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The position-momentum Shannon and Rényi uncertainty products of general quantum systems are shown to
be bounded not only from below (through the known uncertainty relations), but also from above in terms of the
Heisenberg-Kennard product 〈r2〉〈p2〉. Moreover, the Cramér-Rao, Fisher-Shannon, and López-Ruiz, Mancini,
and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded
from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also
explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.
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I. INTRODUCTION

The uncertainty principle is a basic physico-mathematical
aporia. It is not only a relevant issue in harmonic analysis [1],
but also a statement of the human and technical limitations
to perform measurements on a system without disturbing
it [2]. Moreover, the position-momentum uncertainty principle
describes a characteristic feature of quantum mechanics whose
first mathematical realization is the Heisenberg-Kennard
relation [2,3] based on the second-order power moment of
the position and momentum probability densities (ρ(�r),γ ( �p))
which characterize the quantum state of a physical system.
This relation is given in atomic units h̄ = 1 by

〈r2〉〈p2〉 � 9
4 , (1)

valid for all quantum-mechanical states of any three-
dimensional physical system. Here the symbol 〈f (r)〉 denotes
the expectation value

〈f (r)〉 :=
∫
R3

f (r)ρ(�r)d3r, with r = |�r|

in position space, and similarly in momentum space. Then
the relation (1) was generalized for any power moments
(〈ra〉,〈pb〉) in the sense [4,5]
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valid for a,b > 0. See also [6] for further inequalities with
moments of negative orders. For the case a = b we have

〈ra〉〈pa〉 �
[

πa2

16�2
(

3
a

)
] a

3 (
3

a

)2

ea−2; a > 0, (3)

which reduces to (1) when a = 2. However, the Heisenberg-
Kennard relation is much too weak to express the uncertainty
principle (see, e.g., [7,8]).

Presently it is well known that quantities based not on
the position and momentum power moments (〈rα〉, 〈pβ〉), but
instead on the frequency or entropic moments,

Wα[ρ] :=
∫
R3

[ρ(�r)]αd3r, Wβ[γ ] :=
∫
R3

[γ ( �p)]βd3p,

are much more appropriate and stringent uncertainty measures
for quantum systems. These quantities are called information-
generating functionals in other contexts [9]. The position Rényi
entropy [10–12], defined as

Rα[ρ] := 1

1 − α
ln Wα[ρ]; 0 < α < ∞; α �= 1,

and the corresponding momentum quantity Rβ[γ ] provide
the most relevant canonical class of position and momentum
uncertainty measures [13]. These quantities have been widely
used in a large variety of quantum systems, phenomena, and
processes, as briefly summarized in Refs. [14] and [15]. It
is worth noting that the (Boltzmann-Gibbs)-Shannon entropy
S[ρ] = − ∫

ρ(�r) ln ρ(�r)d3r is the limiting case α → 1 of
Rα[ρ] (see, e.g., [16]), and the Tsallis entropy [17] is a linear
approximation of Rα[ρ] with respect to Wα[ρ]. Moreover,
uncertainty-type inequalities associated with the Shannon and
Tsallis entropies have been obtained by Beckner [18] and
Bialynicki-Birula–Mycielski [19], and Maassen-Uffink [20]
and Rajagopal [21], respectively.
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Bialynicki-Birula [14] has shown in 2006 that the Renyi
entropies satisfy the uncertainty relation

Rα[ρ] + Rβ[γ ] � − ln
(

α
π

)
2(1 − α)

− ln
(

β

π

)
2(1 − β)

; with
1

α
+ 1

β
= 2,

which has been extended and rewritten in 2009 by Zozor et al.
[22] in the form

Nα[ρ]Nβ[γ ] � C(α,β), (4)

where Nα[ρ] denotes the position Renyi α-entropy power
[22,23]

Nα[ρ] := exp

(
1

3
Rα[ρ]

)
= {Wα[ρ]} 1

3(1−α) (5)

in position space, and Nβ[γ ] the corresponding momentum
quantity. The constant C(α,β) has the value

