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We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal
foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic
fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-
Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are
uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross
theorem for quantum electrodynamics.
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I. INTRODUCTION

Time-dependent density functional theory (TDDFT) [1]
is a formally exact reformulation of nonrelativistic quan-
tum mechanics in terms of the one-particle density instead
of the wave function. It is the time-dependent extension
of the highly successful density functional theory (DFT) [2].
The Runge-Gross theorem [3] proves under some restrictions
that all physical observables are functionals of the one-
particle density alone. Hence, instead of the complex wave
function on configuration space, one only needs the simple
one-particle density to fully describe a multiparticle system.
Further, the van Leeuwen uniqueness theorem [4] provides
a way to calculate the one-particle density of an interacting
quantum system in terms of a noninteracting auxiliary system
of fictitious particles moving in a local effective external
potential. This so-called Kohn-Sham construction makes ab
initio calculations for complex time-dependent many-body
systems feasible [1]. This is because the time to numerically
solve a noninteracting Schrödinger-like equation only scales
linearly with the number of particles, whereas in the case of an
interacting Schrödinger equation, it scales exponentially [5].

TDDFT has been extended, e.g., to open quantum systems
[6] or to include special relativity. In the time-independent
theory, a generalization to relativistic systems is well known
[2,7]. A relativistic description of a quantum system becomes
important, e.g., if we consider condensed-matter systems with
a high atomic number. The relativistic generalization of DFT
toward the time-dependent domain is until now mainly used
to calculate linear response properties of heavy elements (e.g.,
see [8] and references therein). The main problem here lies in
the approximations of the functionals, which in practice always
have to be made. The formal foundation of the generalization
of TDDFT to relativistic systems is given in [9]. There, the
most fundamental theory we have in describing interacting
electrons, i.e., quantum electrodynamics (QED), is used to
deduce a fully relativistic functional theory. A functional
description based on QED should in principle be able to
describe all possible effects we observe in condensed-matter
systems. Hence, any extension of the usual density functional
approach, e.g., to superconducting systems [10], should in
principle be deductable from this theory. In [9] a Runge-Gross
theorem for QED is formally proven. To fully describe the

coupled matter and radiation quantum fields, one is in need of
the four-current and four-potential of the interacting systems,
because those are the conjugate functional variables with
respect to the external time-dependent four-potential and
the external time-dependent four-current defining the QED
Hamiltonian. Therefore, any observable of the system can
in principle be calculated by only knowing these conjugate
variables. However, the action functional approach to a Kohn-
Sham-like system and the associated effective four-potentials
as well as four-currents exhibits the same drawbacks as the
corresponding nonrelativistic approach: it leads to a symmetry-
causality paradox [11,12].

In Sec. II, we introduce the QED Hamiltonian and describe
the formal problem. Then, in Sec. III, we emphasize the
symmetry-causality problem of the action-functional approach
to a Kohn-Sham-like description [9] of the interacting system.
In Sec. IV we will deduce the central theorem of this
work, formally proving the uniqueness of a Kohn-Sham-
like construction for QED systems. Further we can restate
the relativistic Runge-Gross theorem of [9] and show that the
effective four-current of the Kohn-Sham system takes a simple
form. We also present the defining equation for the effective
four-potential and give a straightforward approximation. Fi-
nally we conclude in Sec. V.

II. QUANTUM ELECTRODYNAMICAL DESCRIPTION

We start our considerations by choosing the initial con-
figuration of the combined matter-radiation system ρ̂0 =∑

i pi |�i(t0)〉〈�i(t0)|, with pi > 0 and
∑

i pi = 1. The den-
sity matrix operator ρ̂0 describes the initial configuration of
the massive particle system as well as the photon field on
the corresponding Fock space. The dynamics of the system
is governed by the standard QED Hamiltonian in [13,14],
which in the Heisenberg picture (we indicate the explicit time
dependence of the external Hamiltonian by t) and in units such
that h̄ = c = 1 reads

Ĥ (t) = ĤM + ĤE + Ĥint + Ĥext(t). (1)

Here the normal ordered (::) Dirac Hamiltonian of the matter
field in terms of the four-spinor operators ˆ̄ψ(x) = ψ̂†(x)γ 0,
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ψ̂(x) and the usual γ matrices is defined as

