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Geometric momentum: The proper momentum for a free particle on a two-dimensional sphere
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In Dirac’s canonical quantization theory on systems with second-class constraints, the commutators between
the position, momentum, and Hamiltonian form a set of algebraic relations that are fundamental in construction
of both the quantum momentum and the Hamiltonian. For a free particle on a two-dimensional sphere or a
spherical top, results show that the well-known canonical momentum pθ breaks one of the relations, while three
components of the momentum expressed in the three-dimensional Cartesian system of axes as pi (i = 1,2,3)
are satisfactory all around. This momentum is not only geometrically invariant but also self-adjoint, and we
call it geometric momentum. The nontrivial commutators between pi generate three components of the orbital
angular momentum; thus the geometric momentum is fundamental to the angular one. We note that there are five
different forms of the geometric momentum proposed in the current literature, but only one of them turns out to
be meaningful.
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I. INTRODUCTION

Although the fundamental principles of quantum con-
strained dynamics were outlined by Dirac in the 1950s to the
1960s [1], no consensus regarding the formulation has so far
been reached when applied to particular systems of second-
class constraints [2–6]. A subject of intense debate for decades
has been what the proper definition of momentum in quantum
mechanics is for a free particle on a two-dimensional sphere.
To obtain an unambiguous conclusion, we carefully analyze
the geometric momentum (GM), which will be explicitly
defined shortly. From the viewpoint of the GM, there are
more than five different understandings, and each has its own
exclusive conclusions from which we can see how physics
proceeds with excitement, conflict, and controversy [4]. In
this paper, we do not extensively deal with sphere SN in any
(N + 1)-dimensional flat space unless N = 2, and this line of
reasoning is applicable for sphere SN when N � 2.

According to Dirac, the canonical quantization procedure
is an effective recipe of quantizing a classical theory while
attempting to preserve the formal structure of the canonical
Poisson brackets, or the Dirac brackets for a constrained
system, to the extent possible [1,7]. However, from the very
beginning, Dirac was well aware of the difficulty of the
procedure, and he commented on it in a footnote in Ref. [7],
stressing that it is fundamentally correct only in Cartesian
coordinates. Some think that the phrase Cartesian coordinates
used by Dirac actually implies the Cartesian space, i.e., the
flat space [8–30]. If so, what if the quantization procedure is
developed in flat space, where the two-dimensional curved
surface is embedded? Basically, investigations have been
performed from two perspectives, and ours in the present work
belongs to the second. The first is solely from the intrinsic point
of view, dealing with quantities such as the distance element
square ds2 = gμυdxμdxυ within the surface as measured
along curves on the surface parametrized by (xμ,xυ), the
Laplace-Beltrami operator ∇2 = 1/

√
g∂μgμυ√

g∂υ , and the
Gaussian curvature K . This approach allows mapping from
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the surface to a flat space, e.g., gnomonic projection [31],
multivalued mapping [32,33], etc. [34]. The second is from
both intrinsic and extrinsic points of view, where the presence
of the mean curvature H , defined via the surface’s embedding
in a flat space, is a salient feature. In differential geometry, a
two-dimensional surface cannot be completely specified unless
two curvatures are known. How the constrained motion on the
surface is advanced from the second prospective in recent
decades will be discussed next.

A. Quantization in flat space and geometric potential and
geometric momentum

When a particle moves on a two-dimensional curved
surface, we examine it in three-dimensional flat space rather
than on the surface itself. Moreover, because no geometric
surface of zero thickness exists in the realistic world, it is
better to conceive of a surface as a limiting case of a curved
shell of equal thickness z0, where the limit z0 → 0 is then
taken. Roughly speaking, there is a noninterchangeability
of computational order: first taking the limit z0 → 0 and
then defining the derivatives on the surface and first taking
derivatives in bulk and then letting z0 → 0. This observation
sheds new light on the quantization of the kinetic energy T =
p2/(2μ) and the momentum operator p, which are reviewed
with comments in the following.

