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Linear entropy in quantum phase space
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We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can
also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible
to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this
is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal
case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner)
or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to
use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green’s functions.
We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes
coupled to a time-evolving, non-Markovian reservoir.
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I. INTRODUCTION

Quantum dynamics and thermal equilibrium states in large
many-body systems have been widely investigated using
phase-space representations [1–4]. Applications of these meth-
ods [5] include Einstein-Podolsky-Rosen (EPR) correlations
in parametric amplifiers, quantum soliton propagation [6],
nonequilibrium quantum criticality [7], quantum dynamics of
Bose-Einstein condensates in two [8] and three dimensions
[9,10], molecular down-conversion [11], and many other prob-
lems. Gaussian operator expansions [12–15] are an important
extension to these phase-space mappings. Unlike earlier meth-
ods, Gaussian phase-space methods can be applied to either
fermionic or bosonic quantum many-body systems [16,17].
These methods employ a representation as a distribution
over stochastic Green’s functions. They have the essential
property that they are probabilistic, allowing them to scale
to large-sized systems without the exponential complexity of
the usual orthogonal basis-set methods. Such methods have
proved useful for treating the ground state of the fermionic
Hubbard model [18–20], and dynamical cases where quantum
Monte Carlo (QMC) techniques are impractical [21,22].

Yet one of the most fundamental properties of quantum
systems, entropy [23], has not been treated using this approach.
In ultracold atomic physics it is usually the entropy that is
directly measurable, rather than the temperature [24]. This
is because there is no traditional thermal reservoir, so that
to measure thermal effects, it is often necessary to use an
entropy-conserving adiabatic passage to a state of known
entropy. While some QMC methods can calculate entropy
[25], standard phase-space simulations have not yet done
this. Similarly, in quantum information, entropic concepts like
entanglement of formation [26] and the quantum discord [27]
are important measures of quantum behavior. This leads to
the question: can phase-space methods be used to calculate
entropy, which is not a typical quantum observable?

In this paper we investigate quantum entropy calculations
using phase-space representations. Such calculations can
be used, for example, to determine thermodynamics and
entanglement of a many-body system [28] or to calculate
the fidelity of a quantum memory [29]. Alternatively, they
can be utilized to assess how close a calculated state is to

a known state, or to check that unitary evolution preserves
the entropy. This is essential in computationally demanding
problems, where it is important to be able to check the
validity of a given quantum simulation. More generally, such
investigations throw light on one of the fundamental problems
of quantum statistical physics. This is the well-known paradox
that unitary evolution leaves the quantum entropy unchanged
while apparently introducing disorder through collisions and
mixing.

For probabilistically sampled distributions, we show that
the preferred method for entropy calculations is a Gaussian
phase-space representation. In this approach, the operator basis
is comprised of Gaussian operators, and the corresponding
variance or Green’s function is used as a stochastic phase-space
variable [12]. For ease of computation we treat the simplest
entropy measure, the Renyi or linear entropy [30,31]. An
essential ingredient in sampled linear entropy calculations is
a knowledge of the inner products of the generating operators
of the phase-space representation. We calculate these inner
products for phase-space representations of either bosonic [15]
or fermionic [13] fields. In the case of fermionic operators, the
results come from an elegant application of the Grassmann
integration in a Grassmann space.

This method is directly useful for calculating a coarse-
grained or localized entropy [32]. Coarse-grained entropy
can increase even when the fundamental quantum entropy
is invariant, and is a fundamental entanglement measure.
Coarse-graining is then carried out simply by restricting or
projecting the stochastic Green’s function onto a subspace
of system modes. As physical applications of these methods,
the coarse-grained partial entropy is calculated for systems
of either bosonic or fermionic modes that are coupled to
a general, non-Markovian reservoir. These cases cannot be
treated using master equation methods and have applications
to many current nanoscale systems in quantum information.
These can be readily solved for the entanglement between the
system and reservoir using the phase-space entropy approach.

By comparison, the commonly used Wigner [1] and Husimi
Q function [2] expansions are not directly useful in entropy
calculations. In the Q-function case, the inner products of the
generating operators are not defined. In the Wigner distribution
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case, the entropy obtained from a sampled phase-space
distribution is singular. For normally ordered distributions,
such as the Glauber-Sudarshan P distribution [3,33], the
sampled quantum entropy is well behaved, but the distribution
is singular, except for classical-like states. This rules out the
use of traditional, classical phase-space mappings for entropy
calculations using probabilistic sampling. The positive-P
distribution [4,34,35], defined on a double-dimension phase
space, has a well-defined positive distribution with nonsingular
inner products. Even in this case, entropy calculations are
nontrivial since, for some quantum states, the sampling error
for entropy calculations diverges.

This paper is organized as follows. In the next section,
we describe the definition of quantum entropy and describe
the phase-space representations that we will treat in this paper.
We also give a general expression of entropy in terms of phase-
space representations and discuss the evaluation of the sampled
entropy. In Sec. III we discuss coarse graining and reduced
entropy and give their expressions in terms of phase-space
projections. In Sec. IV we describe sampled entropy calcula-
tions using fixed-variance phase-space methods, for instance,
the general Cahill-Glauber distribution, as well as the Husimi,
Wigner, Glauber-Sudarshan, and positive-P representations.
In Secs. V and VI we discuss general Gaussian phase-space
representations for bosons and fermions, respectively. The
evaluation of inner products of Gaussian operators is pre-
sented, which allows us to evaluate the linear entropy and the
reduced coarse-grained entropy. We evaluate the linear entropy
analytically for thermal states and a comparison with the
sampled entropy using the Glauber-Sudarshan representation
is made. Finally, as physically relevant examples, we evaluate
the coarse-grained entropy for both bosons and fermions in the
important case of a system of particles linearly coupled to a
non-Markovian reservoir. Section VII gives a summary of our
results and conclusions.