ĤM =
∫

d3x : ˆ̄ψ(x)(−i �γ · �∇ + m0)ψ̂(x) : . (2)

The components of the spinors obey the equal-time anticom-
mutation relations

{ψ̂α(�x,t), ˆ̄ψβ(�y,t)} = γ 0
αβδ3(�x − �y). (3)

In contrast to [9] the electromagnetic part in terms of the four-
potential operators ˆ̇Aμ(x) and Âμ(x) is given by the Fermi-
Hamiltonian [13]

ĤE = 1

2

∫
d3x :{− ˆ̇A

μ

(x) ˆ̇Aμ(x)+[∂kÂν(x)][∂kÂν(x)]}: (4)

with k = 1,2,3. We use quantization in the Lorentz gauge
[13,14], i.e., ∂μtr[ρ̂0Âμ(x)] =: ∂μ〈Âμ(x)〉 = 0, and hence, the
four-potential operators are subject to the covariant equal-time
commutation relations

[ ˆ̇Aμ(�x,t),Âν(�y,t)] = igμνδ
3(�x − �y) , (5)

with the standard metric tensor gμν having the signature (+,

− , − ,−). Note that one has to use the Fermi-Hamiltonian and
hence the Fermi-LagrangianL = −1/2[∂μÂν(x)][∂νÂμ(x)] in
order to be compatible with the above equal-time commutation
relations. However, one can show that the expectation value
corresponding to the Hamiltonian ĤE can be rewritten into the
usual form [13]

〈ĤE〉 = 1

2

∫
d3x [ �E2(x) + �B2(x)] , (6)

with

�E(x) = −〈 �̇A(x)〉 − 〈 �∇Â0(x)〉,
�B(x) = 〈 �∇ × �̂A(x)〉.

The interaction Hamiltonian is

Ĥint :=
∫

d3x e ĵμ(x)Âμ(x) , (7)

where the four-current density is defined by

ĵ μ(x) = : ˆ̄ψ(x)γ μψ̂(x) :

= 1
2 [ ˆ̄ψ(x),γ μψ̂(x)], (8)

and e is the electron charge. The last equality is shown to
be true in [13]. This immediately highlights the connection
between the normal ordering and symmetrizing. Both make
the current behave correctly under charge conjugation [13,15].
Formally we can instead of the normal ordered Hamiltonian
use the symmetrized version thereof [15,16]. This form has
certain advantages when renormalizing the Hamiltonian [16].
The deduced equations of motion will not depend on the
form chosen. Finally the external Hamiltonian is defined in
accordance to [9] as

Ĥext(t) =
∫

d3x e
[
ĵ μ(x)aext

μ (x) + j
μ
ext(x)Âμ(x)

]
. (9)

All classical external four-potentials aext
μ (x) are assumed

to obey the Lorentz gauge condition, i.e., ∂μaext
μ (x) = 0.

Because we want the initial configuration to be fixed, the
possible gauge transformations of the four-potentials have to

leave the initial configuration unchanged [17]. Further, the
external four-current densities obey the continuity equation,
i.e., ∂μj

μ
ext(x) = 0. The external four-current is either used

formally in field theory to generate the different interaction
contributions or in radiation source problems. In a Kohn-Sham
approach to fully relativistic systems, the effective external
four-current will be important to generate the interacting
four-current and four-potential in the noninteracting system.

