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Engineering arbitrary pure and mixed quantum states
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Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research
attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering
of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and
mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and
coherent controls (incoherent and coherent radiation) and has two properties which are specifically important
for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete
density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired
pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states
into one target state.
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I. INTRODUCTION

Controlled manipulation by atoms and molecules using
external controls is an active field of modern research with
applications ranging from selective creation of atomic or
molecular excitations to the control of chemical reactions and
to the design of nanoscale systems with desired properties. The
external control may be either coherent (e.g., a tailored laser
pulse [1]) or incoherent (e.g., a specially adjusted or engineered
environment [2,3] or quantum measurements commonly used
with and sometimes without feedback [4]).

A challenging topic in quantum control is to provide
practical methods for engineering arbitrary quantum states [5].
The interest in this topic is driven by fundamental connections
to quantum physics as well as by potential applications
to quantum state measurement [5] and quantum computing
with mixed states and nonunitary quantum gates [6]. Various
recipes for engineering arbitrary quantum states of light were
proposed [7,8]. For matter, engineering an arbitrary open
system’s quantum dynamics with coherent control, quantum
measurements, and feedback was shown to be achievable [9].
However, the problem of deterministic engineering of arbitrary
quantum states of matter has generally remained unsolved.

This paper proposes a deterministic method for engineering
arbitrary pure and mixed density matrices for a wide class
of quantum systems. The method uses a combination of
incoherent control by engineering the state of the environment
(for which we consider appropriately filtered incoherent
radiation) on the time scale of several orders of magnitude of
the characteristic system relaxation time τrel followed by fast
(e.g., femtosecond) coherent laser control to produce arbitrary
pure and mixed states for a wide class of quantum systems.
The method is deterministic in the sense that it does not use
real-time feedback and can be applied to an ensemble of
systems without the need for an individual addressing of each
system. It is important that the suggested scheme requires the
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ability to manipulate both Hamiltonian and non-Hamiltonian
aspects of the dynamics; a fundamental result of Altafini shows
that varying only the Hamiltonian is not sufficient to produce
arbitrary states of a quantum system [10].

Engineered environments were suggested for improving
quantum computation and quantum state engineering [11],
making robust quantum memories [12], preparing many-body
states and nonequilibrium quantum phases [13], and inducing
multiparticle entanglement dynamics [14]. This paper exploits
incoherent control by an engineered environment [2] in
combination with coherent control for producing arbitrary pure
and mixed density matrices. While incoherent processes were
used in various circumstances, for example, in cold molecule
research, to prepare a pure state needed for full control over
the system’s pure states [15], their use in the proposed method
serves a more general goal of engineering arbitrary pure and
mixed quantum states.

The method has two special properties. First, it implements
complete density matrix controllability, the strongest possible
degree of state control for quantum systems, meaning the
ability to prepare in a controllable way any density matrix
starting from any initial state. Second, the produced controls
are all-to-one: any such control c∗ transfers all pure and mixed
initial states into the same final state and thus can be optimal
simultaneously for all initial states [16]. This property has
no analog for purely coherent control of closed quantum
systems with unitary evolution, where different initial states
in general require different optimal controls. While an
abstract theoretical construction of all-to-one controls was
provided [16], the problem of their physical realization has
remained open. The suggested method provides a solution for
such a physical realization.

II. COHERENT AND INCOHERENT CONTROLS

The dynamics of a controlled n-level quantum system
isolated from the environment is described by density matrix
ρt , satisfying the equation

ρ̇t = −i [H0 + u(t)V,ρt ] , ρt=0 = ρi. (1)

Here H0 = ∑
εi |i〉〈i| is the free system Hamiltonian (with

eigenvalues ε1 < ε2 < · · · < εn and eigenvectors |i〉), and V is
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the interaction Hamiltonian describing coupling of the system
to the control field u(t) (e.g., a shaped laser pulse). The
evolution is unitary, ρt = Utρ0U

†
t , where the unitary evolution

operator Ut satisfies the Schrödinger equation U̇t = −i[H0 +
u(t)V ]Ut . The unitary nature of the evolution induced by the
field u(t) implies preservation of coherence in the system such
that, for example, pure states will always remain pure; the
corresponding control is called coherent.

If the system interacts with the environment, then its
evolution in the absence of coherent control is described by
the master equation for the reduced density matrix ρt [17,18]:

ρ̇t = −i [H0 + Heff,ρt ] + L(ρt ), ρt=0 = ρi, (2)

where the superoperator L and the effective Hamiltonian
Heff describe the influence of the environment. The effec-
tive Hamiltonian Heff represents spectral broadening of the
system energy levels and typically commutes with H0. For
a Markovian environment, the superoperator L has the form
L(ρ) = ∑

i(2LiρL
†
i − L

†
i Liρ − ρL

†
i Li) with some matrices

Li [17,19]. The explicit form of these matrices is determined
by the state of the environment and by the details of the micro-
scopic interaction between the system and the environment.