Progress on the quantization of the kinetic energy was first
initiated by Jensen and Koppe in 1971 [35] and was finally
completed by da Costa in 1981 [36]. Jensen, Koppe, and da
Costa developed the so-called confining potential approach
in which the two-dimensional curved surface is realized by
limiting the three-dimensional system originally defined in flat
space, and they found that the correct result of the quantum
kinetic energy is

T = − h̄2

2μ
∇2 − h̄2

2μ
(H 2 − K). (1)

This is a striking finding, and it is not only a gem in
quantum mechanics but also a treasure in surface mathematics.
Equation (1) implies that the original Laplace-Beltrami
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operator ∇2 on the surface may not be enough unless a term
(H 2 − K) is included,

∇2 → ∇2 + (H 2 − K). (2)

When an electromagnetic wave transmits through thin-layer
media as the thickness is negligible, the curvature-dependent
part (H 2 − K) of the Laplace-Beltrami operator can produce
observable effects [37]. In quantum mechanics, the constraint-
induced curvature-dependent potential −h̄2/(2μ)(H 2 − K)
was simply called the geometric potential [37], and it is
attractive for (H 2 − K) � 0. Because H 2 − K = 0 for the S2

sphere, the Hamiltonian for a point particle freely moving
on the surface still assumes the usual form as H = T =
−h̄2∇2/(2μ), where H should not be confused with the mean
curvature. The confining potential procedure of quantization
has been widely employed and investigated ever since [38–50].
From the experimental point of view, as many noted [48],
the realization of an optical analog of the curvature-induced
geometric potential can be taken as empirical evidence for the
validity of the confining potential procedure [37].

As to the quantization of the momentum operator
p = (px,py,pz) expressed in the three-dimensional Cartesian
coordinate system (x,y,z), a remarkable finding was made in
2007 [22], and the general form is given by

p = −ih̄(rμ∂μ + Hn), (3)

where r = [x(xμ,xυ),y(xμ,xυ),z(xμ,xυ)] is the position vec-
tor on the surface, rμ = gμνrν = gμν∂r/xν , and at this point
r, n = (nx,ny,nz) denotes the normal and Hn symbolizes the
mean curvature vector field, a geometric invariant [22]. In
contrast to the geometric potential we can call it GM because
it in fact depends on the mean curvature. If simply denoting
the gradient operator rμ∂μ on the surface as ∇, Eq. (3) implies
the following correspondence:

∇ → ∇ + Hn. (4)

Quantities (1) and (3) assume their usual from, provided
the surface is flat, H = K = 0. This is good, but an immediate
question arises: Can these new quantities be formulated into
Dirac’s theory for constrained motions? In the general case,
this question is open, and we will give an answer in the near
future. This paper focuses on an elaboration of the motion on
a spherical surface where the answer is affirmative, as we see
in Secs. III and VI.

B. Comments on the routine paradigm of quantization
on the curved surface

The routine paradigm of quantization toward the motion on
the surface is performed within intrinsic geometry irrespective
of the existence of the higher-dimensional flat space in which
the surface could be embedded. When applied to the motion of
a point particle on a two-dimensional surface, it is usually pos-
tulated [51–53] that the Cartesian coordinate Laplacian should
be replaced by the Laplace-Beltrami operator acting on this
manifold and the kinetic energy is T = −h̄2∇2/(2μ) without
the geometric potential. This is highly controversial and has
been debated for decades. If the surface is a two-dimensional
sphere S2 of radius r , T = −h̄2∇2/(2μ) = L2/(2μr2), where