C(α,β) = 2 π (2α)
1

2(α−1) (2β)
1

2(β−1) . (6)

On the other hand, the translationally invariant Fisher
information [24], defined by

F [ρ] :=
∫
R3

[ �∇ρ(�r)]2

ρ(�r)
d3�r,

has been shown to be a particularly useful uncertainty measure.
This is because, contrary to the previous measures, it has
a locality property: it is very sensitive to the fluctuations
or irregularities of the position probability density of the
stationary states of the quantum systems. Moreover, it has
the bounds

81

〈r2〉〈p2〉 � F [ρ]F [γ ] � 16〈r2〉〈p2〉,

where we have used the Cramér-Rao inequalities [23]

F [ρ] � 9

〈r2〉 , F [γ ] � 9

〈p2〉 ,

and the Stam relation [25]

F [ρ] � 4 〈p2〉 , F [γ ] � 4 〈r2〉.
Let us also mention, for the sake of completeness, that the
Fisher information also satisfies the uncertainty relation

F [ρ]F [γ ] � 36

for quantum systems when either the position wave function
or the momentum wave function is real [26].

Furthermore, there exist some products of two single
information-theoretic measures which have been shown to be
most appropriate to grasp various facets of the internal disorder
of quantum systems and to disentangle among their rich
three-dimensional geometries: the Cramér-Rao [16,27,28],
Fisher-Shannon [29–31], and López-Ruiz, Mancini, and Cal-
bet (LMC) [32,33] complexities. These composite quantities
are defined as

CCR[ρ] = F [ρ]V [ρ] (7)

for the Cramér-Rao complexity; as

CFS[ρ] = F [ρ]J [ρ] = 1

2πe
F [ρ]N2

1 [ρ] (8)

for the Fisher-Shannon complexity; and as

CLMC[ρ] = D[ρ] exp(S[ρ]) = D[ρ]N3
1 [ρ] =

[
N1[ρ]

N2[ρ]

]3

(9)

for the LMC shape complexity. The symbols V [ρ] and
J [ρ] denote the variance V [ρ] = 〈r2〉 − |〈�r〉|2 and the Shan-
non quantity J [ρ] = (2πe)−1 exp( 2

3 S[ρ]) = (2πe)−1 N2
1 [ρ],

where N1[ρ] = exp( 1
3 S[ρ]) gives the Shannon entropy power,

and the disequilibrium D[ρ] = 〈ρ〉 = W2[ρ] = N−3
2 [ρ] of the

system. These three dimensionless two-ingredient measures of
complexity, which quantify how easily a quantum system may
be modeled, differ from the remaining complexities in the fol-
lowing properties: (i) mathematical simplicity, (ii) invariance
under replication, translation, and scaling transformations, and
(iii) minimal values in the two extreme cases: perfect order
(i.e., for completely ordered systems, that is, when the density
denotes a Dirac δ function) and perfect disorder (i.e., for
completely disordered systems which have a uniform or highly
spread density and an ideal gas in one and three dimensions,
respectively). Moreover, they are bounded from below as

CCR[ρ] � 9, CFS[ρ] � 3, and CLMC[ρ] � 1 (10)

for general three-dimensional systems.
In this work we first highlight (see Sec. II) the connection

between the Rényi- and Shannon-entropy-based uncertainty
products of general quantum systems, as well as the two-
ingredient measures of complexity mentioned above, with the
Heisenberg-like uncertainty products 〈ra〉〈pb〉. Then in Sec. III
we show that the resulting upper bounds can be improved
for systems subject to central potentials of arbitrary analyt-
ical form. Finally, these quantities are explicitly given and
numerically discussed for the hydrogen atom and harmonic
oscillator quantum systems in Sec. IV. Some conclusions and
open problems are also given.