The matrices Li are usually considered as fixed and having
a deleterious effect on the ability to control the system: open
quantum systems subject to the Markovian evolution (2) with
constant L are uncontrollable [10]. However, the assumption
of constant L is too restrictive since L can be manipulated by
adjusting the state of the environment through its temperature,
pressure, or, more generally, its distribution function. Control
through adjusting the state of the environment in general does
not preserve quantum coherence in the controlled system and
for this reason is called incoherent [3].

This paper considers incoherent radiation as an example
of a Markovian control environment, and the scheme is
analyzed below for this case. Other environments, either
Markovian or non-Markovian, can also be used as incoherent
controls; however, the ability to use a particular environment
for engineering arbitrary quantum states using the proposed
scheme requires a separate analysis in each case. The state of
the environment formed by incoherent photons is characterized
by the distribution nk of photons in momentum k; in general,
the distribution of photons in polarization α can also be
exploited. For the purpose of this paper the directional
dependence of the distribution function is not necessary, and
its dependence only on the photon energy ω = |k| is used;
nω is assumed to be constant over the frequency range of
significant absorption and emission for each system transition
frequency ωij = εj − εi . The distribution function nω can be
experimentally manipulated, for example, by filtering.

The evolution of the system in the environment formed
by incoherent radiation with distribution function nω is
approximated by the master equation (2) which was derived
from the exact dynamics in the weak coupling limit [20,21]
and whose superoperator L = Lnω

has the form

Lnω
(ρ) =

∑

i,j

[γ +
ωij

+ γ −
ωji

](2μ̂ij ρμ̂
†
ij − μ̂

†
ij μ̂ij ρ − ρμ̂

†
ij μ̂ij ),

(3)

where μ̂ij = μij |i〉〈j |, μij = 〈i|μ|j 〉, and μ is the dipole
moment for coupling the system to radiation. The coefficients

γ +
ω = Cω[nω + 1] and γ −

ω = Cωnω (Cω > 0 for ω > 0 and
Cω = 0 for ω � 0) depend on the photon distribution nω and
determine the transition rates between system energy levels
with transition frequency ω. The Einstein A coefficients for
spontaneous emission are defined by Aij = Cωji

|μij |2. The
radiative energy density per unit angular frequency interval is
ρω = h̄ωnω(ω2/π2c3).

III. ENGINEERING ARBITRARY QUANTUM STATES

Let ρi be any (mixed or pure) initial state of the system
and ρf = ∑

pi |φi〉〈φi | be an arbitrary (mixed or pure) target
(final) state. Without loss of generality we assume p1 � p2 �
· · · � pn. The method can be used to prepare arbitrary non-
degenerate states which form a dense set in the space of all
density matrices, thus approximately realizing arbitrary pure
and mixed quantum states. The system is assumed to be generic
in the sense that all its transition frequencies are different (in
particular, its spectrum is nondegenerate) and all off-diagonal
matrix elements μij of the dipole moment are nonzero. The
goal is to find a combination of coherent and incoherent fields
transforming all ρi into ρf .

The scheme to steer ρi into ρf consists of two stages. In
the first stage, the system evolves on the time scale of several
orders of magnitude of the relaxation time, t ≈ aτrel (where
a can be chosen in the range 2–10 depending on the required
degree of accuracy) under the action of a suitable optimal
incoherent control n∗

ω into the state ρ̃f = ∑
pi |i〉〈i| diagonal

in the basis of H0 and having the same spectrum as the final
state ρf . The state ρ̃f has the same purity as ρf ; ρ̃f is mixed if
ρf is mixed, and ρ̃f is pure if ρf is pure. In the second stage,
the system evolves on the fast (e.g., femtosecond) time scale
under the action of a suitable coherent laser control, which
rotates the basis of H0 to match the basis of ρf .

The first stage exploits incoherent control with any n∗
ω such

that n∗
ωij

= pj/(pi − pj ) to prepare the system in the state ρ̃f .
Coherent control is switched off [u(t) = 0] during this stage,
and the system dynamics is described by the master equation
(2), which for off-diagonal matrix elements ρln = 〈l|ρ|n〉 of
the density matrix takes the form

ρ̇ln = −(iαln + 
ln)ρln, 
ln =
∑

j

(Wjl + Wjn) � 0,

where αln = 〈l|H0 + Heff|l〉 − 〈n|H0 + Heff|n〉 and Wij =
2(γ +

ji + γ −
ij )|μij |2. Off-diagonal elements decay exponentially

for 
ln > 0, ρln ∼ exp(−
lnt). Diagonal elements satisfy the
Pauli master equation

ρ̇nn =
∑

j

(Wnjρjj − Wjnρnn).

