t)ω(iy ′
n), (46)

where the following quantities have been defined

τ = 2mσ 2

h̄
, t ′ = t − iτ, x ′ = x − x0 − h̄k0

m
t, (47)

and

y ′
n = e−iπ/4

√
m

2h̄t ′

[
x ′ − h̄κ ′

n

m
t ′
]

, κ ′
n = κn − k0. (48)
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Let us now substitute Eq. (46) into Eq. (35) to find

�a
int(x,t) = �a

f (x,t)
∞∑

n=−∞
irn(x)e−iκnx

[1 − iσπ1/2
√

1 + it/τκnω(iy ′
n)]. (49)

It follows then, using the symmetry property of the Faddeyeva
function Eq. (19), that Eq. (49) may be written as

�a
int(x,t) =

∞∑
n=1

Dnun(x)e−iEnt/h̄e−	nt/2h̄ + In(x,t), (50)

where Dn reads

Dn = 2
(π

2

)1/4
σ 1/2e−[iκ ′

nx0+κ ′
n

2
σ 2]un(0), (51)

and In(x,t) stands for the corresponding nonexponential
contributions.

It may be shown that the internal time-dependent solution
given by Eq. (49) behaves at asymptotic long times as
�a

int(x,t) ∼ t−3/2, in a similar fashion as occurs for the purely
decaying case of the previous subsection.

It is worth pointing out that both the decaying solution
given by Eq. (20) and the internal scattering solution given
by Eq. (50) exhibit similar exponentially decaying terms, both
being proportional to the resonant states un(x), and expansion
coefficients that depend on the corresponding initial states.
Clearly, along the exponentially decaying regime one may
write Eq. (50) as

�a
int(x,t) ≈

∞∑
n=1

Dnun(x)e−iEnt/h̄e−	nt/2h̄ (52)

and derive analogous expressions to those given by Eqs. (22)–
(27) (replacing the C ′ by the D′) to describe Rabi oscillations
in the decaying probability density of the quasistationary state
formed by wavepacket scattering.

III. EXAMPLES AND DISCUSSION

In this section, we analyze the dynamical behavior of the
decaying probability density in quantum wells of resonant
tunneling structures for initial quantum states created both
inside and outside the system. In the former case, which we
refer to as the purely decaying case, the initial state �0 ≡
�(x,0) is a sine pulse of the form

�(x,0) =
(

2

w0

)1/2

sin[kj (x − xs) + jπ/2], (53)

for |x − xs | < w0/2 and zero elsewhere, where xs refers to
the center of a well of width w0 and kj = jπ/w0 with j =
1,2,3, . . .. In the latter case, which we refer to as the scattering
and decay case, we choose as initial incident state the cutoff
Gaussian wavepacket given by Eq. (28) with �0(x) given by
Eq. (38). Under the condition of Eq. (44), it is easy to see that
the quantity A0 → 1, and hence one may write

�(x,0) =
{

(1/2πσ 2)1/4e−(x−x0)2/4σ 2
eik0x, x < 0

0, x > 0
. (54)

The above initial conditions have in common the fact that
both involve a decay process; however, they correspond to

different physical situations. For the initial condition Eq. (53),
the decaying state is suddenly created inside the system as a
pulse in one of the quantum wells of the system. In contrast, for
the initial condition Eq. (54), the quantum wells of the system
are initially empty, since the initial state originates outside the
system and, hence, a time is required to build up the probability
density to a maximum before the decay process begins [14,15].

In order to illustrate the comparison of the decay between an
initially decaying state and a quasistationary state formed by
scattering of wavepackets, we shall use two different resonant
tunneling systems characterized by typical parameters of
semiconductor heterostructures [8,30]. One of them is the
simple case of a symmetrical double barrier resonant structure
(DBRS) and the other is a quadruple-barrier resonant structure
(QBRS). In the former we have the simplest situation of a
decaying state trapped inside the lateral walls of the system
where the probability density has a relatively simple form [31],
while in the latter the situation is more complex with the
probability density exhibiting an internal dynamics governed
by the interference between resonant states [24,32].

A. Double barrier

We consider a symmetrical DBRS with parameters: barrier
heights V0 = 230 meV, barrier widths b0 = 5.0 nm, well
widths w0 = 5.0 nm, electron effective mass m∗ = 0.067 me,
with me being the free electron mass. As mentioned above,
for the purely decaying problem, we choose the initial state
[Eq. (53)], and for the scattering and decay problem, we
consider an incident cutoff Gaussian wavepackets [Eq. (54)].

