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Global quantum discord in multipartite systems
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We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably
recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure
is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As
an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and
multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we
show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the
Ashkin-Teller spin chain.

DOI: 10.1103/PhysRevA.84.042109 PACS number(s): 03.65.Ud, 03.67.Mn, 03.65.Ta, 75.10.Pq

I. INTRODUCTION

Quantum correlations constitute a fundamental resource
for quantum information tasks [1]. They are rooted in the
superposition principle, displaying effects with no classical
analog. The research on quantum correlation measures was
initially developed based on the entanglement-separability
paradigm [2]. More recently, however, it has been perceived
that entangled states are not the only kind of quantum
states exhibiting nonclassical features. In this context, a
suitable measure of quantum correlation has been introduced
by Ollivier and Zurek [3]. This measure, which has been
designated as quantum discord, is able to capture not only
quantum correlations in entangled states but also in separable
states. It arises as a difference between two expressions for
the total correlation in a bipartite system (as measured by
the mutual information), which are classically equivalent
but distinct in the quantum regime. Remarkably, quantum
discord has been revealed as a useful quantity in a number
of applications, such as quantum critical phenomena [4,5]
and quantum evolution under decoherence [6]. Moreover,
quantum discord has also been conjectured to be a resource for
speed-up in quantum computation [7] and for locking classical
correlations in quantum states [8].

In recent years, generalizations of quantum discord to
multipartite states have been considered in different scenarios
[9]. One possible approach is based on directly generalizing
the quantum mutual information to a multipartite system, even
though nonunique generalizations are possible in this situation
[10,11]. Another approach is to define from the beginning
a measure based on the relative entropy, which allows for
a unified view of different correlation sources, such as
entanglement, quantum discord, and dissonance [12] (see also
Ref. [13]). The aim of this work is to propose a global measure
of quantum discord obtained by a systematic extension of
the bipartite quantum discord, with operational appeal and
satisfying the basic requirements of a correlation function.
In this direction, we suitably recast the standard bipartite
quantum discord defined in Ref. [3] in terms of relative entropy
and local von Neumann measurements, whence a natural
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multipartite measure for quantum correlations emerges. This
measure—named here as global quantum discord (GQD)—is
symmetric with respect to subsystem exchange and shown
to be nonnegative for arbitrary states. We illustrate our
results by computing the tripartite GQD in the Werner-GHZ
(Greenberger-Horne-Zeilinger) state and by applying GQD
in the characterization of the infinite-order quantum phase
transition (QPT) in the Ashkin-Teller spin chain, where
ordinary pairwise quantum discord fails.

II. QUANTUM DISCORD

Consider a bipartite system AB composed of subsystems A

and B. Denoting by ρ̂AB the density operator of AB and by ρ̂A

and ρ̂B the density operator of parts A and B, respectively, the
total correlation between A and B is measured by the quantum
mutual information

I (ρ̂AB) = S(ρ̂A) − S(ρ̂A|ρ̂B), (1)

where S(ρ̂A) = −Trρ̂A log2 ρ̂A is the von Neumann entropy
for A and

S(ρ̂A|ρ̂B) = S(ρ̂AB) − S(ρ̂B) (2)

is the entropy of A conditional on B. The conditional entropy
can also be introduced by a measurement-based approach.
Indeed, consider a measurement locally performed on B,
which can be described by a set of projectors {�̂j

B} =
{|bj 〉〈bj |}. The state of the quantum system, conditioned on
the measurement of the outcome labeled by j , is

ρ̂AB|j = 1

pj

(
1̂A ⊗ �̂

j

B

)
ρ̂AB

(
1̂A ⊗ �̂

j

B

)
, (3)

where pj = Tr[(1̂A ⊗ �̂
j

B)ρ̂AB(1̂A ⊗ �̂
j

B)] denotes the proba-
bility of obtaining the outcome j and 1̂A denotes the identity
operator for A. The conditional density operator ρ̂AB|j allows
for the following alternative definition of the conditional
entropy:

S
(
ρ̂AB

∣∣{�̂j

B

}) =
∑

j

pjS(ρ̂A|j ), (4)

where ρ̂A|j = TrB ρ̂AB|j = (1/pj )〈bj |ρ̂AB |bj 〉, with
S(ρ̂A|j ) = S(ρ̂AB|j ). Therefore, the quantum mutual
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information can also be defined by

J (ρ̂AB) = S(ρ̂A) − S
(
ρ̂AB

∣∣{�̂j

B

})
. (5)

The quantities I (ρ̂AB) and J (ρ̂AB) are classically equivalent
but they are distinct in the quantum case. This difference is the
quantum discord D(ρ̂AB) [3], yielding

D(ρ̂AB) = I (ρ̂AB) − J (ρ̂AB). (6)

Note that D(ρ̂AB) is defined as a nonnegative asymmetric
quantity that depends on {�̂j

B}. This dependence can be
eliminated by minimizing D(ρ̂AB) over all measurement bases
{�̂j

B} [14].

III. RELATIVE ENTROPY AND SYMMETRIC
QUANTUM DISCORD

The quantum relative entropy is a measure of distinguisha-
bility between two arbitrary density operators ρ̂ and σ̂ , which
is defined as [15]

S(ρ̂ ‖ σ̂ ) = Tr(ρ̂ log2 ρ̂ − ρ̂ log2 σ̂ ). (7)

We can express the quantum mutual information I (ρ̂AB) as
the relative entropy between ρ̂AB and the product state ρ̂A ⊗
ρ̂B ; i.e.,

I (ρ̂AB) = S(ρ̂AB ‖ ρ̂A ⊗ ρ̂B). (8)

In order to express the measurement-induced quantum mutual
information J (ρ̂AB) in terms of relative entropy, we need to
consider a nonselective von Neumann measurement on part B

of ρ̂AB , which yields

�B(ρ̂AB) =
∑

j

(
1̂A ⊗ �̂

j

B

)
ρ̂AB

(
1̂A ⊗ �̂

j

B

)

=
∑

j

pj ρ̂A|j ⊗ |bj 〉〈bj |. (9)

Moreover, tracing over the variables of the subsystem A, we
obtain

�B(ρ̂B) = �B(TrA ρ̂AB) =
∑

j

pj |bj 〉〈bj |, (10)

where we have used that TrA(ρ̂A|j ) = 1. Then, by expressing
the entropies S(�B(ρ̂AB)) and S(�B(ρ̂B)) as

S(�B(ρ̂AB)) = H (p) +
∑

j

pjS(ρ̂A|j ) (11)

and

S(�B(ρ̂B)) = H (p), (12)

with H (p) denoting the Shannon entropy

H (p) = −
∑

j

pj log2(pj ), (13)

we can rewrite J (ρ̂AB) as

J (ρ̂AB) = S(ρ̂A) −
∑

j

pjS(ρ̂A|j )

= S(ρ̂A) + S(�B(ρ̂B)) − S(�B(ρ̂AB))

= S(�B(ρ̂AB) ‖ ρ̂A ⊗ �B(ρ̂B)). (14)

Therefore, the quantum discord can be rewritten in terms of a
difference of relative entropies:

D(ρ̂AB) = S(ρ̂AB ‖ ρ̂A ⊗ ρ̂B)

− S(�B(ρ̂AB) ‖ ρ̂A ⊗ �B(ρ̂B)), (15)

with minimization taken over {�̂j

B} to remove the
measurement-basis dependence. It is possible then to obtain
a natural symmetric extension D(ρ̂AB) for the quantum
discord D(ρ̂AB). Indeed, performing measurements over both
subsystems A and B, we define

D(ρ̂AB) = min
{�̂j

A⊗�̂k
B }

[S(ρ̂AB ‖ ρ̂A ⊗ ρ̂B)

− S(�AB(ρ̂AB) ‖ �A(ρ̂A) ⊗ �B(ρ̂B))], (16)

where the operator �AB is given by

�AB(ρ̂AB) =
∑
j,k

(
�̂

j

A ⊗ �̂k
B

)
ρ̂AB

(
�̂

j

A ⊗ �̂k
B

)
. (17)