We are interested in solutions of the fully interacting field
theoretical problem. However, in order to find finite answers
we need to renormalize the so-called bare quantities of the
theory [16]. Otherwise the local interactions introduce diver-
gences in the theory. These so-called ultraviolet divergences
are usually eliminated by the renormalization program of QED
(here we do not consider the infrared divergences because they
can be taken care of, e.g., by enclosing the system in a large
box with periodic boundary conditions [15]). The first step
in the standard renormalization procedure is to regularize the
theory, i.e., to introduce some kind of high-energy cutoff, or
equivalently, a smallest length scale. This makes the theory
finite; however, the theory also becomes dependent on this
cutoff. In QED this is routinely done via dimensional regu-
larization [14] preserving gauge invariance. Via perturbation
theory one then redefines the coupling constant, the mass
parameter, and the field operators order by order such that
the divergences are canceled by so-called counter terms and
the dependence on the cutoff is removed [16]. The perturbative
renormalization to all orders for QED with a time-independent
external potential has been closely examined in [15], where a
Hohenberg-Kohn theorem for QED is formally deduced. For
a time-dependent external four-potential, the renormalization
of QED is analyzed in [18]. Assuming a stable vacuum, i.e.,
the external potential is sufficiently weak not to close the gap
between the positive and negative eigenvalues [16], one can
deduce general renormalization rules. It is important to note
that the renormalization factors are defined by vacuum QED,
i.e., they do not depend on the external fields. This fact permits
the comparison of two systems with different external four-
potentials. One can also reformulate the external-potential
problem in QED in terms of the well-established Furry picture
[16]. Again the prerequisite of a stable vacuum is crucial
[16,19]. We therefore only consider external electromagnetic
fields well below the so-called Schwinger limit or critical
field of QED of Ecr = 1016 V/cm, where the QED vacuum
becomes unstable to e+e− pair production [20]. Having this
condition we can (at least perturbatively) renormalize our
problem at hand. This condition is in agreement with the
caveat raised in [9]. Yet, also for the renormalized theory we
do not know if a solution exists. This, however, will be tacitly
assumed.

As in the derivation of the relativistic Hohenberg-Kohn
theorem [15] one might wonder why we actually use the
problematic field theoretical frame work in the following and
do not use an approximate relativistic many-body scheme, e.g.,
the Dirac-Coulomb-Breit approximation. As stated in [15] on
page 366, in such an approach the renormalization is done via
the no-pair approximation which spoils the gauge invariance
of the theory. To avoid this we retain the field theoretical
treatment of the problem.
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The renormalized Hamiltonian of Eq. (1) is defined
uniquely by the choice of the classical external four-potential
(up to a gauge transformation) and classical external four-
current, i.e.,

Ĥ (t) = Ĥ
([

aext
μ ,j

μ
ext

]
; t

)
. (10)

Hence for every different set of these functional variables, we
find different solutions ρ̂(t) = ρ̂([aext

μ ,j
μ
ext]; t) to the interacting

problem after we have fixed the initial configuration ρ̂0. In an
analogous manner, the solutions |�(t)〉 of a Schrödinger equa-
tion with only scalar external potentials v(�r,t) are uniquely
defined by the external potential up to a gauge transformation,
i.e., |�([v]; t)〉〈�([v]; t)| = ρ̂([v]; t) after we have fixed the
initial state |�0〉. The density matrix operator form cancels
the phase ambiguity of the gauge. In the usual TDDFT it is
shown that the conjugate functional variable to v, that is, the
one-particle density, will describe the system uniquely. Here,
the conjugate functional variables to (aext

μ ,j
μ
ext) are, as can be

seen from Eq. (9), the expectation values of the four-current
jμ(x) := 〈ĵ μ(x)〉 and the four-potential Aμ(x) := 〈Âμ(x)〉.
Our goal is to show that the density matrix operator ρ̂(t) is
uniquely defined by the four-current and the four-potential of
the coupled matter-radiation system, i.e.,

ρ̂(t) = ρ̂([jμ,Aμ]; t), (11)

and hence (jμ,Aμ) defines the system uniquely. This is
the Runge-Gross theorem for QED [9]. For a fixed initial
configuration there is a bijective mapping (jμ,Aμ) �→ ρ̂(t)
such that all observables can be calculated in terms of (jμ,Aμ),
i.e., for a self-adjoint operator Ô

〈Ô(t)〉 = O([ρ̂0,j
μ,Aμ]; t) (12)

is a functional of (jμ,Aμ) and the initial configuration ρ̂0. This
leads to the possibility of calculating all observables in terms
of (jμ,Aμ) alone. On the other hand, we want to show that
for every interacting problem associated with the Hamiltonian
(1) there is one and only one noninteracting Hamiltonian, i.e.,
Ĥint ≡ 0, with an external four-potential aeff

μ and an external
four-current j

μ

eff coupling either to the matter system or to
the photon system, respectively, which leads to the same pair
(jμ,Aμ) as the interacting problem. This means, that one can
solve a quantum system of noninteracting fermions subject to
the so-called effective external potential aeff

μ together with a
photonic system under the influence of an effective external
source j

μ

eff instead of the original interacting problem. This
amounts to a Kohn-Sham construction for QED. However, as
we will discuss in more detail at the end of this work, one
can in general not separate the fermionic part of the quantum
system from the photonic one in the noninteracting auxiliary
system. If it is possible, then we have two separate equations,
one for the four-current and one for the four-potential of the
quantum system. Both separate solutions then constitute the
solution of the fully interacting theory.