II. ENTROPY AND OPERATOR REPRESENTATIONS

Entropy is a conserved quantity for unitary evolution in
quantum mechanics. Intuitively, entropy [23,36] is a measure
of loss of information about a physical system. It is invariant
for unitary quantum evolution, and only changes when one
considers a subsystem coupled to a reservoir. Physically,
quantum pure state evolution involves no intrinsic information
loss. Of course, this is somewhat counterintuitive. One might
expect the mixing effects of nonlinear evolution to reduce
information. But this is only true if a restricted or coarse-
grained set of measurements is used; in principle, there is
no information loss in pure state evolution, and information
or entropy should be invariant in any simulation of unitary
quantum dynamics. Thus, a pure state will remain a pure state,
implying that state purity is a completely general benchmark
for the accuracy of a quantum simulation.

A. Quantum entropy

Quantum entropy is most commonly defined using the von
Neumann [23] or Shannon entropy [37]:

S = −Tr(ρ̂ ln ρ̂) . (2.1)

This is an important physical quantity, related to both infor-
mation content and thermodynamic behavior. However, there
are many other conserved entropic quantities. The existence
of these can be thought of as related to general information
conservation. These were recently discussed [38] in relation to
the Wigner function, where it was pointed out that any quantity
like SF = Tr[F (ρ̂)] is also conserved. In particular, the linear
entropy [39], which we normalize following Renyi [30], is
defined as

S2 = − ln Tr(ρ̂2) . (2.2)

This has similar properties to the entropy, and measures state
purity, since S2 = 0 for a pure state, while S2 > 0 for a mixed
state. In this article, we focus on the linear entropy, which is
simplest to calculate using phase-space methods. This is also
true for the fidelity of ρ̂ to a fiduciary state ρ̂0,

F = Tr(ρ̂ρ̂0) , (2.3)

which is a closely related concept. Such fidelity measures [40]
are useful in evaluating the accuracy of information storage in
a quantum network [41], quantum computer [42], or quantum
memory [43].

The most general class of entropies normally studied in
this way are the general Renyi entropies [30,31], defined for
p > 1 as

Sp = 1

1 − p
ln Tr(ρ̂p) . (2.4)

It is known that S = limp→1 Sp, so the conventional von
Neumann or Shannon entropy can be regained from the general
Renyi entropy in the appropriate limit.

B. Phase-space representations

A general phase-space representation can be written
as [4,44]

ρ̂ =
∫

P (λ)�̂(λ) dλ , (2.5)

where P (λ) is the probability density over the phase space, λ

is a real or complex vector parameter in a general phase space,
dλ is the integration measure, and �̂(λ) is the representation
kernel or operator basis. For simplicity, we exclude phase
spaces that involve Grassmannian degrees of freedom [45,46].
These can be extremely useful in analytic calculations but
are not readily sampled computationally, since the vector
parameter λ is not a real or complex vector.

We consider a bosonic or fermionic quantum field the-
ory with an M-dimensional set of mode operators â† ≡
[â†

1,â
†
2, . . . ,â

†
M ]. In the bosonic case, we can define δâ =

â − α and δâ† = â† − β† as operator displacements, where
in general α and β† are independent complex vectors. In
the fermionic case we set these displacements to zero. The
annihilation and creation operators satisfy (anti)commutation
relations, with (+) for fermions and (−) for bosons:

[âi,â
†
j ]± = δij . (2.6)

The phase-space representations we will treat in this paper
use a general number-conserving Gaussian operator basis
[13–15], in which any density matrix ρ̂ is expanded in terms
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of a basis of Gaussian operators, defined as exponentials of
quadratic operator forms �̂(λ), where

�̂(λ) = 1

N �̂u(λ) = 1

N : exp[−δâ†μδâ] : (2.7)

Here, μ is a complex M × M matrix so that λ = [α,β†,μ] ,
N = Tr[�̂u(λ)] is a normalizing factor, and : : indicates normal
ordering. The normalizing factor has two forms for bosons and
fermions, respectively:

Nb = det[μ]−1,
(2.8)

Nf = det[2I − μ] .

The interpretation as a stochastic Green’s function comes from
the identification that μ is closely related to a correlation
function of each basis member �̂(λ):

nb = μ−T − I,
(2.9)

nf = [2I − μ]−T .

In either case, the stochastic average of n over the distribution
P is physically a normally ordered many-body Green’s
function, so that

〈â†
i âj 〉 = 〈nij + β∗

i αj 〉P . (2.10)

In traditional, classical types of phase space—for example,
the Wigner function approach—the random variable or phase-
space coordinate is a stochastic position or momentum. In the
case of a general Gaussian phase space, the random variable
is a stochastic correlation function.

We see immediately, from Eq. (2.2), that the Renyi entropy
in a phase-space representation is

S2 = − ln
∫ ∫

P (λ)P (λ′)Tr[�̂(λ)�̂(λ′)] dλ dλ′ . (2.11)

The evaluation of inner products of Gaussian operators of
form Tr[�̂(λ)�̂(λ′)] is therefore a central task in calculations
of linear entropy using phase-space representations.