II. UNCERTAINTY PRODUCTS AND COMPLEXITY
MEASURES FOR GENERAL SYSTEMS:

UPPER BOUNDS

In this section we first study the relation of the Rényi-
and Shannon-entropy-based uncertainty products with the
Heisenberg-like products in general quantum systems. Then,
we derive upper bounds on the Cramér-Rao, Fisher-Shannon,
and LMC shape complexities in terms of Heisenberg-like
products.

A. Uncertainty products

We will first show the uncertainty character of the product
Nα[ρ]Nβ[γ ] of the Rényi entropy powers in position and
momentum spaces via its connection with the Heisenberg-like
products (1), (2), and (3). To do this we use the variational
optimization procedure described in Ref. [34], subject to the
constraint 〈ra〉, a = 1,2, . . ., to obtain the following lower
bound to the position entropic moment Wα[ρ]:

Wα[ρ] � A1(α,a)〈ra〉−[3(α−1)/a]; α > 1,
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with the constant

A1(α,a) = aα

(a + 3)α − 3

×
{

a

4πB
(

α
α−1 , 3

a

) [
3α − 3

(a + 3)α − 3

] 3
a

}α−1

,

where B(x,y) = �(x)�(y)/�(x + y) denotes the β function.
Similarly, we find the lower bound

Wβ[γ ] � A1(β,b)〈pb〉−[3(β−1)/b]; b = 1,2, . . . ; β > 1,

for the entropic moment Wβ[γ ] of the momentum density γ ( �p)
in terms of the momentum expectation value 〈pb〉.

For α < 1 we have the following upper bound [35]:

Wα[ρ] � Ã1(α,a)〈ra〉[3(1−α)/a]; α < 1, a > 3 1−α
α

,

with the constant

Ã1(α,a) = αa

[(a + 3)α − 3]α

×
{

αa2

4πB
(

α
1−α

− 3
a
, 3
a

) [
3 − 3α)

(a + 3)α − 3

] 3
a

}α−1

.

Then, taking into account Eq. (5) we have the following
upper bounds:

Nα[ρ] � A2(α,a)〈ra〉1/a (11)

and

Nβ[γ ] � A2(β,b)〈pb〉1/b, (12)

for the position and momentum Rényi entropy power, where
the constant A2 is given by

A2(α,a) =
{

[A1(α,a)]1/3(1−α), α > 1,

[Ã1(α,a)]1/3(1−α), α < 1.

The expression (11) extends and generalizes various inequal-
ities of similar type obtained differently by various authors
[36,37]. Then, from (11) and (12) we obtain the inequality

Nα[ρ]Nβ[γ ] � A2(α,a)A2(β,b)〈ra〉 1
a 〈pb〉 1

b , (13)

for α > 1,β > 1, for the position-momentum Rényi products.
Remark that a and b = 1,2,3, . . . In case that a = b, one has

Nα[ρ]Nβ[γ ] � A2(α,a)A2(β,a)[〈ra〉〈pa〉]1/a, (14)

for a = 1,2, . . . ; α > 1,β > 1, which connects the Rényi
products with the Heisenberg-like uncertainty products
〈ra〉〈pa〉. Moreover, from Eqs. (4)–(6) and Eq. (14) with a = 2
one finds

Nα[ρ]Nβ[γ ] � A2(α,2)A2(β,2)(〈r2〉〈p2〉)1/2. (15)

To obtain the corresponding Shannon-entropy-based uncer-
tainty products, either we carefully take the limits α → 1 and
β → 1 in the expressions (11), (12), (13), (14), and (15), or
we start from the variational bound [38,39] on the Shannon
entropy S[ρ] given by

S[ρ] � A3(a) + 3

a
ln〈ra〉, ∀a > 0,

with

A3(a) = ln

[
4π

a
�

(
3

a

) (
ae

3

)3/a]
.

Then one easily obtains the following lower bound on
the Shannon entropy power N1[ρ] = exp( 1

3S[ρ]) in position
space:

N1[ρ] � A4(a) 〈ra〉1/a, (16)

with

A4(a) =
[

4π

|a| �

(
3

a

)] 1
3 (ae

3

)1/a

.