L is the angular momentum of the particle. DeWitt studied
the path-integral quantization of this problem and found an
extra energy term proportional to the Gaussian curvature 1/r2

in the Hamiltonian as αh̄2/r2, with α = 1/24 [53]. Others
gave α = 1/12 [54] and α = 1/8 [55]. These zero-point
energies conflict with the cosmic observation [4,56] and must
be discarded. Therefore, to deal with the quantization of the
kinetic energy, on one hand, there is therefore no transparent
and self-consistent way within this routine manner; on the
other, as we understand today, the absence of the geometric
potential is contradictory to the experiments. However, as
to describing a free motion with curvilinear coordinates in
the flat space, Podolsky’s recipe gives for the kinetic energy
T = −h̄2∇2/(2μ) [51]. This is, nevertheless, perfect. What is
more, the quantum mechanics in flat space can be rewritten
into curved space with a Maupertuis metric [34], where the
Laplace-Beltrami operator acquires an extra curvature term
corresponding to a conformally invariant Laplace operator.
In momentum space the quantum mechanics of the hydrogen
atom is driven by a Laplace operator with yet another extra
curvature term [34]. Conversely, with the help of a multivalued
mapping it is possible to map the known flat-space physics
into the curved-space physics with only the Laplace-Beltrami
operator [32,33].

C. Previous utilization of Dirac’s canonical quantization theory

Let us turn to Dirac’s canonical quantization theory of a
system with second-class constraints. Previous works find that
various momenta, including the usual canonical one and GM
as well, are definable [14,19]. For a two-dimensional sphere
[13–30] the well-known canonical momenta pθ = −ih̄(∂θ +
cot θ/2) and pϕ = −ih̄∂ϕ and the momenta (6)–(8) all seem
to be permissible. In fact, neither of these momenta is all
equally physical, nor are they all completely compatible with
Dirac’s theory. It is evident that the GM [Eq. (3)] includes
no free parameters, so that the momenta (6)–(8) can never
be all true. One purpose of this study is to point out that
with the complete utilization of Dirac’s theory, only one case
among (6)–(8) survives, which is even fundamental to the
orbital angular momentum; therefore the canonical momentum
pϕ = −ih̄∂ϕ turns out to be meaningful, but another canonical
momentum pθ = −ih̄(∂θ + cot θ/2) on the sphere proves to be
problematic in physics. However, as a mathematical symbol
without any physical meaning preassigned, the quantity pθ

may still be useful.
This paper is organized as follows. In Sec. II, we present a

list of five different forms of the GM [Eq. (6)–(8)] proposed by
different authors. In Sec. III, we point out that only one form of
them is completely compatible with the framework of Dirac’s
theory and thus offers a proper description of the momentum
for the problem under consideration. The commutator between
pθ and the Hamiltonian H as [pθ ,H ] breaks Dirac’s canonical
quantization procedure, meaning that pθ is improper. In
Sec. IV, it is demonstrated that the GM is fundamental to
the orbital angular momentum, and three components of the
GM form the generators of a dynamic group on the surface.
The self-adjointness of the GM is also discussed in Sec. IV.
Conclusions and discussions are presented in Sec. V.
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II. GEOMETRIC MOMENTA FOR A PARTICLE
ON THE SPHERE: A REVIEW

For S2 parametrized by

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, (5)

there are five forms of the GM in the current literature, and all
can be written into following form with two real parameters
(α,β) :

p(α,β)x = −ih̄
∂

∂x

= − ih̄

r

(
cos θ cos ϕ

∂

∂θ
− sin ϕ

sin θ

∂

∂ϕ
− α sin θ cos ϕ

)

+ h̄

r
β sin θ cos ϕ, (6)

p(α,β)y = −ih̄
∂

∂y

= − ih̄

r

(
cos θ sin ϕ

∂

∂θ
+ cos ϕ

sin θ

∂

∂ϕ
− α sin θ sin ϕ

)

+ h̄

r
β sin θ sin ϕ, (7)

p(α,β)z = −ih̄
∂

∂z

= − ih̄

r

(
− sin θ

∂

∂θ
− α cos θ

)
+ h̄

r
β cos θ. (8)

It seems that the corresponding Hamiltonian is then

H = 1

2μ

(
p2

(α,β)x + p2
(α,β)y + p2

(α,β)z

) = L2

2μr2
+ h̄2

2μr2
γ,

(9)

where

γ = (α − iβ)(2 − α + iβ). (10)