Now we will describe the shortcomings of the initial attempt
to formally define a Kohn-Sham construction in QED.

III. SYMMETRY-CAUSALITY PARADOX

In reference [9] an approach similar to that in [3] is pursued,
where an action functional of the form

A[jμ,Aμ] = B[jμ,Aμ]

−
∫ t ′

t0

dt

∫
d3x

[
jμ(x)aext

μ (x) + j
μ
ext(x)Aμ(x)

]
,

(13)

with

B[jμ,Aμ]=
∫ t ′

t0

dt 〈�(t)|i∂t − ĤM − ĤE − Ĥint|�(t)〉, (14)

is used. Here we have lost explicit covariance and hence
have fixed a particular reference frame. In principle we could
keep explicit covariance by using the Tomonaga-Schwinger
approach [16] and general spacelike surfaces σ (x). Then the
integration becomes

∫ t ′

t0

dt

∫
d3x →

∫ σ (x)

σ0(x)
d4x, (15)

and the time derivative becomes a functional derivative

∂t |�(t)〉 → δ

δσ (x)
|�(σ )〉= lim

(x)→0

|�(σ )〉 − |�(σ ′)〉
(x)

, (16)

where (x) is the four-volume between the spacelike surfaces
σ and σ ′. Consequently, the Hamiltonian is replaced by its
density. However, such general spacelike surfaces are not more
physical than the one we have chosen initially, i.e., the one with
t = constant. Therefore we give up the explicit covariance for
the sake of a simplified notation.

Note further that for this variational approach, and hence
also in this section, only pure states, i.e., wave functions |�(t)〉,
not general density matrix operators, are considered. Therefore
our approach, which will be presented afterward, is also a
generalization with respect to the states possible.

Following [9] the action functional A should be stationary
at the exact time-dependent currents and fields, i.e.,

δA[jμ,Aμ]

δjμ(x)
= 0 and

δA[jμ,Aμ]

δAμ(x)
= 0. (17)

From this stationarity principle the corresponding Kohn-Sham
equations are derived. However, this approach will lead to a
violation of causality. To show this we will follow the same
reasoning as in [12].

Assume the variational principle (17) to be valid. Then we
find byB = A + ∫

(jμaext
μ + j

μ
extAμ), where

∫ ≡ ∫ t ′

t0
dt

∫
d3x,

δB[jμ,Aμ]

δjμ(x)
= aext

μ (x) and
δB[jμ,Aμ]

δAμ(x)
= j

μ
ext(x). (18)

Now we have a one-to-one correspondence between (jμ,Aμ)
and (aext

μ ,j
μ
ext) due to the Runge-Gross theorem for QED

systems [9]. Hence we can use the Legendre transformation to
derive

Ã
[
aext

μ ,j
μ
ext

] = −B +
∫ (

jμaext
μ + j

μ
extAμ

)
. (19)
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This leads to

δÃ
[
aext

μ ,j
μ
ext

]
δaext

μ (x)
= jμ(x) and

δÃ
[
aext

μ ,j
μ
ext

]
δj

μ
ext(x)

= Aμ(x). (20)

We then can define the linear response kernels of the matter
and radiation systems as

δ2Ã
[
aext

μ ,j
μ
ext

]
δaext

μ (x)δaext
ν (y)

= δjμ(x)

δaext
ν (y)

,

(21)
δ2Ã

[
aext

μ ,j
μ
ext

]
δj

μ
ext(x)δjν

ext(y)
= δAμ(x)

δjν
ext(y)

.

Those kernels describe how the system reacts in first order at
space-time position x to an external perturbation applied at
space-time position y. It is obvious, that these kernels should
be causal, as the system should not react to perturbations in
the future. However, the second functional derivatives in Eq.
(21) are symmetric with respect to their arguments. Hence we
meet a contradiction if we assume the variational principle of
Eq. (17) to be true. A thorough analysis of this contradiction
[12] shows that in contrast to variations in the wave functions,
for which the action functional of Eq. (13) is stationary at
the solution point, variations in the external four-potential or
four-current fix the variations of the wave function for all
later times. Therefore one is usually not allowed to pose the
boundary condition |δ�(t ′)〉 = 0 for the variation of the wave
function at the endpoint of the variation interval t = t ′. Further,
one also cannot vary the imaginary and real parts of the wave-
function independently, since those are also uniquely defined
by the variation of the external four-potential or four-current.
Solutions for this causality problem in a variational approach
to TDDFT, e.g., by using the Keldysh time contour, are found
in [1,21,22]. Now we will derive a van Leeuwen theorem for
quantum electrodynamical systems.