Observe that, by writing Eq. (16) in terms of the mutual
information I , we obtain

D(ρ̂AB) = min
{�̂j

A⊗�̂k
B }

[I (ρ̂AB) − I (�AB(ρ̂AB))], (18)

which is the symmetric version of the expression for the
loss of correlation due to measurement [11,16]. Remarkably,
D(ρ̂AB) is equivalent to the measurement-induced disturbance
(MID) [17] if measurement is performed in the eigenprojectors
of the reduced density operators of each part (instead of min-
imization). Moreover, Eq. (16) also provides the symmetric
quantum discord considered in Ref. [18] and experimentally
witnessed in Ref. [19]. As a further step, we can still rearrange
Eq. (16) in a rather convenient way, yielding

D(ρ̂AB) = min
{�̂j

A⊗�̂k
B }

[S(ρ̂AB ‖ �AB(ρ̂AB))

− S(ρ̂A ‖ �A(ρ̂A)) − S(ρ̂B ‖ �B(ρ̂B))]. (19)

IV. GLOBAL QUANTUM DISCORD

Let us now extend quantum discord as given by Eq. (19) to
multipartite systems.

Definition. The global quantum discord D(ρ̂A1···AN
) for

an arbitrary multipartite state ρ̂A1···AN
under a set of local

measurements {�̂j1
A1

⊗ · · · ⊗ �̂
jN

AN
} is defined as

D(ρ̂A1···AN
) = min

{�̂k}

[
S
(
ρ̂A1···AN

‖ �
(
ρ̂A1···AN

))

−
N∑

j=1

S
(
ρ̂Aj

‖ �j

(
ρ̂Aj

)) ]
, (20)

where �j (ρ̂Aj
) = ∑

j ′ �̂
j ′
Aj

ρ̂Aj
�̂

j ′
Aj

and �(ρ̂A1···AN
) =∑

k �̂k ρ̂A1···AN
�̂k , with �̂k = �̂

j1
A1

⊗ · · · ⊗ �̂
jN

AN
and k

denoting the index string (j1 · · · jN ).
Therefore, a classical state can be defined by ρ̂A1···AN

=
�(ρ̂A1···AN

), which is in agreement with the requirement that
classical states are not disturbed by suitable local measure-
ments. Indeed, this definition of a classical state implies that
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ρ̂Aj
= �j (ρ̂Aj

) for any j , which meansD(ρ̂A1···AN
) = 0. More-

over, observe that, via minimization over the set of projectors
{�̂j1

A1
⊗ · · · ⊗ �̂

jN

AN
}, we define GQD as a measurement-basis-

independent quantity. However, as will be illustrated in the
Ashkin-Teller chain, other (nonminimizing) bases are also able
to provide relevant information about the behavior of quantum
correlations in the system (similarly to the original definition
of quantum discord in Ref. [3]). In any case, we can show that
GQD is nonnegative for an arbitrary state.

Theorem. The global quantum discord D(ρ̂A1···AN
) is non-

negative; i.e., D(ρ̂A1···AN
) � 0.

Proof. In order to prove that D(ρ̂A1···AN
) � 0, we associate

with each subsystem Aj an ancilla system Bj . Therefore, we
will define a composite density operator ρ̂ ′

A1···AN ;B1···BN
such

that

ρ̂ ′
A1···AN ;B1···BN

=
∑

k

∑
k′

�̂k ρ̂A1···AN
�̂k′ ⊗ �̂kk′, (21)

where �̂kk′ = |Bj1〉〈Bj ′
1
| ⊗ · · · ⊗ |BjN

〉〈Bj ′
N
|, with k and k′

denoting the index strings (j1 · · · jN ) and (j ′
1 · · · j ′

N ), re-
spectively. From the monotonicity of the relative en-
tropy under partial trace [20], for any positive opera-
tors σ̂12 and γ̂12 such that Tr(σ̂12) = Tr(γ̂12), we have
that S(σ̂12‖γ̂12) � S(σ̂1‖γ̂1), where σ̂1 = Tr2(σ̂12) and γ̂1 =
Tr2(γ̂12). Then S(σ̂123...N‖γ̂123...N ) � · · · � S(σ̂123‖γ̂123) �
S(σ̂12‖γ̂12) � S(σ̂1‖γ̂1). By taking ρ̂ ′