C. Sampled entropy

For computational purposes, distributions always exist such
that P (λ) has positive values, and it can be interpreted as a
probability in these cases. One can then sample the distribution
N times to obtain a sampled estimate ρ̂S , such that

ρ̂ ≈ ρ̂S = 1

N

N∑
j=1

�̂(λj ) . (2.12)

This approximation becomes an exact equality in the limit of
N → ∞, provided the sampling is unbiased. Given a set of
samples λi , we can now calculate the linear entropy as follows:

S2 ≈ − ln

⎧⎨⎩ 1

N2

N∑
i,j=1

Tr[�̂(λi)�̂(λ′
j )]

⎫⎬⎭ . (2.13)

This, however, requires a double sampling of the population.
In phase-space representations the kernel of the representation
consists of nonorthogonal operators, so the operator inner
product Tr[�̂(λi)�̂(λj )] is nonvanishing even if λi 
= λj . It

is desirable that the two sets of samples λi ,λ
′
j are independent

of each other, to prevent sampling biases. The above result has
obvious extensions to other entropies. For example, the general
Renyi entropy involves a p-fold summation over sampling
indices:

Sp ≈ 1

1 − p
ln

⎧⎨⎩ 1

Np

N∑
j=1

Tr[�̂(λj1 ) · · · �̂(λ′
jp

)]

⎫⎬⎭ , (2.14)

but clearly the linear entropy is computationally the simplest.
In the remainder of this paper, we focus on the question of
how to evaluate the inner products of the Gaussian phase-space
basis set, which is the essential ingredient in calculating a linear
entropy or fidelity measure, and how to apply this in physically
relevant situations. We note that for some calculations it is
useful to allow P (λ) to have complex values [47], in which
cases the entropy is best calculated analytically.

III. COARSE GRAINING AND REDUCED ENTROPY

There is a fundamental paradox in understanding quantum
entropy. For an isolated quantum system, all of the entropies
defined above are invariant under unitary evolution, even
including particle-particle interactions. This appears to defy
conventional wisdom, which is that for a many-body system
the effect of particle collisions is to cause mixing, and hence in-
crease disorder. Thus, collisions appear to increase the entropy.
Such expectations contradict the entropy invariance of unitary
evolution, which is at the heart of such famous controversies as
the Bekenstein-Hawking black-hole information loss paradox
[48,49].

However, these paradoxes are easily resolved at a practical
level. Typically, in many experiments only part of the density
matrix is measurable. For example, one may only have
experimental access to measurements of the low-momentum
modes. Under these conditions, one can separate the Hilbert
space into a measured part HA and unmeasured part HB ,
so that the entire Hilbert space is H = HA ⊗ HB . Other
separations of measured and unmeasured operations are also
possible, using the method of communication alphabets [50].
An interesting recent proposal of this type is to employ the
many-body energy eigenstates as a communication alphabet
to define entropy [51].

Here, for definiteness, we focus on a division of the
Hilbert space into measured and unmeasured single-particle
modes. These could, for example, correspond to a physical
partition into distinct spatial locations. The two parts of the
quantum wave function then become entangled during time
evolution under a Hamiltonian that couples the two parts.
This means that part of the quantum information is only
accessible through measurement of correlations. An estimate
of this relative entropy [52] based on measurements reveals
an apparent increase in entropy, or loss of information due to
entanglement [26].

If we trace out the unmeasured part of Hilbert space,
denoting this trace over HB as TrB , we obtain the reduced
density matrix that corresponds to operational measurement
on A:

ρ̂A = TrB(ρ̂). (3.1)
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Such a reduced density matrix can experience increased
entropy, called “entanglement entropy,” even when the total
entropy is conserved. The corresponding reduced entropy is
then

Sred
p = 1

1 − p
ln TrA(ρ̂p

A) . (3.2)

This reduced entropy is an important measure of quantum
entanglement. In the case of a pure state, Sred

p > 0 is both
necessary and sufficient for entanglement. This can also be
extended to the case of mixed states. In this case, one must
generalize the approach, to take into account the possibility
that the original state was a mixed state [26].

A. Phase-space projections

In the case of Gaussian phase-space expansions, all our
entropy results are also applicable to the reduced entropy, in
which case we must replace the phase-space basis �̂(λ) by

�̂A(λ) = TrB[�̂(λ)]. (3.3)

With such a replacement, the trace used in the following
calculations must be replaced by a reduced trace over HA

for consistency. If coarse graining is carried out on a modal
basis, we can divide up the modes into two sets: â ≡
[â1,â2, . . . ,âM ] ≡ [âA,âB]. Here the modes âA may comprise
only low-momentum modes or, alternatively, only modes
localized to part of an apparatus.

In such cases, �̂A(λ) depends on a new set of parameters
λA ≡ (αA,βA†,μA). The reduced displacements are just the
projection of the full displacements onto the reduced Hilbert
space, while the reduced covariance can be evaluated using
standard trace identities. We first write the original matrix μ

in a block form as

μ =
[

μAA μAB

μBA μBB

]
, (3.4)

so that the Gaussian exponent term becomes

δâ†μδâ = δâA†μAAδâA + δâA†μABδâB + (A ↔ B).

(3.5)

Next, the relevant traces over the unobserved subspace B are
evaluated using coherent state identities:

Trb[Ô] = 1

πM

∫
d2Mα〈α|Ô|α〉,

(3.6)
Trf [Ô] =

∫
d2Mα〈−α|Ô|α〉.

This gives the result that the reduced basis set remains
Gaussian, but with a modified covariance:

�̂A(λ) = �̂A(αA,βA†,μA), (3.7)

where the reduced covariance matrix μA is given, for bosons
and fermions, respectively, by

μA

b
= μAA − μAB

[
μBB

]−1
μBA,

(3.8)
μA

f
= μAA + μAB

[
2I − μBB

]−1
μBA.