A similar result can be obtained for the upper bound on
the momentum Shannon entropy power N1[γ ] in terms of
an arbitrary expectation value 〈pb〉, b > 0. So the uncertainty
product N1[ρ]N1[γ ] is bounded from above as

N1[ρ]N1[γ ] � A4(a) A4(b) 〈ra〉 1
a 〈pb〉1/b.

In case that a = b, one has that

N1[ρ]N1[γ ] � [A4(a)]2 (〈ra〉〈pa〉)1/a (17)

for a = 1,2, . . . , which connects the Shannon-entropy-power-
based products with the Heisenberg-like uncertainty products
〈ra〉〈pa〉. Moreover, from Eq. (15) with (α → 1, β → 1) or
from Eqs. (4)–(6) with α → 1 and (17) with a = 2 we have
the Shannon product

N1[ρ]N1[γ ] � 2πe

3
(〈r2〉〈p2〉)1/2 (18)

in terms of the Heisenberg-Kennard uncertainty relation
〈r2〉〈p2〉.

B. Complexity measures

In Eq. (10) of Sec. I we have pointed out the lower bounds
of the Cramer-Rao, Fisher-Shannon, and LMC measures of
complexity. Let us now explore the upper bounds on these
three measures.

1. Cramér-Rao complexity CC R[ρ]

Taking into account its definition (7) and the Cramér-Rao
inequality [i.e., the first expression in (10)], the Stam relation
F [ρ] � 4〈p2〉, and that V [ρ] � 〈r2〉, one obtains that the
Cramér-Rao complexity is bounded from both sides as

9 � CCR[ρ] � 4〈r2〉〈p2〉. (19)

2. Fisher-Shannon complexity CFS[ρ]

Let us start with its definition (8). Taking into account the
Stam relation F [ρ] � 4〈p2〉 and the upper bound N1[ρ] �
( 2πe

3 〈r2〉)1/2 on the Shannon power entropy previously men-
tioned, we obtain the upper bound CFS[ρ] � 4

3 〈r2〉〈p2〉 on
the Fisher-Shannon complexity. This result together with the
lower bound (10) allows us to write the following chain of
inequalities:

3 � CFS[ρ] � 4
3 〈r2〉〈p2〉. (20)
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3. LMC shape complexity CLMC[ρ]

From its definition (9) one has that

CLMC[ρ] = D[ρ]N3
1 [ρ].

Now, taking into account that N3
1 [ρ] � ( 2πe

3 〈r2〉)3/2 because
of Eq. (16), and the Gadre-Chakraborty inequality for the
disequilibrium [40]

D[ρ] � 4

3
√

3π2
〈p2〉3/2, (21)

one obtains the upper bound

1 � CLMC[ρ] � 27/2

33
√

π
e3/2(〈r2〉〈p2〉)3/2. (22)

We know from the very beginning that the upper bound (21)
on the disequilibrium is not so accurate because it is the result
of two concatenated general inequalities (namely, Cauchy-
Schwarz and Sobolev) [40,41]. Consequently, the upper bound
in Eq. (22) is poor; nevertheless, it is the only existing one to
the best of our knowledge.

III. UNCERTAINTY PRODUCTS AND COMPLEXITY
MEASURES FOR CENTRAL POTENTIALS:

UPPER BOUNDS

In this section we study the improvement of the upper
bounds on the uncertainty products and complexity measures
found in the previous section, when the potential of the
quantum system is spherically symmetric.

A. Uncertainty products

Let us first improve the inequality (15) between the
Rényi-entropy-based product Nα[ρ]Nβ[γ ] and the Heisenberg
product 〈r2〉〈p2〉 for central potentials.

The stationary states of a single-particle system in a spher-
ically symmetric potential V (r) are known to be described by
the wave functions

ψnlm (�r) = Rnl(r) Ylm (θ,φ) ,

which are characterized through the quantum numbers (n,l,m),
where the principal quantum number n = 0,1, . . ., the orbital
quantum number l = 0,1, . . ., and the magnetic quantum
number m = −l, − l + 1, . . . ,l − 1,l. The angular part is
given by the well-known spherical harmonics Ylm(θ,φ), and
the radial part Rnl(r) depends on the analytical form of the
potential.