For generic systems, all nωij
can be independently adjusted,

and the detailed balance condition Wnjρjj = Wjnρnn implies
n∗

ωij
= pj/(pi − pj ). The master equation with an incoherent

distribution nω such that n∗
ωij

= pj/(pi − pj ) has ρ̃f as the
stationary state and exponentially quickly drives the system to
ρ̃f [22]. The case when some pi = pj �= 0 formally requires
infinite density at the corresponding transition (e.g., infinite
temperature of the environment is required for creating the
equally populated state ρ̃f = 1

n
I), but for practical applications

a reasonable degree of accuracy allowing for a finite n∗
ωij

is always sufficient. The first stage, when necessary, can

042106-2



ENGINEERING ARBITRARY PURE AND MIXED QUANTUM . . . PHYSICAL REVIEW A 84, 042106 (2011)

be divided into two parts, diagonalization of the density
matrix with any nω producing positive and sufficiently large

ln followed by the evolution driven by any n∗

ω such that
n∗

ωij
= pj/(pi − pj ) to produce ρ̃f .

The second stage implements coherent dynamics with
unitary evolution transforming the basis {|i〉} into {|φi〉} and
hence steering ρ̃f into ρf . For successful realization of this
stage we assume that any unitary evolution operator of the
system can be produced with available coherent controls when
L = 0 on a time scale sufficiently shorter than τrel, i.e., that the
system is unitary controllable when decoherence effects are
negligible. Incoherent control is switched off during this stage
by setting nω = 0, and the dynamics is well approximated by
the unitary evolution (1).

Necessary and sufficient conditions for unitary controlla-
bility were obtained by Ramakrishna et al. [23]. Sufficient
conditions for complete controllability of n-level quantum
systems subject to a single control pulse that addresses
multiple allowed transitions concurrently were established
[24]. Ramakrishna et al. showed that a necessary and sufficient
condition for unitary controllability of a quantum system
with Hamiltonian H = H0 + u(t)V is that the Lie algebra
generated by the operators H0 and V has the dimension n2. We
assume that the system satisfies this condition whenL = 0 and
that any U can be produced on a time scale sufficiently shorter
than the decoherence time scale, e.g., by using time-optimal
control [25]. Under these assumptions a coherent field u∗(t)
exists that produces a unitary operator U transforming the basis
{|i〉} into {|φi〉} and therefore steering ρ̃f into ρf . This field
implements the second stage of the scheme to finish evolving
ρi into ρf . The second stage can be implemented also on the
long time scale using dynamical decoupling [26] to effectively
decouple the system from the environment.

There exist other methods to prepare arbitrary quantum
states. An example is the method of engineering arbitrary
Kraus maps proposed by Lloyd and Viola [9], which, in
particular, can be used to produce arbitrary quantum states.
Another option is to cool an ensemble of systems to a pure state
|φ〉 and then apply randomly and independently to each system
a control producing a unitary operator Ui transforming |φ〉 into
|φi〉. Implementing each Ui with probability pi will effectively
produce the systems in the state ρf = ∑

pi |φi〉〈φi |. Both these
methods require independent addressing of individual systems
in the ensemble that in general is hard to realize. The proposed
method is free of this shortcoming and can be applied to
an ensemble without the need to independently address each
system. This advantage should significantly simplify practical
realization when individual addressing of quantum systems
is hard to realize. We remark that the first control stage
requires individual addressing of each transition frequency. If
the system is nongeneric, in particular, if it is degenerate, then
the method may work if the degenerate states can be selectively
addressed by using polarization of the incoherent radiation. For
degenerate systems (harmonic oscillator) another scheme was
proposed [5].

Determining the correct form of the master equation for
systems with time-dependent Hamiltonians in general is a non-
trivial problem [27,28]. However, the proposed scheme does
not use the master equation with time-dependent Hamiltonian
u(t)V , and therefore the problem of choosing the correct form

of the master equation with time-dependent Hamiltonian is
not relevant for this work. The scheme in its first step exploits
incoherent control when the coherent control is switched off,
and therefore the system Hamiltonian is time independent. In
this case the system dynamics under Markovian approximation
is governed by a master equation of the form (2). The second
step exploits fast coherent control on a short time scale when
incoherent control is switched off and the decoherence effects
are negligible. In this case L ≈ 0 and the dynamics is well
approximated by (1).