IV. VAN LEEUWEN THEOREM FOR QUANTUM
ELECTRODYNAMICAL SYSTEMS

In a first step we consider the dynamical behavior of the
four-current density operator ĵ μ(x). The Heisenberg equation
of motion reads

i∂t ĵ
μ(x) = [ĵ μ(x),Ĥ (t)]. (22)

Because ĵ μ is not explicitly time dependent in the Schrödinger
picture, the usual total derivative of the Heisenberg equation
of motion is equal to the partial time derivative. After some
calculations we arrive at

i∂t ĵ
μ(x) = m0

ˆ̄ψ(x)[γ μγ 0 − γ 0γ μ]ψ̂(x)

+ ˆ̄ψ(x)[γ μγ 0(−i �γ · �∇)

+ (−i �γ · 1
←∇)γ 0γ μ]ψ̂(x)

+ e ˆ̄ψ(x)[γ μγ 0γ ν − γ νγ 0γ μ]

× ψ̂(x)[Âν(x) + aext
ν (x)]. (23)

Further we are interested in the equation of motion of the
four-potential operators, i.e.,

i∂t Âμ(x) = [Âμ(x),Ĥ (t)]. (24)

After some calculations we arrive at

i∂t Âμ(x) = i ˆ̇Aμ(x). (25)

The second derivatives with respect to time are found as

(i∂t )
2Âμ(x) = −∂k∂kÂμ(x) − eĵμ(x) − ej ext

μ (x), (26)

which are just the usual inhomogeneous Maxwell equations in
Lorentz gauge, where k = 1,2,3.

To deduce a relativistic van Leeuwen theorem, we now
assume the external potential aext

μ (x) and the external four-
current j

μ
ext(x) to be analytic in time, i.e.,

aext
μ (x) =

∞∑
l=0

1

l!

[
∂l
t a

ext
μ (x)

∣∣
t=t0

]
(t − t0)l (27)

has a nonzero convergence radius, and analogously for the
four-current. Further, we assume that the quantum electro-
dynamically calculated four-current jμ(x) = 〈ĵ μ(x)〉 and the
four-potential Aμ(x) = 〈Âμ(x)〉 are analytic in time as well.
We define in accordance to the nonrelativistic van Leeuwen
proof [4]

q̂
μ

kin(x) = ˆ̄ψ(x)[γ μγ 0(−i �γ · �∇) +(−i �γ · ←∇)γ 0γ μ]ψ̂(x)

+m0
ˆ̄ψ(x)[γ μγ 0 − γ 0γ μ]ψ̂(x), (28)

n̂μν(x) = e ˆ̄ψ(x)[γ μγ 0γ ν − γ νγ 0γ μ]ψ̂(x), (29)

q̂
μ
int(x) = n̂μν(x)Âν(x). (30)

With this, Eq. (23) becomes

i∂t ĵ
μ(x) = q̂

μ

kin(x) + q̂
μ
int(x) + n̂μν(x)aext

ν (x). (31)

The next derivative with respect to time becomes due to the
Heisenberg equation of motion

(i∂t )
2ĵ μ(x) = [

q̂
μ

kin(x),Ĥ (t)
] + [

q̂
μ
int(x),Ĥ (t)

]
+ [n̂μν(x),Ĥ (t)]aext

ν (x)

+ [i∂ta
ext
ν (x)]n̂μν(x). (32)

This can be rewritten as

(i∂t )
2ĵ μ(x) = [

i∂t q̂
μ

kin(x)
] + [

i∂t q̂
μ
int(x)

]
+ [i∂t n̂

μν(x)]aext
ν (x) + [i∂ta

ext
ν (x)]n̂μν(x).