Recently, Sánchez-Moreno et al. [42] have used a vari-
ational method to bound the Rényi entropy Nα[ρ] with the
covariance matrix as a constraint. They found that

Nα[ρ] � B(l,m) A2(α,2) 〈r2〉1/2 (23)

with

B(l,m) =
√

3

(
2l(l + 1) − 2m2 − 1

4l(l + 1) − 3

)1/6

×
(

l(l + 1) + m2 − 1

4l(l + 1) − 3

)1/3

.
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FIG. 1. Uncertainty product N2[ρ]N2[γ ] (•), central upper bound
(�), and general upper bound (�), with α = β = 2, for the states of
the hydrogen atom with quantum numbers l = m = 10, as a function
of the principal quantum number n, for n = 11−100.

It is worth noting that B(0,0) = 1. Moreover, B(l,m) � 1 so
that the bound (23) is lower (so, better) than the bound given
by Eq. (11) with a = 2.

By working in momentum space we can obtain a similar
bound for the momentum Rényi entropy Nβ[γ ] in terms
of the expectation value 〈p2〉. Then, we can obtain in a
straightforward manner the following inequality between the
Rényi-entropy-based and Heisenberg uncertainty products:

Nα[ρ]Nβ[γ ] � [B(l,m)]2 A2(α,2) A2(β,2) (〈r2〉〈p2〉)1/2.

(24)

Now, let us show the improvement of the upper bound
(18) on the Shannon-entropy-based uncertainty product
N1[ρ]N1[γ ] for the central potentials. This is obtained either
by taking the limit α → 1 in expressions (23) and (24) or by
using the corresponding variational result [42]. The former
one yields the value

N1[ρ] �
(

2πe

3

)1/2

B(l,m) 〈r2〉1/2 (25)
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FIG. 2. Uncertainty product N2[ρ]N2[γ ] (•), central upper bound
(�), and general upper bound (�), with α = β = 2, for the states
of the harmonic oscillator with quantum numbers l = m = 10, as a
function of the principal quantum number n, for n = 0 to 100.
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for the upper bound on the Shannon entropy power N1[ρ]. And
from Eq. (24) one obtains the inequality

N1[ρ]N1[γ ] � 2πe

3
[B(l,m)]2(〈r2〉〈p2〉)1/2,

which improves the general upper bound (18) because
B(l,m) � 1.

B. Complexity measures

Here we improve for central potentials the upper bounds
on the Cramer-Rao, Fisher-Shannon, and LMC measures of
complexity given in Eqs. (19), (20), and (22), respectively.

1. Cramer-Rao complexity CC R[ρ]

Since, for central potentials, the variance is V [ρ] = 〈r2〉
and the Fisher information is given [43] as

F [ρ] = 4〈p2〉 − 2(2l + 1)|m|〈r−2〉, (26)

one has the following exact value,

CCR[ρ] = 4〈p2〉〈r2〉 − 2(2l + 1)|m|〈r−2〉〈r2〉, (27)

for the Cramer-Rao complexity of physical systems with
central potentials, as a function of the expectation values 〈p2〉,
〈r2〉, and 〈r−2〉. Notice that for m = 0, this expression reduces
to CCR[ρ] = 4〈p2〉〈r2〉. Thus these states saturate the previous
general upper bound (19).

2. Fisher-Shannon complexity CFS[ρ]

The combination of its definition (8) with the inequality
(25) for the Shannon entropy power and the exact expression
(26) of the Fisher information for central potentials, yields the
upper bound

CFS � 1
3 [4〈p2〉〈r2〉 − 2(2l + 1)|m|〈r−2〉〈r2〉] [B(l,m)]2

(28)

on the Fisher-Shannon complexity of the central potentials,
which clearly improves the general upper bound 4

3 〈r2〉〈p2〉 of
Eq. (20).