A1···AN ;B1···BN
as σ̂ and

ρ̂A1;B1 ⊗ ρ̂ ′
A2;B2

⊗ · · · ⊗ ρ̂ ′
AN ;BN

as γ̂ , we obtain

S
(
ρ̂ ′

A1···AN ;B1···BN

∥∥ρ̂ ′
A1;B1

⊗ ρ̂ ′
A2;B2

⊗ · · · ⊗ ρ̂ ′
AN ;BN

)
� S

(
ρ̂ ′

A1···AN

∥∥ρ̂ ′
A1

⊗ · · · ⊗ ρ̂ ′
AN

)
, (22)

which, from Eq. (8), implies that

N∑
j=1

S
(
ρ̂ ′

Aj ;Bj

) − S
(
ρ̂ ′

A1···AN ;B1···BN

)

�
N∑

j=1

S
(
ρ̂ ′

Aj

) − S
(
ρ̂ ′

A1···AN

)
. (23)

However, from Eq. (21), it follows the relations

S
(
ρ̂ ′

A1···AN ;B1···BN

) = S
(
ρ̂A1···AN

)
, (24)

S
(
ρ̂ ′

A1···AN

) = S
(
�(ρ̂A1···AN

)
)
, (25)

S
(
ρ̂ ′

Aj ;Bj

) = S
(
ρ̂Aj

)
(∀j ) , (26)

S
(
ρ̂ ′

Aj

) = S
(
�j

(
ρ̂Aj

))
(∀j ). (27)

Insertion of Eqs.(24)–(27) into inequality (23) yields

N∑
j=1

S
(
ρ̂Aj

) − S
(
ρ̂A1···AN

)

�
N∑

j+1

S
(
�j

(
ρ̂Aj

)) − S
(
�

(
ρ̂A1···AN

))
. (28)

By rewriting inequality (28) in terms of the relative entropy,
we obtain

S
(
ρ̂A1···AN

∥∥�
(
ρ̂A1···AN

)) −
N∑

j=1

S
(
ρ̂Aj

∥∥�j

(
ρ̂Aj

))
� 0. (29)

The left-hand side of the inequality above is exactly the GQD,
as defined by Eq. (20). Hence, D(ρ̂A1···AN

) � 0. �

V. TRIPARTITE CORRELATIONS IN THE
WERNER-GHZ STATE

As a first illustration of GQD, we will consider the Werner-
GHZ state

ρ̂ = (1 − μ)

8
1̂ + μ|GHZ〉〈GHZ|, (30)

where 0 � μ � 1 and

|GHZ〉 = (| ↑〉A| ↑〉B | ↑〉C + | ↓〉A| ↓〉B | ↓〉C)/
√

2, (31)

with | ↑〉 and | ↓〉 denoting the eigenstates of the Pauli operator
σ̂ z associated with eigenvalues 1 and −1, respectively. The
Werner-GHZ state provides an interpolation between a fully
mixed (uncorrelated) state and a maximally correlated pure
tripartite state. It is a rather suitable state to begin with as
we propose a measure for quantum correlation and constitutes
an interesting scenario to compare multipartite with bipartite
correlations, since it is a generalization of the two-qubit Werner
state [21]. Let us begin by analyzing GQD in the case of a pure
GHZ state (μ = 1).