(33)

For all higher orders we find accordingly

(i∂t )
l+1ĵ μ(x) = (i∂t )

l
[
q̂

μ

kin(x) + q̂
μ
int(x)

]

+
l∑

n=0

(
l

n

)[
(i∂t )

naext
ν (x)

]

× [(i∂t )
l−nn̂μν(x)]. (34)

If we define

p̂μ(x) = ∂k∂kÂμ(x), (35)

an analogous equation holds for the time derivatives of the
four-potential operators

(i∂t )
l+2Âμ(x) = −(i∂t )

l
[
p̂μ(x) + eĵμ(x) + ej ext

μ (x)
]
. (36)
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These are the defining equations for all orders of the Taylor
expansion of the four-currents and four-potentials. Hence we
can construct the analytic expectation value of the four-current
and four-potential by taking all orders of the time derivatives
at t = t0 and averaging with the initial configuration ρ̂0. This
can be done in a successive manner.

For a noninteracting system with Hamiltonian Ĥ ′(t) anal-
ogous to Eq. (1) except for

Ĥ ′
int ≡ 0, (37)

we find the corresponding defining equations

(i∂t )
l+1ĵ ′μ(x) = (i∂t )

l q̂
′μ
kin(x)

+
l∑

n=0

(
l

n

)[
(i∂t )

naeff
ν (x)

]
[(i∂t )

l−nn̂′μν(x)],

(38)

and

(i∂t )
l+2Â′

μ(x) = −(i∂t )
l
[
p̂′

μ(x) + ej eff
μ (x)

]
. (39)

Now we want an analytic effective four-potential aeff
μ (x) and

four-current j
μ

eff(x) as well as an initial configuration ρ̂ ′
0 such

that for the expectation values of both systems

j ′μ(x) = jμ(x) and A′
μ(x) = Aμ(x). (40)

The initial configuration ρ̂ ′
0 of the noninteracting system must

fulfill

jμ(�x,t0)
!= tr[ρ̂ ′

0ĵ
′μ(�x)],

Aμ(�x,t0)
!= tr[ρ̂ ′

0Â
′
μ(�x)]. (41)

Further, the noninteracting initial configuration has to fulfill

ˆ̇Aμ(�x,t0)
!= tr[ρ̂ ′

0
ˆ̇A

′
μ(�x)]. (42)

Now, in order that both analytic currents are the same, all
orders of their Taylor expansions have to match. Therefore,
the expectation values at t = t0 for Eq. (34) with ρ̂0 and for
Eq. (38) with ρ̂ ′

0 have to be the same. For l = 0 we find a
defining equation for aeff

μ (�x,t0) as

n′μν(�x,t0)aeff
ν (�x,t0)

= [
q

μ

kin(�x,t0)+q
μ
int(�x,t0)−q

′μ
kin(�x,t0)

]
+ nμν(�x,t0)aext

ν (�x,t0). (43)

All we need to assume is that n′μν(�x,t0) �= 0. This seems well
justified in general. For the analytic four-potentials to agree,
the expectation values at t = t0 for Eq. (36) with ρ̂0 and for
Eq. (39) with ρ̂ ′

0 must coincide. For l = 0 we find therefore a
defining equation for j

μ

eff(�x,t0) as

ej
μ

eff(�x,t0) = [
ejμ(�x,t0) + ej

μ
ext(�x,t0)

]
+ [pμ(�x,t0) − p′μ(�x,t0)]. (44)

However, we have pμ(�x,t0) = ∂k∂kA
μ(�x,t0) = p′μ(�x,t0) and

therefore

j
μ

eff(�x,t0) = [
jμ(�x,t0) + j

μ
ext(�x,t0)

]
. (45)

We have now defined the zeroth order of the Taylor expansions
for the effective four-potential and the effective four-current.

Note, however, that the zero component of the four-potential,
i.e., aeff

0 (�x,t0), is not uniquely defined via the above equation,
because n′μν ≡ 0 for μ = 0 or ν = 0. The chosen initial
configurations and a choice of the zero component of the
zeroth-order Taylor expansion fix a certain gauge for the effec-
tive external four-potential. The higher-order zero components
are successively defined via the Lorentz gauge condition.