The important result here is that for a Gaussian basis, coarse
graining via mode projection leaves the phase-space represen-
tation invariant. Just as for the full Gaussian expansion, there
is a reduced Green’s function for these Gaussian operators in
the subspace. From Eq. (2.9) in the previous section, this must
have the standard form of

nA
b = [μA]−T − IA,

(3.9)
nA

f = [2IA − μA]−T .

The results for the reduced stochastic Green’s function for
bosons and fermions can now be written, using standard matrix
block reduction algebra, in terms of the block representation
of the original stochastic matrix n, which also has a decompo-
sition:

n =
[

nAA nAB

nBA nBB

]
. (3.10)

We find that the trace reduction simply gives the diagonal
block in the first quadrant.

nA
b = nAA

b , nA
f = nAA

f . (3.11)

This has a simple physical explanation. We naturally expect
that any correlation function that is restricted just to the
A Hilbert space will have no dependence on measurable
correlations of the B Hilbert space. This physical property of
the full Green’s function also holds for the stochastic Green’s
functions.

The basis is mapped to new values, and the reduced
density matrix ρ̂A = TrB[ρ̂] of Eq. (3.2) can be written in
the reduced Gaussian representation in terms of the reduced
Green’s function as

ρ̂A = TrB

∫
P (n)�(n) dn =

∫
P (n)�A(nA) dn. (3.12)

Next, we can introduce the corresponding reduced distri-
bution function

P A(nA) ≡
[ ∫

P (n)dn\A
]
, (3.13)

where n\A is the relative complement of nA, i.e., the set of all
variables in n that are not included in nA.

Using the definition of the reduced density matrix, the linear
coarse-grained entropy, Eq. (3.2), for p = 2, is

Sred
2 = − ln

∫ ∫
P A(nA)P A(n′A)TrA

× [�̂A(nA)�̂A(n′A)] dnAdn′A. (3.14)

IV. FIXED-VARIANCE PHASE SPACES

To evaluate the entropy from a set of phase-space samples,
we need the inner product of the kernel members. This
depends on how the phase space is parametrized, either
through changing the displacement or the variance or both.
Traditional phase spaces for bosons utilize a displacement-
based approach, which is the most similar to classical phase-
space ideas. In the case of fermions, the displacements must
be Grassmann variables, not c numbers [45], which means that
only the variances can be readily sampled computationally. In
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this section, we treat fixed-variance phase spaces, which are
therefore bosonic.

A. Cahill-Glauber phase space

The traditional mappings of bosonic fields to a classical
phase space utilize a single classical displacement. These can
all be written in a unified form as [15]

�̂s(λ) = 1

N : exp[−(̂a† − α†)μ(̂a − α)] : (4.1)

Here α,α† are complex vectors, and μ is held constant so
that λ = α. There are three famous cases, corresponding to
different values of μ = 2I/(s + 1), where s = 0, ± 1. Cahill
and Glauber [53] have calculated the inner product for these
s-ordered representations, which includes the diagonal P
representation (s = 1) and the Wigner representation (s = 0),
as special cases. Their results are that, for s > 0,

Tr[�̂s(α)�̂s(α
′)] = 1

s
exp[−|α − α′|2/s]. (4.2)

We note that the Husimi representation with s = −1 has
no well-defined inner product for its basis set members, as the
product trace is divergent. Thus, a point-sampled Q function
is not a useful way to calculate the entropy, without additional
assumptions. More sophisticated techniques would be needed
in this case. One could, for example, expand the Q function
using Gaussian wavelets, instead of δ functions, so that the
sampling expansion uses smoother functions. However, since
different types of s ordering are interrelated through Gaussian
convolutions, this simply generates another member of the
class of Gaussian operator expansions.

B. Wigner representation

Strictly speaking, the only positive Wigner distributions
are the Gaussian ones that represent certain special cases, in-
cluding thermal, coherent, and squeezed states. Nevertheless,
one often wishes to use a truncated Wigner time-evolution
equation, which generates positive Wigner distributions as an
approximation to the full time evolution. This has a close
analogy with a classical phase space, for which entropy can
also be calculated in the classical sense.

One can treat the Wigner case as the Cahill-Glauber
representation in the limit of s → 0, where

Tr[�̂0(α)�̂0(α′)] = πMδM (α − α′) , (4.3)

which is highly singular. As in the Husimi case, point sampling
does not provide a useful estimate of the purity. Two distinct
samples will not have identical points in phase space, except
for points of measure zero where the samples are equal.
This demonstrates the nontrivial nature of estimating quantum
entropy in sampled phase-space representations. One can
understand this from the perspective that the coherent states
are the only pure states with a positive Wigner function. These
have a finite distribution variance, but a zero quantum entropy.

This result is consistent with other calculations. It is
known that one can estimate S2 in a Wigner representation
through [38]

S2 = − ln πM

∫
W 2(α)d2Mα , (4.4)

which is identical with the δ-correlated trace result given
above. This can be used when W is known analytically, but it
is not computationally useful when we only have access to a
sampled estimate of W (α).

C. Glauber-Sudarshan

In the case of the normally ordered Glauber-Sudarshan
representation, s = 1. This corresponds to an expansion
in coherent-state projectors, so that �̂1(α) ≡ |α〉〈α|, where
|α〉 is a coherent state, and

Tr[�̂1(α)�̂1(α′)] = exp[−|α − α′|2]. (4.5)

Here the linear entropy is well behaved, and both linear
coupling and damping can be treated exactly. However, there is
no corresponding stochastic process in this case, for nonlinear
evolution of an interacting system, and many nonclassical
states involve a nonpositive or singular distribution. For a
positive distribution, the only pure states in this representation
are coherent states. Provided a Glauber-Sudarshan distribution
exists, a direct point sampling is enough to obtain the entropy.
One can easily obtain the entropy of a noninteracting thermal
state, which always has a well-defined Glauber-Sudarshan
distribution. For example, the vacuum state has a δ-function
distribution, and so clearly one has Tr[�̂1(α)�̂1(α′)] = 1, and
hence S2 = Sp = 0 as expected.