A. GQD for the GHZ state

Let us focus here on the GHZ state, as defined by Eq. (31). In
order to define local measurements for |GHZ〉, let us consider
rotations in the directions of the basis vectors of subsystems
A, B, and C, which are denoted by

|+〉j = cos

(
θj

2

)
|↑〉j + eiϕj sin

(
θj

2

)
|↓〉j , (32)

|−〉j = −e−iϕj sin

(
θj

2

)
|↑〉j + cos

(
θj

2

)
|↓〉j , (33)

with j = 1,2,3 for subsystems A, B, and C, respectively. The
angles θi take values in the interval [0,π ) and the angles ϕi

take values in the interval [0,2π ). In order to compute D(ρ̂),
with ρ̂ = |GHZ〉〈GHZ|, we must evaluate the expression

D(ρ̂) = min
θi ,ϕi

[ S(ρ̂ ‖ �(ρ̂)) − S(ρ̂A ‖ �A(ρ̂A))

− S(ρ̂B ‖ �B(ρ̂B)) − S(ρ̂C ‖ �C(ρ̂C))]. (34)

However, S(ρ̂) = 0, since ρ̂ is pure. Moreover,
S(ρ̂A ‖ �A(ρ̂A)) = S(ρ̂B ‖ �B(ρ̂B)) = S(ρ̂C ‖ �C(ρ̂C)) = 0,
since ρ̂A, ρ̂B , and ρ̂C are proportional to identity operators.
Hence, GQD is simply given by

D(ρ̂) = min
θi ,ϕi

S(�(ρ̂)) = min
θi ,ϕi

⎡
⎣−

∑
j

λj log2 λj

⎤
⎦ , (35)

where λj are the eigenvalues of the operator �(ρ̂). They can
be obtained from projections of the GHZ state over the rotated
basis states. In order to minimize S(�(ρ̂)), we must find out
the measurement basis that maximizes the purity of �(ρ̂),
i.e., that maximizes the dispersion of the eigenvalues λj with
respect to the average of {λj }. This is obtained for θi = 0
(i = 1,2,3), namely, measurements in the eigenprojectors of
σ z

i . As an illustration, let us consider the case of θ1 = 0 and
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FIG. 1. The function D(θ2,θ3) as a function of θ2 and θ3. Note
that the minimum occurs for θ2 = θ3 = 0, which implies D(ρ̂) = 1.

ϕi = 0 (i = 1,2,3). In this situation, the eigenvalues λj for the
operator �(ρ̂) read

λ1 = λ8 = 1
2 cos2

(
θ2

2

)
cos2

(
θ3

2

)
, (36)

λ2 = λ7 = 1
2 cos2

(
θ2

2

)
sin2

(
θ3

2

)
, (37)

λ3 = λ6 = 1
2 sin2

(
θ2

2

)
cos2

(
θ3

2

)
, (38)

λ4 = λ5 = 1
2 sin2

(
θ2

2

)
sin2

(
θ3

2

)
. (39)

By using Eqs. (36)–(39) into Eq. (35), we can directly obtain
D(ρ̂) by minimizing over the angles θ2 and θ3. The function
D(θ2,θ3) to be minimized is then

D(θ2,θ3) = −
∑

j

λj log2 λj . (40)

We plot D(θ2,θ3) as a function of θ2 and θ3 in Fig. 1. Notice
that its minimum, which providesD(ρ̂), occurs at the boundary
values θ2 = θ3 = 0, where D(ρ̂) = 1. This is a manifestation
of the fact that any local measurement disturbs the GHZ state,
which is detected by a nonvanishing GQD.

B. GQD in the Werner-GHZ state

In order to obtain D(ρ̂) for the Werner-GHZ state, let us
first rewrite Eq. (30) as

ρ̂ = 1

8
1̂ + μ

8

(
σ̂ z

1 σ̂ z
2 + σ̂ z

1 σ̂ z
3 + σ̂ z

2 σ̂ z
3 + σ̂ x

1 σ̂ x
2 σ̂ x

3

− σ̂ x
1 σ̂

y

2 σ̂
y

3 − σ̂
y

1 σ̂ x
2 σ̂

y

3 − σ̂
y

1 σ̂
y

2 σ̂ x
3

)
, (41)

with σx
i , σ

y

i , and σ z
i denoting the Pauli matrices for the

qubit i. Again, we will have here that S(ρ̂i ‖ �i(ρ̂i)) = 0 (i =
A,B,C), since ρ̂A, ρ̂B , and ρ̂C are proportional to identity
operators. Therefore,

D(ρ̂) = min
θi ,ϕi

S(ρ̂‖�(ρ̂)) = min
θi ,ϕi

[S(�(ρ̂)) − S(ρ̂)]. (42)

FIG. 2. (Color online) Tripartite GQD for the Werner-GHZ
state as a function of the mixing parameter μ. Note that GQD is
nonvanishing for μ �= 0.