In a next step we require that (i∂t )2jμ(x)|t=t0 =
(i∂t )2j ′μ(x)|t=t0 . Hence, we find accordingly

n′μν(x)∂ta
eff
ν (x)|t=t0

= ∂t

[
q

μ

kin(x) + q
μ
int(x)

− q
′μ
kin(x)

]|t=t0 + nμν(x)∂ta
ext
ν (x)|t=t0

+ aext
ν (x)∂tn

μν(x)|t=t0 − aeff
ν (x)∂tn

′μν(x)|t=t0 . (46)

The time derivatives of, e.g., q
μ

kin(x), at t = t0 are found with
the help of the Heisenberg equation, i.e., 〈[q̂μ

kin(x),Ĥ (t)]〉|t=t0 .
Only the initial configurations and the afore-defined zeroth
orders of the effective potential and current are needed.
Analogously one finds from the expectation values of the
four-potential operators for the interacting as well as the
noninteracting system

∂t j
μ

eff(x)|t=t0 = ∂t

[
jμ(x) + j

μ
ext(x)

]|t=t0 . (47)

Hence, for all higher orders l we find, if we assume both
systems to lead to the same current density as well as four-
potential expectation values,

n′μν(x)∂l
t a

eff
ν (x)|t=t0

= ∂l
t

[
q

μ

kin(x) + q
μ
int(x) − q

′μ
kin(x)

]∣∣
t=t0

+
l∑

n=0

(
l

n

)[
∂n
t aext

ν (x)
][

∂l−n
t n̂μν(x)

]∣∣
t=t0

−
l−1∑
n=0

(
l

n

)[
∂n
t aeff

ν (x)
][

∂l−n
t n̂′μν(x)

]∣∣
t=t0

and

∂l
t j

μ

eff(x)|t=t0 = ∂l
t

[
jμ(x) + j

μ
ext(x)

]∣∣
t=t0

. (48)

The time derivatives on the right-hand sides include terms of
the effective potential and effective current up to order l − 1.
Hence, we can successively construct all orders of the Taylor
expansion and find the effective four-potential and the effective
four-current for a noninteracting system which leads to the
same expectation values of the current and potential operators
as the corresponding interacting system. It is important to
note that the effective external current is just the sum of the
external current and the current of the matter system, i.e.,
j

μ

eff(x) = j
μ
ext(x) + jμ(x). There is of course the possibility

that the convergence radius of one of the constructed Taylor
series is 0. This would mean that the terms of the series increase
faster than l!al for a an arbitrary positive constant [17]. This
seems rather unlikely and we will assume the constructed
series convergent. Via analytic continuation [4] we can then
formally extend both Taylor series to all times. With this we
can formulate the relativistic van Leeuwen theorem.
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Theorem. Let ρ̂0 be the initial configuration of an interacting
matter-electrodynamical system. Assume that for the analytic
external four-potential aext

μ (x) and four-current j ext
μ (x) the

corresponding calculated four-current jμ(x) and four-potential
Aμ(x) are analytic in time as well. If we find an initial
configuration of a noninteracting auxiliary system ρ̂ ′

0, subject
to the constraints

jμ(�x,t0)
!= tr[ρ̂ ′

0ĵ
′μ(�x)],

Aμ(�x,t0)
!= tr[ρ̂ ′

0Â
′
μ(�x)],

and

ˆ̇Aμ(�x,t0)
!= tr[ρ̂ ′

0
ˆ̇A

′
μ(�x)],

we can formally construct a unique effective external potential
aeff

μ (x) and a unique effective external current j eff
μ (x), depend-

ing only upon the two initial configurations and the chosen
external potential and currents, such that

jμ(x) = j ′μ(x),

Aμ(x) = A′
μ(x).

The corresponding effective and external potentials are
uniquely defined up to a gauge transformation. If we assume
the second system to be interacting as well and start from the
same initial configuration, we find that there is one and only
one pair (aext

μ ,j ext
μ ) up to a gauge transformation leading to

(jμ,Aμ). The gauge of Aμ is fixed by the initial configuration
chosen. So the gauge freedom is only with respect to the
external potential and not with respect to the quantum system.
This corresponds to the quantum electrodynamical Runge-
Gross theorem [9]. Together with the above-derived van
Leeuwen uniqueness theorem for QED systems, this leads
to the possibility of calculating all interacting observables
with the help of auxiliary noninteracting systems. Such a
procedure is a quantum electrodynamical generalization of
the time-dependent Kohn-Sham construction. Note that in [9]
the effective four-current had an extra term (δB̃)/δAν . This
term is zero, as shown in our derivation.