Figure 1 exhibits contour plots of ln |�d (x,t)|2 and
ln|�s(x,t)|2 along the interaction region in units of the length
L of the system as a function of time in terms of the lifetime
unit τ1 = h̄/	1 (which corresponds to the longest time scale).
Figure 1(a) exhibits the time evolution of decay for the purely
decaying initial pulse [Eq. (53)] with parameters j = 1 and
xs = 7.5 nm, using the solution given by Eq. (14) and keeping
the first few necessary terms of the sum. Figure 1(b) exhibits
the formation and subsequent decay of a Gaussian wavepacket,
which was seated initially at a distance x0 = −8σ from
the DBRS with σ = 5.0 nm, using the formal solution for
scattering, Eq. (49). The incidence energy is E0 = 80.11 meV,
which corresponds to the first resonance energy level E1 of
the system. Despite the fact that the initial decaying states
were produced quite differently in the purely decaying and
the scattering and decay cases, a remarkable similarity in the
dynamics exhibited in Figs. 1(a) and 1(b) is observed. The
only difference that can be appreciated in Fig. 1(b) is the fast
buildup process that occurs at short times and lasts a fraction
of a lifetime τ1. In the latter case, the initial decaying state was
asymmetrically created by injecting the Gaussian wavepacket
through the left barrier, and once the buildup is accomplished
in a relatively short time scale τb, the decay evolves thereafter
in a fashion very similar as for the purely decaying case shown
in Fig. 1(a), escaping symmetrically via tunneling through
the lateral barriers as if it were created inside. This shows
the efficiency of the Gaussian packet scattering to create
high-quality initial decaying states in DBRSs.

With the purpose to see what happens with an incident
wavepacket spectrally broader in k space, we consider in
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τ

τ

τ

FIG. 1. (Color online) Contour plots of the natural logarithm of the probability density along the internal interaction region in units of the
length L as time varies in units of the lifetime τ1 for several initial states. Panel (a) shows the decay of a sine pulse seated initially in the well,
whereas panels (b) and (c) exhibit, respectively, the formation and subsequent decay of Gaussian wave packets with σ = 5.0 nm and σ = 0.5 nm,
seated initially at x0 = −8σ with the resonance energy of the system E0 = E1. Notice here that in both cases the buildup time τb lasts just a
fraction of a lifetime of the system. Notice also the similarity of the subsequent time evolution of decay between case (a) with cases (b) and (c).

Fig. 1(c) the resulting dynamics when using a spatially
narrower incident Gaussian wavepacket of width σ = 0.5 nm,
x0 = −8σ , and the rest of the parameters as in Fig. 1(b). Also
in this case, the dynamics of decay is quite similar to the
purely decaying case of Fig. 1(a), with a short duration buildup
process that now exhibits an oscillatory transient [more evident
in the inset of Fig. 2(c). See below].

Let us now analyze the behavior of the time evolution
of the decaying state in the full time domain, i.e., one that
includes the whole exponential regime as well as the transition
from exponential to nonexponential decay occurring at long
times. In Figs. 2(a), 2(b), and 2(c) we show, respectively,
plots of the corresponding natural logarithm of the probability
densities as a function of time, at a fixed position xf inside
the system, for the three cases discussed previously in Fig. 1.
Figure 2(a) yields a plot of ln |�d (x,t)|2 as a function of
time t , in lifetime units, at the position xf = 7.5 nm, which
corresponds to both the middle of the system and the well. As
we can see, the dynamical evolution of ln |�d (xf ,t)|2 exhibits
an exponential decaying regime followed by a transition to
a nonexponential regime governed by the inverse law t−3

[24,32]. It turns out that the real part of the overlap of the initial
state �d (x,0) with the lowest resonant state u1(x) is larger
than the overlap corresponding with the rest of resonant states,

namely, Re C2
1 = 0.77. This means, in view of Eq. (16), that

the rest of resonant states share the remaining strength. Hence,
one may conclude that in the purely decaying case, along the
internal interaction region, the decaying quasistationary state
is at a good approximation, proportional to the resonant state
u1(x).