The von Neumann entropy S(ρ̂) is given by

S(ρ̂) = 3 − 7
8 (1 − μ) log2(1 − μ)

− 1
8 (1 + 7μ) log2(1 + 7μ). (43)

As for the GHZ state, we take local measurements in the σ̂ z

eigenbasis for each particle to minimize S(�(ρ̂)). Such an
eigenbasis provides the maximum loss of correlation among
the parts of ρ, which therefore minimizes GQD. Then, from
Eq. (41), we obtain

�(ρ̂) =
(

1 − μ

8

)
1̂ + μ

8

(
1̂ + σ̂ z

1 σ̂ z
2 + σ̂ z

1 σ̂ z
3 + σ̂ z

2 σ̂ z
3

)
, (44)

which implies

S(�(ρ̂)) = 3 − 3
4 (1 − μ) log2(1 − μ)

− 1
4 (1 + 3μ) log2(1 + 3μ). (45)

Insertion of Eqs. (43) and (45) into Eq. (42) yields

D(ρ̂) = − 1
4 (1 + 3μ) log2(1 + 3μ) + 1

8 (1 − μ) log2(1 − μ)

+ 1
8 (1 + 7μ) log2(1 + 7μ). (46)

In Fig. 2 we plot D(ρ̂) as a function of μ. Observe that GQD
vanishes only for μ = 0, where ρ̂ is a completely mixed state.
Moreover, GQD is a monotonic function of μ, acquiring its
maximal value D(ρ̂) = 1 for μ = 1, where ρ̂ is the GHZ state.
This result resembles the behavior of the bipartite Werner
state [3,22].

VI. MULTIPARTITE CORRELATIONS IN THE
ASHKIN-TELLER CHAIN

Let us now present an application of GQD that makes
evident the importance of considering genuine multipartite
correlations to the characterization of a QPT. In this direc-
tion, we consider the Ashkin-Teller model, which has been
introduced as a generalization of the Ising spin-1/2 model to
investigate the statistics of lattices with four-state interacting
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FIG. 3. (Color online) Schematic view of the Ashkin-Teller chain.
The lattice is composed by two independent spin-1/2 particles per
site j described by Pauli operators {σα

j ,τ α
j }.

sites [23]. It exhibits a rich phase diagram [24] and has
recently attracted a great deal of attention due to several
interesting applications [25]. The Hamiltonian for the quantum
Ashkin-Teller model in one dimension for a chain with M sites
is given by

HAT = −J

M∑
j=1

(
σ̂ x

j + τ̂ x
j + �σ̂x

j τ̂ x
j

) − Jβ

M∑
j=1

(
σ̂ z

j σ̂ z
j+1

+ τ̂j
zτ̂ z

j+1 + �σ̂j
zσ̂ z

j+1τ̂
z
j τ̂ z

j+1

)
, (47)

where σ̂ α
j and τ̂ α

j (α = x,y,z) are independent Pauli spin-1/2
operators, J is the exchange coupling constant, � and β are
(dimensionless) parameters, and periodic boundary conditions
(PBC) are adopted; i.e., σ̂ α

M+1 = σ̂ α
1 and τ̂ α

M+1 = τ̂ α
1 (α =

x,y,z). The Ashkin-Teller model is Z2 ⊗ Z2 symmetric, with
the Hamiltonian commuting with the parity operators

P1 = ⊗M
j=1σ

x
j and P2 = ⊗M

j=1τ
x
j . (48)

Therefore, the eigenspace of HAT can be decomposed
into four disjoint sectors labeled by the eigenvalues of
P1 and P2, namely, Q = 0 (P1 = +1,P2 = +1), Q = 1
(P1 = +1,P2 = −1), Q = 2 (P1 = −1,P2 = −1), and Q =
3 (P1 = −1,P2 = +1). By the symmetry of HAT under
the interchange σα ↔ τα , the sectors Q = 1 and Q = 3
are degenerate. Moreover, we observe that the ground state
belongs to the sector Q = 0. A schematic view of the Ashkin-
Teller chain is shown in Fig. 3. Note that each site contains

FIG. 4. (Color online) GQD associated with the σ̂ z eigenbasis
for a spin quartet in the Ashkin-Teller model for chains up to N =
12 spins. Inset: Derivative of GQD with respect to �.