For a thermal case with

ρ̂th ∝ exp[−â† â/kBT ] =: exp
[ − â†[1 + n]−1 â

]
: (4.6)

where n is the thermal Bose-Einstein occupation number,
clearly

n
kk′ ≡ δkk′

eEk/kBT − 1
, (4.7)

where kB is the Boltzmann constant.
Here one finds that in the Glauber-Sudarshan representa-

tion, one has

P (α) = exp[−α†n−1α′]. (4.8)

Therefore we can use the results of P (α) in order to sample
the entropy for the thermal states. In Fig. 1 we show the results
of the sampled linear entropy as a function of the number of
samples N for different values of the thermal Bose-Einstein
occupation number n, compared with exact results obtained in
the next section.

The generators in this case are coherent-state projection op-
erators, which means that obtaining a coarse-grained entropy
is straightforward. On dividing the modes into two groups, A

and B, one can simply write the coherent state as an outer
product

|α〉 = |αA〉|αB〉,
so that

�̂1(α) = �̂1(αA)�̂1(αB),

where �̂1(αA) ≡ |αA〉〈αA| is a coherent-state projector in the
reduced Hilbert space.
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FIG. 1. (Color online) Comparison of the linear entropy for
thermal states using the Glauber-Sudarshan representation and
the Gaussian representation for bosons. The dotted line is the
exact result using the Gaussian representation for bosons for n =
0.1, 1, 10, 100, 1000, with the smallest occupation numbers having
the lowest entropy. Here N is the number of samples used.

D. Positive-P representation

The positive-P representation extends the Glauber-
Sudarshan representation into a space of double the classical
dimension, with λ = (α,β). This has the advantage that any
state or density matrix has a positive probability expansion.
Unlike the Husimi Q function, the basis set has a nonsingular
inner product, which allows the entropy to be calculated
through sampling techniques. The kernel can be written in
an alternate form as a Hermitian projection operator [4,44]:

�̂(λ) = |α〉〈β|
〈β|α〉 . (4.9)

Just as in the Glauber-Sudarshan case, the issue of coarse
graining is a straightforward one of simply dividing the modes
into two groups and replacing �̂(λ) by its reduced version,
�̂(λA). The inner product is always well defined, being just a
Gaussian form in the displacement vectors:

Tr[�̂(λ)�̂(λ′)] = 〈β|α′〉〈β ′|α〉
〈β|α〉〈β ′|α′〉

= exp[−(β − β ′)†(α − α′)] . (4.10)

In all cases, a highly localized distribution is guaranteed to
exist from the fundamental existence theorem of the positive-P
representation. This states that at least one canonical, positive
distribution P (α,β) always exists for any ρ̂, with

P (α,β) = 1

(2π )2M
e−|α−β|2/4

〈
α + β

2

∣∣∣∣ ρ̂ ∣∣∣∣α + β

2

〉
. (4.11)

While this distribution always exists, and is suitable for
calculating moments, it generally leads to large sampling
errors when calculating the entropy. This is because when
|αi − βi |2 � 1, in Eq. (4.10), the cross terms can become
exponentially large, because these are not sufficiently bounded
by the exponentials in the canonical form, Eq. (4.11).

In summary, we see that calculating entropies using
a displacement-based phase-space expansion with point

sampling is nontrivial. With traditional phase-space expan-
sions, either the basis has singular inner products or the
distribution is nonpositive or both. For the Glauber-Sudarshan
representation of a thermal state, the distribution is well
behaved and the linear entropy can be computed. In the
positive-P case, a positive distribution always exists, and the
basis has nonsingular inner products. However, even in this
case the entropic sampling error can diverge for nonclassical
states.

V. GAUSSIAN REPRESENTATIONS FOR BOSONS

An alternative way to represent quantum states in phase
space is to use a general representation in terms of Gaussian
operators. These types of phase spaces can in principle
combine the displacement- and variance-based approaches.
However, for definiteness, in this section we will treat the case
where the representation is entirely variance based. Such an
approach has a clear intuitive meaning. In this approach, the
physical many-body system is treated as a distribution over
stochastic Green’s functions, whose average is the observed
Green’s function or correlation function. We note that the basis
set includes non-Hermitian terms for completeness, which
means that the stochastic Green’s functions themselves can
be non-Hermitian.

A. Un-normalized Gaussians

For the bosonic case, we must evaluate the trace of the
product of two un-normalized bosonic Gaussian operators,
B(μ,ν) = Tr[�̂u(μ)�̂u(ν)] for the M-mode case:

B(μ,ν) = Tr[: e−â†μâ :: e−â†ν â :], (5.1)

Using the expressions for the trace of an operator, Eq. (3.6) and
the expansion of the identity operator in terms of the bosonic
coherent states

1

πM

∫
d2Mα|α〉〈α| = Î , (5.2)

we obtain

B(μ,ν) = 1

π2M

∫
d2Mαd2Mβ〈α| : e−â†μâ :

×|β〉〈β| : e−â†ν â : |α〉. (5.3)

Expanding the normal-ordered exponential, and using the
standard eigenvalue properties for the bosonic coherent states
â|α〉 = α|α〉 gives