In order to compare the above purely decaying process
with scattering and decay case, let us consider the situation
in which the initial state is created outside the system using
the cutoff wavepacket Eq. (54), with σ = 5.0 nm, x0 = −8σ ,
and incidence energy E = E1 = 80.11 meV. We show in
Fig. 2(b) the time evolution of ln |�s(x,t)|2 at the same
fixed position xf = 7.5 nm. As we can see, the dynamical
behavior of ln |�s(xf ,t)|2 for the scattering case is qualitatively
similar to the purely decaying case along the whole time
domain. However, the differences can be appreciated in the
upper inset of Fig. 2(b), where an amplification of the
main graph was taken over a shorter time interval. Here,
it is evident that a buildup process occurs at a relatively
short time scale, which is the time required for the incident
wavepacket to penetrate the system and fill up the well of
the DBRS. Once the internal probability density reaches
an absolute maximum (as a function of time), the decay
process begins, following an exponential behavior until it
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FIG. 2. (Color online) Plot of the natural logarithm of the probability density as a function of the time t at the center of the well (xf = 75
nm) of the DBRS, for distinct initial states consisting of (a) a sine pulse that fits in the first well, (b) a cutoff Gaussian wavepacket of width
σ = 5.0 nm, initial position x0 = −8.0σ , incidence energy E0 = E1 = 80.11 meV, and (c) a thinner cutoff Gaussian wavepacket of width
σ = 0.5 nm and initial position x0 = −8.0σ and the same incidence energy. In cases (b) and (c), the upper inset is a zoom that illustrates the
buildup that occurs before the decay process.

reaches a transition to the well known nonexponential regime.
Figure 2(c) displays the values of ln |�s(x,t)|2 vs t/τ1 for
a thinner cutoff wavepacket (and hence with more spread in
k space). The wavepackets parameters are σ = 0.5 nm and
x0 = −8σ . As we can appreciate in the upper inset, a transient
occurs before establishment of the exponential part of the
decay process. However, the decay process exhibits essentially
the same form as in Fig. 2(b) along the whole time interval,
showing that even in this case the scattering process is capable
to effectively produce the quasistationary decaying state.

It is worth noticing that the deviation from exponential
decay in Figs. 2(a), 2(b), and 2(c) occurs at different times,
which indicates a dependence of the values of these transition
times on the parameters of the corresponding initial states.

B. Quadruple barrier

As a second example we consider a quadruple-barrier
resonant structure (QBRS) with barrier heights V0 = 200 meV,
barrier widths b0 = 4.0 nm, and well widths w0 = 5.0 nm. As
in the previous example for the DBRS, we keep the same
effective electron mass. For the purely decaying problem we
choose the initial state [Eq. (53)], and for the scattering and
decay problem we consider the initial Gaussian state [Eq. (54)]
with σ = 5.0 nm.

Figure 3 exhibits contour plots of the natural logarithm of
the probability density along the interaction region in units

of the length L as a function of time in terms of the lifetime
unit τ1 = h̄/	1. Figure 3(a) exhibits the time evolution of
decay for the purely decaying initial pulse [Eq. (53)] with
parameters j = 1 and xs = 6.5 nm, the center of the first
well from the left. On the other hand, Fig. 3(b) exhibits the
formation and subsequent decay of the Gaussian wavepacket,
which is seated initially at a distance x0 = −8σ from the
QBRS. The corresponding incident energy is E0 = 66.46 meV,
which corresponds to the first resonance energy level E1 of
the system. Notice that Fig. 3(b) exhibits a buildup time
that lasts a fraction of a lifetime, as occurs also in the
DBRS example. Subsequently, the decay process evolves in
a fashion very similar to the purely decaying situation, as
may be seen by comparison of Figs. 3(b) and 3(a). In both
cases, the dynamics occur in the form of a bouncing mode,
where the maximum of the probability density follows a
back-and-forth motion inside the system that resembles the
classical picture of a particle bouncing on the lateral walls. In
fact, the dynamics is governed by a mixture of Rabi frequencies
resulting from the interference between the relevant resonant
states of the miniband. Therefore, the bouncing mode exhibited
in the internal dynamics, despite its resemblance with the
classical motion, is completely a quantum mechanical effect.
Note also that this bouncing-like motion does not occur in
a continuous fashion as in the case of a classical particle,
instead it consists of a series of buildup processes repeated

042118-7



SERGIO CORDERO et al. PHYSICAL REVIEW A 84, 042118 (2011)

ττ

FIG. 3. (Color online) Contour plots of the natural logarithm of the probability density along the internal interaction region in units of the
length L as time varies in units of the lifetime τ1 of the QBRS. Panel (a) shows the decay of a sine pulse seated initially in the first well on the
left, whereas panel (b) exhibits the formation and subsequent decay of a Gaussian wave packet with σ = 5.0 nm seated initially at x0 = −8σ

with the resonance energy of the system E = E1. Notice that the buildup time lasts a fraction of a lifetime and that the time evolution of decay
in both cases is quite similar. See text.

sequentially in the different wells. The probability density
fades out in the classical forbidden regions (barriers) and
reappears successively in the wells along the system from one
side to the other. These peculiarities are characteristic features
of these sorts of systems. They are quantum mechanically
robust in the sense that they imprint on the decaying state
a unique bouncing dynamics, and the process by which the
initial state is formed is not essential to determine the ulterior
behavior with time of the decaying state.