It is important to stress not only the dependence of the
effective external four-current and the effective external four-
potential but also the Kohn-Sham procedure as a whole on the
initial configurations ρ̂0 and ρ̂ ′

0. Assume the noninteracting
initial configuration takes the form ρ̂ ′

0 = ρ̂ ′
M(t0) ⊗ ρ̂ ′

E(t0). Then
the expectation values of the noninteracting system decouple
into a matter part and a photonic part. Further, the matter
part ρ̂ ′

M(t0) = ∑
i pi |Di(t0)〉〈Di(t0)| is assumed to only consist

of single Slater determinants |Di(t0)〉 of orthonormal orbital
spinors ϕj (x). Therefore we can treat this noninteracting
problem via solving a set of Dirac-Kohn-Sham equations [7,9]

i∂tϕj (x) = {�α · [−i �∇ − �aeff(x)] + m0β + a0
eff(x)

}
ϕj (x),

(49)

as the noninteracting Dirac equations decouple into single
particle equations, and a corresponding Maxwell equation with
the effective four-current [9]

∂μFμν = ∂μ(∂μAν(x) − ∂νAμ(x))

= ejν
ext(x) + ejν(x). (50)

Here, the Dirac-Kohn-Sham orbitals ϕj (x) are used to con-
struct the exact current jμ(x) = ∑

j cjϕ
†
j (x)αμϕj (x), where

cj is the occupation number of the j th spinor orbital. Although
usually one is only interested in the matter part of the quantum
system, even in this special case an explicit calculation
of the four-potential is of interest to deduce approximations
for the effective external four-potential. It seems reasonable to
assume that an approximation based on the potential mediating
the interaction leads to good results. At the end of this chapter
we will deduce such an approximation. Note further that a
similar set of equations, i.e., one for the matter system and
one for the electromagnetic field, is in principle also needed,
e.g., in the calculation of the response of solid-state systems
via TDDFT [23]. If we do not assume this special form
for the initial configuration, then the Kohn-Sham procedure
will be more complicated, and we can in general no longer
use simple Dirac-Kohn-Sham equations. Further, in general
the expectation values have to be calculated with the full
configuration of the matter-photon system and will not separate
as in the case above.

From the considerations leading to the van Leeuwen
theorem, we also have a defining equation for the effective
four-potential. Due to the assumption that the interacting and
the noninteracting systems should lead to the same four-current
we have with Eq. (31) for both systems

n′μν(x)aeff
ν (x) = q

μ

kin(x) + q
μ
int(x) − q

′μ
kin(x)

+ nμν(x)aext
ν (x). (51)

A straightforward approximation for the effective four-
potential can be deduced as in the nonrelativistic case [24],
if one assumes ρ̂(t) � ρ̂ ′(t) = ρ̂ ′

M(t) ⊗ ρ̂ ′
E(t). Then

aeff
μ (x) � aext

μ (x) + Aμ(x) (52)

because the radiation and the matter fields decouple and
q

μ
int(x) = n′μν(x)Aν(x). Note that this approximation is closely

related to the self-consistent field approach for external-field
QED [18].

V. CONCLUSION

In conclusion, we have formulated a quantum electrody-
namical van Leeuwen theorem circumventing the symmetry-
causality problem of the action-functional approach to rela-
tivistic Kohn-Sham systems. Instead of solving the interact-
ing matter-photon problem, one can consider corresponding
noninteracting problems, which lead to the same four-current
and four-potential as the original interacting system. Due
to the quantum electrodynamical Runge-Gross theorem, the
system is fully described by the four-current and four-potential
alone, and one can calculate in principle all observables by
only knowing these two quantities. The effective external
four-potential and the effective four-currents of the Kohn-
Sham system are uniquely defined. Especially, in contrast
to the considerations in [9], the effective external current
is shown to be simply the sum of the external current of
the interacting problem and the four-current of the matter
system. This provides the foundations to perform ab initio
QED calculations by solving a corresponding noninteracting
quantum system coupling to an effective external potential and
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an effective external current. For special forms of the initial
noninteracting configuration the noninteracting problem sepa-
rates into simple Dirac-Kohn-Sham equations and a Maxwell
equation. Finally, assuming the initial configuration to be of
this special type, we gave a straightforward approximation
for the effective four-potential of the noninteracting matter
system.
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