If the quantum system is sufficiently simple and all its
relevant parameters are known, then methods of optimal
control theory (OCT) can be used to find optimal fields n∗

ω

and u∗(t), as shown in Fig. 1(a). If the system is complex
and/or some of its relevant parameters are unknown, then
various adaptive learning algorithms can be used to implement
the proposed scheme for engineering arbitrary quantum states
[Fig. 1(b)]. In this case, the creation of a desired diagonal
mixed state ρ̃f during the first stage of the control scheme
can be realized with learning algorithms [2]. The second stage
can be implemented using learning algorithms for coherent
control [29]. Learning algorithms were shown to be efficient
for both cases, and therefore they will be efficient when
used in a successive combination as required in the proposed
scheme.

FIG. 1. (Color online) Implementing complete density matrix
controllability with (a) OCT and (b) learning control. In (a), methods
of OCT and a theoretical model of the system dynamics are used to
find optimal incoherent and coherent controls n∗

k and u∗(t). In (b), the
objective J = ‖ρT − ρf‖, where ρT is the output state, is measured
(block with the letter M) at the end of each iteration, and the result
is used to design a new control, ideally with better performance. The
cycle is repeated until a satisfactory output is obtained.
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IV. COMPLETE DENSITY MATRIX CONTROLLABILITY

Depending on a particular problem, various notions of con-
trollability for quantum systems are used [10,16,23,30–32],
including unitary controllability, pure state, density matrix
and observable controllability [30], and complete density
matrix controllability [16]. Unitary controllability means the
ability to produce with available controls any unitary evolution
operator U . Density matrix controllability means the ability to
transfer one arbitrary density matrix into another with the same
spectrum (i.e., kinematically equivalent density matrices); a
particular case is pure state controllability, which is the ability
to transfer one arbitrary pure state into another. Complete den-
sity matrix controllability means the ability to steer any initial
(pure or mixed) density matrix ρi into any (pure or mixed) final
density matrix ρf , irrespective of their relative spectra [16].
This notion is different from density matrix controllability
[30], where only kinematically equivalent density matrices
are required to be accessible, and is the strongest among all
degrees of state controllability for quantum systems; complete
density matrix controllability of a quantum system implies
in particular its pure state and density matrix controllability.
The suggested scheme allows for transferring one arbitrary
density matrix into another, thereby approximately realizing
complete density matrix controllability of quantum systems,
the strongest possible degree of their state control.

V. ALL-TO-ONE CONTROLS

An all-to-one control c∗ is a control that steers all initial
states into one final state. Such controls can be optimal
simultaneously for all initial states [16], and their importance is
motivated by the following. Let J (c) ≡ J (ρT ) be an arbitrary
control objective determined by the system density matrix ρT

evolving from the initial state ρ0 to the final time T under the
action of the control c (e.g., J = Tr [ρT O] for some Hermitian
observable O or J = ‖ρT − ρf‖). In general, optimal controls
(controls minimizing the objective) are different for different
initial states. However, if c∗ is an all-to-one control steering all
states into a state ρf minimizing J , then c∗ will optimize the ob-
jective for any initial system state. While an abstract theoretical
construction of all-to-one controls was provided [16] in terms
of special Kraus maps, whose definition is also provided below,
their physical realizations has remained an open problem. The
proposed control scheme provides a physical realization of
all-to-one controls and the corresponding Kraus maps for any
pure or mixed state ρf . The all-to-one property is achieved
during the first stage, where n∗

ω produces the same density
matrix ρ̃f independently of the initial state.

The density matrix representing the state of an n-level
quantum system is a positive, unit-trace n × n matrix. We
denote by Mn = Cn×n the set of all n × n complex matrices
and by Dn := {ρ ∈ Mn | ρ = ρ†,ρ � 0,Tr(ρ) = 1} the set of
all density matrices. A map � : Mn → Mn is positive if
�(ρ) � 0 for any ρ � 0 in Mn. A map � : Mn → Mn is
completely positive (CP) if for any l ∈ N the map � ⊗ Il :
Mn ⊗ Ml → Mn ⊗ Ml is positive (Il is the identity map
in Ml). A CP map is trace preserving if Tr[�(ρ)] = Tr(ρ)
for any ρ ∈ Mn. Completely positive trace-preserving maps
are referred to as Kraus maps; they represent the reduced

FIG. 2. (Color online) Application of the control scheme for
engineering a desired mixed state of two Ca energy levels. (a) The
behavior of the objective vs time during the two stages of the control.
The time scale is not uniform; the duration of the first stage is
T = 50 ns, and that of the second stage is Tf − T = 1310 fs. The
solid line is for ‖ρt − ρf‖, and the dotted line is for ‖ρt − ρ̃f‖; the
latter quantity almost completely vanishes during the first stage of
the control. (b) The corresponding evolution of the Bloch vector. The
initial system state corresponds to the south pole, the vertical blue
line represents incoherent evolution during the first stage, and the
green line shows coherent rotations during the second stage under the
action of a resonant field of amplitude E = 107 V/m. The evolved
state approaches the target state, indicated by the red marker at the
top.

dynamics of quantum systems initially uncorrelated with the
environment [18,33].