It is worth stressing that because of the presence of the
notorious operator order problem [32,56], there is no simple
connection between the classical Hamiltonian H = p2/(2μ)
and the quantum Hamiltonian H = L2/(2μr2). It is therefore
understandable that how to identify the quantum Hamiltonian
for particles moving on two-dimensional sphere has been an
intriguing problem. To tackle it, more than four proposals have
been put forward, including two types of group quantization
[31,32,57], the confining potential procedure [35,36], and
converting the second-class constraints into the first-class ones
or their equivalent [10,56,58–60]. All lead to the correct one,

H = L2

2μr2
. (11)

As we will discuss in Sec. III, Dirac’s theory itself implies
a self-consistent and insightful way to determine the correct
form, but it is not simply putting parameters β = 0 and α = 0
or 2 into (9) to make it go over to (11). As we will see shortly,
momenta with these two sets of parameters are inconsistent
with Dirac’s theory.

The following is a list of various forms of the GM in the
current literature. Because (6)–(8) give the most general GM of

p(α,β)i satisfying the fundamental commutators (20)–(22), the
differences between them occur in the matter of choice of the
parameters of (α,β). The GM was first mentioned in 1968 by
Gyorgyi and Kovesi-Domokos [13], who, while investigating
the relation between Schwinger’s angular momentum calculus
and the Dirac bracket, mentioned that, on the two-dimensional
sphere, the momentum operator p acting on the spherical
harmonics must take the form p = −ih̄(∇ − n/r) rather than
p = −ih̄∇ itself. This first appearance of the momentum
operator happened to be complete, and it is evidently a
special case of the general form (3), but unfortunately it went
unnoticed in all later and relevant studies of the momentum
[14–30].

(i) The first systematic study of the GM was given by Falck
and Hirshfeld in 1983 [14], who found α = 2 and β = 0 [14].

(ii) Later in 1985, another form of GM was put forward by
Schnitzer, who set α = 0 or 1 and β = 0 [15].

(iii) In 1992, Ikegami, Nagaoka, Takagi, and Tanzawa
proposed α = 1 and β �= 0 [16].

(iv) In 2000, Hong, Kim, and Park suggested that two real
parameters (α, β) should be α = ±1 and β = 0 [18].

(v) The fifth choice is made by many groups based on
different theoretical grounds, and it should be α = 1 and β = 0
[13,17,19–23,30].

How do we fix the constants α and β? The primary
reason must be a physical one: The two sets of funda-
mental relation (23) and (24) must be imposed upon the
form of GM. As a consequence, we have only one choice:
α = 1 and β = 0, which coincides with (3), and [pθ ,H ]
[Eq. (36)] turns out to be inconsistent with Dirac’s theory.
The secondary consideration may come from mathematics:
None of these previous approaches [(i)–(v) above] have taken
the self-adjointness of the GM into serious consideration,
and if considered, only the case with α = 1 and β = 0 is
satisfactory again. By a self-adjoint operator, we mean that all
its eigenvalues are real and that eigenfunctions corresponding
to distinct eigenvalues are orthogonal. In this sense, the
well-known canonical momentum pθ is not a self-adjoint
operator, as pointed out many years ago [61].

III. COMPLETE DETERMINATION OF GEOMETRIC
MOMENTA AND THE HAMILTONIAN WITHIN

DIRAC’S THEORY

For a particle on the sphere with radius r in R3, the primary
constraint is ϕ1,

ϕ1 = �x2 − r2 ≈ 0; (12)

hereafter the symbol ≈ implies a weak equality that is valid
on the constraint surface [62]. The secondary constraint ϕ2 is
given by

ϕ2 = �x · �p ≈ 0. (13)

There are, in fact, third and forth constraints within the
consistency from the calculation of the Poisson bracket
{ϕj ,Hp}D ∼ ϕj+1 (j = 1,2,3), where the primary Hamil-
tonian Hp = p2/(2μ) + λ(�x2 − r2) + λ̇pλ, where λ is the
Lagrangian multiplier and pλ is its conjugate variable [14]. The
last two constraints ϕ3 = p2 − 2λmr2 ≈ 0 and ϕ4 = λ̇ ≈ 0
are no longer useful in quantum mechanics [62].
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In classical mechanics, with the introduction of the Dirac
bracket instead of the Poisson one for the canonical variables
A and B,