B(μ,ν) = 1

π2M

∫
d2Mαd2Mβ〈α|e−α†μβ

×|β〉〈β|e−β†να|α〉. (5.4)

From the inner product of two coherent states, we finally obtain
a Gaussian integral over 2M complex coordinates:

B(μ,ν) = 1

π2M

∫
d2Mα d2Mβ e−α†μβ−β†να−|α−β|2 . (5.5)

Next, introducing a double-dimension vector

γ =
[

α

β

]
, (5.6)
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we can write this as

B(μ,ν) = 1

π2M

∫
d4Mγ e−γ †�γ = det[�]−1, (5.7)

where we use the standard identity [54] for an N-dimensional
Gaussian complex integral and introduce a double-dimension
matrix

� =
[

I μ − I

ν − I I

]
. (5.8)

Therefore, on simplifying the determinant, we obtain

B(μ,ν) = det[I − (μ − I)(ν − I)]−1. (5.9)

B. Normalized Gaussians

It is useful to rewrite these expressions in terms of
the underlying stochastic Green’s functions. These are the
normally ordered correlations of the basis sets, defined so that

nij = Tr[�̂(n)â†
i âj ]. (5.10)

Using this definition, the normalized Gaussian generators are

�̂(n) = 1

det[I + n]
: exp[−â†(I + n)−1 â] : . (5.11)

We note that there is a restriction on the values of n, which is
that Re{I + n} must have positive-definite eigenvalues in order
for the basis operators to be normalizable, and hence for the
Gaussian generators to be in the Hilbert space.

Applying this normalization to the results given above, one
finds that

Tr[�̂(n)�̂(m)] = det[I + n + m]−1. (5.12)

For Renyi entropy calculations there is another restriction:
all pairs of stochastic samples must have the property that
Re{I + n + m} has positive-definite eigenvalues to calculate
the entropy using sampling methods. Under this restriction,
the inner products are well defined.

To illustrate the technique of the Gaussian representation
for bosons in the evaluation of the linear entropy and coarse-
grained entropy, respectively, in the next two sections we will
evaluate the linear entropy of thermal states and the coarse-
grained entropy of a system coupled to a non-Markovian
reservoir.

C. Thermal linear entropy for bosons

The linear entropy for thermal states is evaluated as
previously, using Eq. (2.13) and the result of Eq. (5.12) for
the single-mode case. When the density matrix is thermal,
only a single basis-set member is required, and

S2 = − ln Tr[�̂2(nth)] = ln det[I + 2nth]. (5.13)

For the single-mode case we know that the thermal Green’s
function is a scalar: nth = nth, where nth is the Bose-Einstein
occupation number at a given temperature. In Table I we show
the results for the linear entropy using the Gaussian representa-
tion for bosons. In Fig. 1 we show the comparison of the results
obtained using the Gaussian phase-space representation, the
results of Table I, and the results from the sampling using the
Glauber-Sudarshan representation as a function of the number

TABLE I. Linear entropy for thermal states using the Gaussian
representation for bosons.

nth S2

0.01 0.0198
0.1 0.1823
1 1.0986
10 3.0445
100 5.3033
1000 7.6014

of samples, giving excellent agreement in the limit of large
numbers of samples.

Clearly there is a great improvement in efficiency in this
case, relative to the Glauber-Sudarshan approach. Only one
Gaussian phase-space sample is needed, instead of up to 50 000
samples using more traditional phase-space methods.

D. Coarse-grained entropy for bosons

We now consider a practical example of considerable phys-
ical applicability. In much of modern physics a bosonic mode
is coupled to a reservoir, with which it can exchange particles.
The traditional example of this is a single-mode interferometer
[55]. In current applications relevant to quantum information,
one may have a localized photonic waveguide mode [56],
an ultracold Bose condensate [57], or a nanomechanical
oscillator [58]. These exchange photons, atoms, or phonons,
respectively, with their environments. In nearly all of these
recent applications, one is interested in evolution with non-
Markovian reservoirs.

To model such physically important examples and evaluate
the coarse-grained entropy, we consider the following non-
Markovian system. A set of bosonic modes (the system)
is coupled to a large number of other modes (the reser-
voir). The total Hamiltonian can be written, on introducing
n̂ij = â

†
i âj , as

Ĥ = h̄
∑
ik

ωikn̂ik, (5.14)

where ωik = δikνk + gik . Here νk denotes the resonant fre-
quencies of the modes, gkj denotes the couplings between the
modes. We assume that the modes for k = 1, . . . S are system
modes (A), while the remainder are the reservoir (B). We note
that we make no assumptions concerning their relative sizes
or quantum states. We suppose that the initial density matrix
at time t = 0 has the general number-conserving form

ρ̂0 =
∫

P 0(n)�(n) dn. (5.15)

The Gaussian representation provides a form to express the
real or imaginary time evolution of the density matrix of
either fermions or bosons into a set of phase-space stochastic
equations [12,14,15], the mappings are given by [14,15]

n̂ikρ̂ →
[
nik − ∂

∂n�m

(1 ± nim)n�k

]
P,

ρ̂n̂ik →
[
nik − ∂

∂n�m

nim(1 ± n�k)

]
P,

(5.16)
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Here the +(−) sign corresponds to the bosonic (fermionic)
case, and we will use the bosonic identities here.