Any Kraus map � can be represented using the operator-
sum representation (OSR) as �(ρ) = ∑l

i=1 KiρK
†
i , where

{Ki} is a set of complex n × n matrices satisfying the condition∑l
i=1 K

†
i Ki = In to ensure trace preservation [18,33]. The

OSR is not unique: any Kraus map � can be represented using
infinitely many sets of Kraus operators.

The all-to-one Kraus map for a given final state ρf =∑
i pi |φi〉〈φi | is defined as a Kraus map �ρf steering all initial

states into ρf , i.e., such that �ρf (ρ) = ρf for all ρ ∈ Dn [16].
If ρf is a density matrix maximizing a given objective J and
c∗ is a control producing the map �ρf , then this control will
be simultaneously optimal for all initial states; i.e., the same
c∗ will maximize the objective for any initial system state.
An OSR for a universally optimal Kraus map �ρf can be

FIG. 3. (Color online) The same as Fig. 2, except that E =
109 V/m and Tf − T = 13.1 fs.
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constructed by using Kij =√
pi |φi 〉〈φj | as the Kraus operators.

Indeed, for any ρ,
∑n

i,j=1 KijρK
†
ij = ρf .

All-to-one Kraus maps were constructed theoretically in
[16]. The two-stage control scheme described in this paper
provides an approximate physical realization of all-to-one
Kraus maps �ρf for all ρf (therefore any all-to-one Kraus
map can be produced using this scheme) for generic systems
that are unitary controllable on the time scale which is small
with respect to τrel.

VI. EXAMPLE: CALCIUM ATOM

The scheme is illustrated below with an example of a two-
level atom whose relevant parameters are known and whose
controlled dynamics are easily analytically understood and
visualized. We consider calcium upper and lower levels 4 1P

and 4 1S as two states |1〉 and |0〉 of the two-level system. For
this system the transition frequency is ω21 = 4.5 × 1015 rad/s,
the radiative lifetime t21 = 4.5 ns, the Einstein coefficient
A21 = 1/t21 ≈ 2.2 × 108 s−1, and the dipole moment μ12 =
2.4 × 10−29 C m [34]. The method works equally well for any
initial and target states; we take for the sake of definiteness
ρ0 = |0〉〈0| and ρf = 1

4 |0〉〈0| + 3
4 |1〉〈1|.

The system is generic, all its relevant parameters are known,
and we can analytically find optimal controls. The goal of the
first (incoherent) stage is to prepare the mixture ρ̃f = 3

4 |0〉〈0| +
1
4 |1〉〈1|. This goal is realized by applying to the system
incoherent radiation with a distribution satisfying nω21 = 1/2
during time T of several magnitudes of decoherence time t21;

we choose T = 50 ns. The goal of the second (coherent) stage
is to rotate the state produced at the end of the first stage to
transform it into ρf . This goal can be realized, for example,
by applying a resonant π pulse E(t) = E cos(ω12t). Other
methods of coherent control that produce the same unitary
transformation can be used as well. The electric field amplitude
that makes the Rabi frequency equal to the radiative decay
rate is E ≈ 103 V/m [34]. The proposed scheme requires the
duration of the second stage to be significantly shorter than the
decay time. This can be satisfied by choosing E � 104 V/m.
We take resonant electromagnetic field E(t) = E cos(ω12t)
of amplitude E = 107 V/m acting on the system during the
time interval Tf − T = 1310 fs. The Rabi frequency for a field
of such amplitude is �R ≈ 1/2320 fs−1; thus the field acts
as a π pulse transforming the state ρ̃f into ρf . The results
of the numerical simulation are shown in Fig. 2. The time
interval 1310 fs is much less than t21, and decoherence effects
are negligible during the second stage. To better visualize
the trajectory during the second stage we provide in Fig. 3
simulation results for E = 109 V/m and Tf − T = 13.1 fs.
The method can be applied to produce arbitrary pure or mixed
target density matrices from any pure or mixed initial state,
thereby implying the complete density matrix controllability
of this system.
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