Figure 4 shows the comparison of the decaying probability
density at the center of the first well of the same QBRS
considered above for two different physical situations. In the
first case, the initial state was created inside the system as a
quantum box ground state centered in the first well as pictured
in the lower inset of Fig. 4(a). In the second case, the initial
state consists of an incident cutoff Gaussian wavepacket that
comes from the left, as illustrated in the lower inset of Fig. 4(b).
In both situations, the natural logarithm of the corresponding
probability densities as a function of the time t/τ1 (in lifetime
units) is displayed at the fixed position xf = 6.5 nm (center of

the first well). The upper inset of each figure displays the values
of the corresponding natural logarithm of the probability
density in wider time intervals, so that the transition from
exponential to nonexponential decay is clearly appreciated.
The main graphs are the amplifications of the marked area in
the upper left corner of these insets, and they show the detailed
structure of the decaying probability density at the beginning
of the exponential regime.

Simple visual comparison of Figs. 4(a) and 4(b) shows the
strong similarity in the time evolution of the corresponding
plots of the natural logarithm of the probability density, except
for the small shift in Fig. 4(b) associated to the buildup time τb.
Once the maximum value of the buildup of the quasistationary
state in Fig. 4(b) is accomplished, the subsequent oscillatory
pattern is quite similar to the one displayed in Fig. 4(a)
corresponding to the purely decaying case. The buildup time
τb can be obtained by measuring the shift between both
curves. However, as discussed by Støvneng and Hauge in the
DBRS [13], this quantity depends on external factors such as
the initial position and width of the incident packet. In contrast,

Ψ0

Ψ

τ
1

FIG. 4. (Color online) Plot of the natural logarithm of the probability density as a function of the time t in lifetime units at the center of the
first well (xf = 6.5 nm) of a QBRS, for an initial state consisting on: (a) a sine pulse in the first well and (b) a Gaussian wavepacket with initial
position x0 < 0 and incident energy E = E1 = 66.46 meV. The upper insets displays a similar calculation for a longer time interval. Note the
transition from exponential to nonexponential decay occurs after many lifetimes.
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FIG. 5. (Color online) Plot of the natural logarithm of the probability density as a function of the time t in lifetime units at the center of the
second well (xf = 15.5 nm) of a QBRS, for an initial state consisting on: (a) a sine pulse in the second well, and (b) a Gaussian wavepacket
with initial position x0 < 0 and incident energy E = E1 = 66.46 meV. The insets display a similar calculation for a longer time interval.

the decay process in these few period resonant structures, is
mainly governed by internal factors: the resonant states and
their interferences.

Let us consider now the time evolution of the probability
density at the center of the central well, namely, xf = 15.5 nm.
Figure 5 (a) illustrates the plot of ln |�d (x,t)|2 vs t/τ1 for
the case in which the initial state �d (x,0) is a sine pulse
centered in the second well, xs = 15.5 nm, as pictured in the
lower inset of that figure. For the scattering case, we show
in Fig. 5(b) the corresponding plot of ln |�s(x,t)|2 vs t/τ1

also in the center of the central well, for the initial state
consisting on the incident cutoff Gaussian wavepacket (see
picture in the lower inset) with the same system parameters
and incidence energy as in Fig. 4(b). By simple inspection of
the graphs, we can appreciate that, in both the scattering and
decay and the purely decaying cases, the dynamical behavior
of the corresponding probability densities is essentially the
same, except again for a small shift in the graph of Fig. 5(b)
due to the buildup occurring in the well before the decay
process begins. The observed dynamics consist on a regular
oscillatory pattern that is associated to spatial oscillations of
the probability density between the central and lateral wells,
which is related to a Rabi-type frequency involving the first
and third resonant states of the system [24]. Interestingly, after
a transient in which the decaying state is “prepared” through a

scattering process, the dynamics exhibited in Fig. 5(b) follows
exactly the same behavior of the purely decaying case depicted
in Fig. 5(a). This occurs despite the fact that the buildup in the
central well must wait for the arrival of the filtered components
of the incident wavepacket across the two barriers on the left,
and the buildup of the first well has been accomplished.