The real time evolution of the density matrix is given, as
usual, by

dρ̂

dt
= − i

h̄
[Ĥ , ρ̂]. (5.17)

Using Eqs. (5.17) and (5.16) we obtain that the time evolution
equation of the stochastic Green’s function in matrix form is

·
n = i[ω, n]. (5.18)

The solution of Eq. (5.18) is simply

n(t) = eiωt n(0) e−iωt . (5.19)

The reduced linear entropy for this system is evaluated using
Eq. (3.14) and the result for the time evolution of the stochastic
Green’s functions, Eq. (5.19). In this case we will trace over the
system A. Therefore, the expression for the reduced entropy is

Sred
2 =− ln

∫∫
P 0(n)P 0(n′) det[1 + nA(t) + n′A(t)]−1dn dn′.

(5.20)

E. Example of bosonic entropy

To illustrate the time evolution of the coarse-grained
entropy of Eq. (5.20), we will consider the following model
for the Hamiltonian of Eq. (5.14). The bosonic system will be
a single mode (j = 1) and the reservoir will be modeled as a
Lorentzian distribution of couplings, with

gj = C

ν2
j + s2

, (5.21)

where C is the strength of the coupling, νj = ±jdω are
the resonant frequencies of the modes, and s describes the
non-Markovian reservoir width. For this model, the time
evolution of the stochastic Green’s function of Eq. (5.19) is
written assuming that n(0) describes the thermal state at t = 0,
with a system occupation of n = 1, and all the other modes
unoccupied. Here ω is an M × M matrix, and M is the total
number of modes, so that

ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν11 g21 · · · · · · · · · g1M

g12
. . . 0 · · · 0

...
... 0

. . . 0
...

...
...

...
. . .

. . . 0
...

... 0 · · · 0
. . .

gM1 · · · · · · · · · νMM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.22)

In Fig. 2, we show the time evolution of the coarse-grained
entropy. We use the following parameters: M = 100, s = 0.5,
C = 0.05. The frequency spacing of the modes is dω = 0.04.
We observe the non-Markovian behavior of the reservoir, as
shown in the increase and decrease of the entropy with time.

In summary, to solve for the coarse-grained entropy one
must take the partial determinant of a block reduced form
nA of the time-evolved stochastic Green’s function, then

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

S
2re

d (t
)

FIG. 2. (Color online) Time evolution of the coarse-grained
entropy for a bosonic thermal state coupled to a non-Markovian
reservoir.

average over the initial ensemble. Apart from the limitation
to linear couplings needed to obtain an exactly soluble form,
there are no restrictions to the state, the type of coupling, or
the subdivision between the system and the reservoir in this
calculation.

VI. GAUSSIAN REPRESENTATIONS FOR FERMIONS

The fermionic case is similar, except that one must use
fermionic coherent states [45] and Grassmann integrals to
carry out the trace calculations. Just as with bosons, this
has a clear intuitive meaning. In this approach, the physical
many-body system is treated as a distribution over fermionic
Green’s functions, whose average is the observed Green’s
function or correlation function. As with the bosonic case, the
stochastic Green’s functions themselves can be non-Hermitian.

A. Un-normalized Gaussians

Here we must evaluate the trace of the product of
two un-normalized fermionic Gaussian operators, F (μ,ν) =
Tr[�̂u(μ)�̂u(ν)] for the M-mode case:

F (μ,ν) = Tr[: e−â†μâ :: e−â†ν â :], (6.1)

For fermions [45], the trace of an operator using fermionic
coherent states |α〉 in terms of Grassmann variables α is

Tr[Ô] =
∫

d2Mα〈−α|Ô|α〉, (6.2)

and the identity operator is∫
d2Mα|α〉〈α| = 1. (6.3)

Therefore, we have

F (μ,ν) = 1

π2M

∫
d2Mα d2Mβ〈−α| : e−â†μâ :

×|β〉〈β| : e−â†ν â : |α〉. (6.4)

042114-8



LINEAR ENTROPY IN QUANTUM PHASE SPACE PHYSICAL REVIEW A 84, 042114 (2011)

Expanding the normal-ordered exponential and using the
standard eigenvalue properties for the fermionic coherent
states â|α〉 = α|α〉 gives

F (μ,ν) =
∫

d2Mαd2Mβ〈−α|eα†μβ |β〉〈β|e−β†να|α〉. (6.5)

From the inner product of two fermion coherent states, we note
that

〈α|β〉 = eα†β−(α†α+β†β)/2 , (6.6)

Next, introducing a double-dimension Grassmann vector

γ =
[

α

β

]
, (6.7)

we finally obtain a Gaussian Grassmann integral over 2M

complex coordinates, which we can write as

F (μ,ν) =
∫

d4Mγ eα†μβ−β†να−α†β+β†α†−(α†α+β†β)

=
∫

d4Mγ e−γ †�γ = det[�]. (6.8)

Here we have used the standard identity [54] for an N-
dimensional Gaussian complex Grassmann integral and in-
troduced a double-dimension matrix

� =
[

I I − μ

ν − I I

]
. (6.9)

Therefore, on simplifying the determinant, we obtain

F (μ,ν) = det[I + (I − μ)(I − ν)]. (6.10)

B. Normalized Gaussians

Just as in the bosonic case, it is useful to rewrite these
expressions in terms of the normally ordered Green’s functions
or correlations of the basis sets, defined so that

nij = Tr[�̂(n)â†
i âj ]. (6.11)

Here, introducing the hole Green’s function, ñ = [I − n], and
m̃ = [I − m], the normalized generators are

�̂(n) = � det[ñ] : exp[â†(ñ−1 − 2I)T â] : , (6.12)

and therefore,

νT = 2I − ñ−1, (6.13)

μT = 2I − m̃−1. (6.14)

Hence,

ñ(I − ν)T = n, (6.15)

which leads to the following result for the normalized inner
product:

Tr[�̂(m)�̂(n)] = det[ñm̃ + nm]. (6.16)

We note that this has some obvious properties. Suppose
that n and m are each diagonal in the same basis, with real
eigenvalues ni such that 0 � ni � 1. Then one obtains

Tr[�̂(m)�̂(n)] =
M∏
i=1

(ñim̃i + nimi). (6.17)

Thus, the two generators are orthogonal if, in any mode, one
generator has a vanishing particle population while the other
has a vanishing hole population. The overlap is maximized
if the generators both have a unit hole population or a unit
particle population in all modes.