3. LMC shape complexity CLMC[ρ]

From the definition (9) and the inequality (25) for the
Shannon entropy power N1[ρ] of central potentials one has
that

CLMC[ρ] = D[ρ]N3
1 [ρ] �

(
2πe

3

)3/2

[B(l,m)]3 D[ρ] 〈r2〉3/2.

On the other hand, we have the general inequality (21) that
allows us to find the upper bound

CLMC[ρ] � 1

33

(
27e3

π

)1/2

[B(l,m)]3 (〈r2〉〈p2〉)3/2 (29)

on the LMC complexity of central potentials. It is worth
emphasizing that this inequality, which certainly improves the
generalized upper bound, can be more refined, provided that
we improve for central potentials the inequality (21) of the
disequilibrium D[ρ].

IV. APPLICATION TO HYDROGENIC AND
OSCILLATOR-LIKE SYSTEMS

In this section we examine the improvement of the general
upper bounds on the uncertainty Rényi product and the
complexity measures studied in Sec. II by the inclusion
of the spherical symmetry (see Sec. III). This is done by
comparing the bounds on the uncertainty product and on the
complexity measures found in Sec. III for central systems,
with respect to the corresponding ones described in Sec. II
for general systems. We study these bounds in the two main
prototype systems in quantum physics [44]: the hydrogen
atom, characterized by the Coulomb potential V (r) = − 1

r
,

and the harmonic oscillator, characterized by the potential
V (r) = 1

2 r2. Specifically, we consider the bounds described by
the inequalities (15), (19), (20), and (22) for general systems,
and (24), (27), (28), and (29) for central systems. Notice that
all these bounds are expressed in terms of the expectation
values 〈r2〉, 〈p2〉, and 〈r−2〉. These expectation values have
the expressions

〈r2〉 = n2

2
[5n2 − 3l(l + 1) + 1],

〈p2〉 = 1

n2
, 〈r−2〉 = 2

n3

1
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,
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FIG. 3. (a) Cramer-Rao (+), Fisher-Shannon (•), and LMC (�) complexity measures. (b) Fisher-Shannon complexity measure (•), central
upper bound (�), and general upper bound (×). (c) LMC complexity measure (�), central upper bound (�), and general upper bound (×). All
the quantities are plotted for the states of the hydrogen atom with l = m = 10 from n = 11 to 40.
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FIG. 4. (a) Cramer-Rao (+), Fisher-Shannon (•), and LMC (�) complexity measures. (b) Fisher-Shannon complexity measure (•), central
upper bound (�), and general upper bound (×). (c) LMC complexity measure (�), upper bound for central systems (�), and general upper
bound (×). All the quantities are plotted for the states of the harmonic oscillator with l = m = 10 from n = 0 to 40.

for the hydrogen atom, and

〈r2〉 = 〈p2〉 = 2n + l + 3

2
, 〈r−2〉 = 2

2l + 1
,

for the harmonic oscillator. With these expressions we can
calculate the upper bounds of the hydrogen and the oscillator
systems on the uncertainty Rényi product and the Cramer-Rao,
Fisher-Shannon, and LMC complexities, valid for general and
central systems.

First, we study the dependence on n with (l,m) fixed.
Figure 1 shows the exact value of the uncertainty product
N2[ρ]N2[γ ] (•), the upper bound for central systems given by
(24) (�), and the general upper bound described in (15) (�),
with α = β = 2 for the states of the hydrogen atom, and with
quantum numbers l = m = 10 as a function of the principal
quantum number n for n = 11 − 100. Figure 2 shows the same
quantities for the harmonic oscillator states with quantum
numbers l = m = 10 as a function of n for n = 0 − 100.
In both figures we can see how the upper bound for central
systems represents a significant improvement with respect to
the general upper bound. Nevertheless, notice that there is still
room for much sharper bounds.