FIG. 5. (Color online) Derivative of GQD associated with the σ̂ x

eigenbasis for a spin quartet in the Ashkin-Teller model for chains up
to N = 12 spins.

two spin particles, which means that the number N of particles
in a chain with M sites is N = 2M .

The model presents an infinite-order quantum critical point
at β = 1 and � = 1. Infinite-order QPTs are typically detected
by an extremum (either a maximum or a minimum) in quantum
correlations measures (see, e.g., Refs. [26,27] for pairwise
entanglement and Ref. [4] for pairwise quantum discord).
However, as shown in Ref. [28], pairwise entanglement is
unable to characterize the critical point (β,�) = (1,1) in
the Ashkin-Teller chain. Moreover, it can be shown that
pairwise quantum discord does not detect such a QPT either.
Indeed, taking β = 1, the density operator ρ̂j,j (�) for a
pair σ̂j − τ̂j is diagonal [28] and exhibits vanishing quantum
discord for any �. For pairs σ̂j − σ̂j+1 (or τ̂j − τ̂j+1), the
density operator ρ̂j,j+1(�) has off-diagonal terms. Such a
state displays nonvanishing quantum discord. However, no

FIG. 6. (Color online) Derivative of GQD associated with the σ̂ x

eigenbasis for spin quartets, sextets, and octets in the Ashkin-Teller
model for a chain with N = 16 spins.
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identification (such as an extremum or a cusp) occurs at the
critical point � = 1 (for any local measurement).

On the other hand, if we consider multipartite correlations,
GQD is able to identify the QPT as an extremum at the critical
point. However, such identification does not occur in the basis
that minimizes GQD, which is given by the measurement
of all spins in the σ̂ z eigenbasis. Instead, the infinite-order
QPT turns out to be correctly characterized if, and only
if, local measurements are performed in the σ̂ x eigenbasis.
Remarkably, this is exactly the basis of eigenstates of the
single spin reduced density operators. Therefore, computation
of GQD in such an eigenbasis can be seen as a generalization
of MID to the multipartite scenario.

We consider groups of 4 particles (quartets) composed by
spins σ̂j − σ̂j+1 − τ̂j − τ̂j+1 as well as extensions for sextets
and octets. For those configurations, we numerically compute
GQD relative to local measurements in the σ̂ z eigenbasis and
in the σ̂ x eigenbasis for each particle via exact diagonalization
of chains up to 16 spin particles. The results are exhibited in
Fig. 4 for measurements in the σ̂ z eigenbasis and in Figs. 5
and 6 for measurements in the σ̂ x eigenbasis. We can observe
that, in the σ̂ x eigenbasis, the identification of the QPT as an
extremum (vanishing derivative of the GQD) already occurs
for quartets in lattices with N = 6 spins (see Fig. 5). Moreover,

this characterization is kept for sextets and octets in larger
chains (see Fig. 6).

VII. CONCLUSION

In summary, we have proposed a measure for multipartite
quantum correlations. This measure has been obtained by suit-
ably recasting the standard quantum discord in terms of relative
entropy and local von Neumann measurements [as given by
Eq. (19)]. In particular, our measure is a systematic extension
of the original approach for quantum discord as introduced
in Ref. [3], reducing to it in the particular case of bipartite
systems. Illustrations of its use have been provided for both
the Werner-GHZ and the Ashkin-Teller spin chain. Further
applications of GQD, such as the investigation of multipartite
correlations in quantum computation and connections with
entanglement (see, e.g., Ref. [29]), are left for future research.
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