For the thermal case, the entropy can be evaluated in
other ways, but here we demonstrate the technique using the
Gaussian operator method, which will be useful in evaluating
the entropy of other systems.

C. Thermal linear entropy for fermions

We can now apply these inner products to the evaluation of
the linear entropy of a thermal Fermi-Dirac state. When the
density matrix is thermal, only a single basis-set member is
required, and

S2 = − ln Tr[�̂2(nth)] = − ln det
[
I − 2nth + 2n2

th

]
. (6.18)

Just as with bosons, for the thermal case we know that the
thermal Green’s function is a scalar: nth = nth, where nth is now
the Fermi-Dirac occupation number at a given temperature, so
that 0 � nth � 1. Here the results are asymptotically equal
to the bosonic case as expected for nth � 1 or for ñth � 1 .
Typical results are shown in Table II, showing the particle-hole
symmetry. The greatest entropy is at nth = 0.5, corresponding
to infinite temperature, while mirror states with small hole
occupations can be thought of as having negative temperatures
or negative Hamiltonians.

D. Coarse-grained entropy for fermions

Just as in the case of bosons, we now consider an example
of physical applicability for the case of fermions that is a
fermionic mode coupled to a reservoir. An example of such a
system is a quantum dot coupled to a fermionic reservoir [59],
or a fermionic atomtronic circuit [60]. This system can be
considered as an example of solid-state quantum physics and
has potential applications in quantum-information processing.
In such hybrid quantum systems, long-range interactions can
be important. Here we neglect this in order to obtain analytic
results, although these can be added if necessary.

We consider a Hamiltonian identical to that of the bosonic
case in the last section. Similar to the bosonic case, we assume
that the modes for k = 1, . . . ,S are system modes (A), while
the remainder are for the reservoir (B) and the initial density
matrix at time t = 0 has the general number-conserving form
of Eq. (5.15). Using the identities of Eqs. (5.16) and (5.17) we
obtain the time-evolution equation of the stochastic Green’s

TABLE II. Linear entropy for thermal states using the Gaussian
representation for fermions.

nth S2

0.01 0.02
0.1 0.1984
0.5 0.6931
0.9 0.1984
0.99 0.02
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FIG. 3. (Color online) Time evolution of the coarse-grained
entropy using the fermionic Gaussian representation, for a pure
fermionic number state coupled to a non-Markovian reservoir.

function, which is identical to the bosonic case. Therefore, the
expression for the reduced linear entropy for fermions is

Sred
2 = − ln

∫ ∫
P 0(n)P 0(n′) det[ñA(t)ñ′A(t)

+ nA(t)n′A(t)] dn dn′. (6.19)

This has a very simple physical interpretation. The linear
entropy and hence the fermionic entanglement can be calcu-
lated completely from the local stochastic Green’s functions
in the system of interest. However, one must average over
all possible initial states defined by the complete initial
phase-space distribution P 0(n). This is necessary, since the
correlations and initial states of the reservoir can change the
final system properties.

E. Example of fermionic entanglement

Similar to the bosonic case, we will illustrate the time
evolution of the coarse grained entropy of Eq. (6.19). We will
consider a pure fermionic number state. The ω matrix of time
evolution of the stochastic Green’s function has the same form
as the bosonic case, Eq. (5.22). We also model the reservoir
with a Lorentzian distribution described by Eq. (5.21).

In Fig. 3, we show the time evolution of the coarse-grained
entropy, Eq. (6.19), using a model and parameters identical to
those for the bosonic case. However, there is a large physical
difference, because a fermionic state with n = 1 is a pure
number state. We observe an initial increase of entropy, which
means that the entropy is measuring the entanglement of
the system with the reservoir. As before, the non-Markovian
behavior of the system is shown in the increase and decrease
of the coarse-grained entropy, which in this case corresponds
to entanglement oscillations.

VII. SUMMARY

We have calculated the linear entropy for sampled phase-
space representations of bosonic and fermionic quantum
many-body systems. The crucial element to the calculation
is an evaluation of the inner products of the phase-space
basis elements. Traditional displacement-based phase-space
methods have a range of pathologies. In the Wigner and
Husimi cases, the inner products are singular or divergent,
while in the Glauber-Sudarshan case, the representation is not
well defined in all cases. Even the positive-P distribution,
which exists and has well-defined inner products, is found
to have a sampling convergence problem. By comparison,
Gaussian phase-space representations for fermions and bosons
are much more suitable for the task. For thermal states, only a
single basis element is needed, and the inner products are well
behaved.

There is a counterintuitive element to the idea that entropy
is conserved in quantum dynamics; but this must be the case
when simulating time-reversible, unitary quantum dynamics.
We show how, in the case of reduced entropy of a subsystem,
the linear entropy can and does evolve in time. We give an
exact calculation of couplings of Fermi and Bose systems to a
non-Markovian quantum reservoir. Such phase-space methods
appear useful for investigating the fundamental paradox of
entropy invariance in unitary quantum dynamics. They are
equally applicable to entire system evolution and to the
evolution of the density matrix for a coarse-grained subspace.
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