Figure 3(a) shows the exact value of the hydrogenic Cramer-
Rao (+), Fisher-Shannon (•), and LMC (�) complexity
measures as a function of the principal quantum number
n when l = m = 10. Figures 3(b) and 3(c) show the exact
values of the hydrogenic Fisher-Shannon (•) and LMC (�)

complexity measures, respectively, together with their upper
bounds for central systems (�), and their general upper bounds
(×) as a function of the principal quantum number n when
l = m = 10. Figures 4(a)–4(c) represent the same quantities
for the harmonic oscillator states with l = m = 10.

The three complexity measures increase with n, since the
spreading and the oscillatory behavior of these densities grows
with n, both for the hydrogen atom and the harmonic oscillator.
Furthermore, in Figs. 3(b) and 4(b) we see that for the Fisher-
Shannon complexity, the central upper bound is much sharper
than the general bound. This is not the case for the LMC
complexity measure, whose bounds, as seen in Figs. 3(c) and
4(c), are relatively far from the exact value, mainly because
the upper bound of one of its ingredients (the disequilibrium)
has not yet been improved for central potentials.

Second, we study the dependence on l with (n,m) fixed.
Figures 5 and 6 represent the same quantities as in Figs. 3
and 4 for the hydrogen atom and the harmonic oscillator,
respectively. In Fig. 5 the quantities are given for the hydrogen
atom states with n = 20 and m = 0 as a function of l.
Figure 6 shows these quantities for the harmonic oscillator
states with n = m = 0 as a function of l. In the hydrogen
atom case, as shown in Fig. 5(a), the Cramer-Rao and the
Fisher-Shannon complexities have a decreasing behavior as l

increases. This indicates that the complexity of the density is
lower for the states with higher values of l, from the point
of view of these measures. However, the LMC complexity
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FIG. 5. (a) Cramer-Rao (+), Fisher-Shannon (•), and LMC (�) complexity measures. (b) Fisher-Shannon complexity measure (•), central
upper bound (�), and general upper bound (×). (c) LMC complexity measure (�), upper bound for central systems (�), and general upper
bound (×). All the quantities are plotted for the states of the hydrogen atom with n = 20 and m = 0 from l = 0 to 19.
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FIG. 6. (a) Cramer-Rao (+), Fisher-Shannon (•), and LMC (�) complexity measures. (b) Fisher-Shannon complexity measure (•), central
upper bound (�), and general upper bound (×). (c) LMC complexity measure (�), upper bound for central systems (�), and general upper
bound (×). All the quantities are plotted for the states of the harmonic oscillator with n = 0 and m = 0 from l = 0 to 19.

shows an increasing behavior for low values of l, which
indicates a lower complexity for values of l near 0 for
this complexity measure. For the harmonic oscillator, all the
complexity measures have an increasing behaviour with l.
The reason is that the oscillatory behavior of the density, and
hence its complexity, increases with l, as well as with n, for
this system. Figures 5(b) and 5(c), and 4(b) and 4(c), show
the Fisher-Shannon and LMC complexity measures for the
hydrogen atom and harmonic oscillator, respectively, together
with the central and general upper bounds. We can clearly
see in these figures the improvement of the bound for central
potentials. However, this improvement is very small, especially
for the LMC complexity for the aforementioned reason.

V. CONCLUSIONS

In this paper we first highlight the uncertainty character
of the product of the Rényi entropy powers of position
and momentum spaces by showing its inequality-based

relationship with the Heisenberg-like uncertainty products.
Then the Cramer-Rao, Fisher-Shannon, and LMC complexity
measures are shown to be upper-bounded by the Heisenberg-
Kennard product. Later on, the resulting bounds are improved
for arbitrary spherically symmetric (i.e., central) potentials.
Finally, the accuracy of all these bounds is studied in
various states of the hydrogenic and oscillator-like systems. In
summary, we observe that the inclusion of spherical symmetry
considerably improves the general upper bounds found on the
Shannon and Rényi uncertainty product as well as on the three
complexity measures.
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