Figure 6(a) shows the comparison of the values of the
natural logarithm of the probability density as a function of
the time t at xf = x1 = 6.5 nm (center of the first well) and
xf = x2 = 24.5 nm (center of the third well) when the initial
state �d (x,0) is placed in the first well, xs = 6.5 nm. Both
curves exhibit a similar oscillatory behavior, but one of them
is shifted with respect to the other due to the buildup time
of the probability density at the third well (initially empty),
which is approximately half a period of the zigzag oscillatory
pattern shown in the contour map of Fig. 3.

On the other hand, Fig. 6(b) shows the comparison of
the same quantity as above at the same two fixed positions,
x1 = 6.5 nm and x2 = 24.5 nm, for the scattering case in
which initial state �s(x,0) is the Gaussian wavepacket with
incidence energy E = E1 = 66.46 meV. Here we observe a
buildup process both in the first and the third well, since they
were initially empty. Notice that the decay through the right
edge of the system (x = L) must wait for the buildup of the
third well as can be appreciated in the contour maps of Fig. 3;
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τ
1

Ψ0

Ψ

τ

FIG. 6. (Color online) (a) Comparison of the natural logarithm of the probability density as a function of the time t in lifetime units at the
center of the first well, x1 = 6.5 nm (solid red line), and at the center of the third well, x1 = 24.5 nm (dashed blue line) of a QBRS, for an
initial state consisting on: (a) a sine pulse in the first well, (b) the same as above for a Gaussian wavepacket with initial position x0 < 0 and
incident energy E = E1 = 66.46 meV. The fixed positions of x1 and x2 are also indicated by arrows in the lower insets.
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as we can see in these maps, the maximum leakage of the
probability density through the last barrier occurs when the
third well is full.

Notice that the transition times into the nonexponential
behavior exhibited by the insets to Figs. 4 and 5 occurs, as in the
case for double-barrier resonant tunneling systems, at different
times, which indicates that these transition times depend on
the parameters of the corresponding initial states.

IV. CONCLUDING REMARKS

We have presented a unified analytical description of decay
and scattering processes by using the formalism of resonance
states. The analytical expressions that describe the decay of
both an arbitrary state seated initially within the system, the
purely decaying case, and the formation and the decay of a
quasistationary state within the system formed by scattering
of a Gaussian wavepacket, the scattering and decay case, are
given, respectively, by Eqs. (14) and (49) and alternatively, by
Eqs. (20) and (50), which exhibit explicitly the corresponding
exponentially decaying contributions.

A common feature of our calculations is that the formation
of the quasistationary state is characterized by a fast buildup
time of the order of a fraction of the lifetime of the
corresponding system. The subsequent time evolution of the
probability density is governed by the exponentially decaying
term with the longest lifetime, usually that with n = 1, which
may be preceded by interfering oscillating contributions (Rabi
terms) for systems involving two or more wells. This regime
is almost indistinguishable from the purely decaying case, as
illustrated in Sec. III. Finally, we find that the deviation from
the exponential behavior at long times has a dependence on
the parameters of the corresponding initial states.

It is of interest to comment, that our calculations in the
scattering and decay case refer to values of the width σ of
the Gaussian wavepacket that are smaller or much smaller
than the lengths of the systems considered. In k space, that
means that the wavepacket interacts strongly, respectively, with

a few or several resonance levels of the systems considered, as
illustrated by the transient behavior in the insets to Figs. 2(b)
and 2(c). In the limiting case of a very sharp wavepacket
in k space, which implies an infinitely broad wavepacket in
configuration space, a convenient form to study the buildup
time is to consider a quantum shutter setup for a cutoff initial
plane wave. A study of this problem for a double-barrier system
has given a buildup time that corresponds to several lifetimes
of the system [21]. Thus, in general, one may expect that the
buildup time has a dependence on the width of the Gaussian
wavepacket.

It is also of interest to point out that the buildup time
of the probability density for the quasistationary state has a
dependence on positions within the system, as illustrated in
Figs. 6(a) and 6(b). This may have implication in studies on
the transit time in resonant tunneling systems and certainly
requires further studies that will be considered elsewhere.

Summing up, it is worth emphasizing that a characteristic
quality of resonant tunneling structures is their robustness
in the sense that the internal dynamics of decay is strongly
governed by the resonance states of the system. That is,
the resonance states are able to dictate essentially the same
dynamics for initial pulses seated inside the system as well as
for quasistationary states formed by scattering processes. This
is evident by inspection of Eqs. (20) and (50) and by looking
at the contour plots displayed by Figs. 1 and 3. For practical
purposes, we may conclude that in the exponentially decaying
regime, the purely decaying and scattering and decay cases
are essentially indistinguishable.
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