{A,B}D ≡ {A,B} − {A,ϕα}C−1
αβ {ϕβ,B}, (14)

where ϕα (α = 1,2) are, respectively, the primary and second-
class constraints (12) and (13) and the matrix elements Cαβ is
defined by

Cαβ = {ϕα,ϕβ}, (15)

the primary Hamiltonian Hp must then be replaced by the
usual one: Hp → H,

H = p2

2μ
. (16)

The positions xi and momenta pi satisfy the following Dirac
brackets:

{xi,xj }D = 0, {xi,pj }D = δij − xixj

r2
,

(17)

{pi,pj }D = − 1

r2
(xipj − xjpi),

where other Dirac brackets between xi and pj vanish. The
equation of motion is, in general,

ḟ = {f,H }D, (18)

from which we have for xi and pi [62]

ẋ = {xi,H }D = pi

μ
, ṗi = {pi,H }D = −xip

2

μr2
. (19)

We are ready to construct commutator [A,B] of two vari-
ables A and B in quantum mechanics, which is attainable by
direct correspondence of the Dirac brackets as [A,B]/(ih̄) →
{A,B}D . There are evidently two categories of the fundamental
commutator, corresponding to (17) and (19), respectively. The
first category comprises commutator between operators xi and
pi , given by the quantization of Dirac brackets (17):

[xi,xj ] = 0, (20)

[xi,pj ] = ih̄

(
δij − xixj

r2

)
, (21)

[pi,pj ] = − ih̄

r2
(xipj − xjpi). (22)

There is no operator ordering problem in the right-hand side
of Eq. (22) because the commutator must satisfy the Jacobian
identity. These commutators form a closed algebra, even
nonlinear. Given the two-dimensional spherical surface under
consideration, there is a family of realizations for this algebra,
and one can verify that operators p(α,β)i [Eqs. (6)–(8)] solve
equations (20)–(22). The second category of the fundamental
commutators is given by quantization of (19),

[xi,H ] = ih̄
pi

μ
, (23)

[pi,H ] = −ih̄
xiH + Hxi

r2
. (24)

Here, in Dirac’s quantization from the Dirac bracket
{pi,H }D = −2xiH/r2 [Eq. (19)] to the quantum commutator
(24), we take the symmetric average of the noncommuting
factors xi and H . A complete utilization of Dirac’s theory
means that operators (xi,pi,H ) are necessarily compatible
with these two categories of fundamental commutators (20)–
(24). A reasonable question arises: Can these commutators
be sufficient to result in the unique forms of both the GM
and the Hamiltonian? In the general case, the answer is no
because the right-hand side of Eq. (24) is by no means unique
in quantum mechanics. However, the answer to the problem
on the two-dimensional surface is yes. To see this, we start
from a quite general form of the self-adjoint Hamiltonian Hq

as

Hq = − h̄2

2μ
∇2 + f (θ,ϕ)

∂

∂θ
+ g(θ,ϕ)

∂

∂ϕ
+ h(θ,ϕ), (25)

where f (θ,ϕ), g(θ,ϕ), and h(θ,ϕ) are three functions whose
explicit forms are to be determined. Substitution of this Hq

into Eq. (23) results in

[x,Hq] − ih̄
p(α,β)x

μ

= (1 − α + iβ)
h̄

μ

x

r
+ r[− cos θ cos ϕf (θ,ϕ)

+ sin θ sin ϕg(θ,ϕ)], (26)

[y,Hq] − ih̄
p(α,β)y

μ

= (1 − α + iβ)
h̄

μ

y

r
+ r[cos θ sin ϕf (θ,ϕ)

+ sin θ cos ϕg(θ,ϕ)], (27)

[z,Hq] − ih̄
p(α,β)z

μ
= (1 − α + iβ)

h̄

μ

z

r
+ r sin θf (θ,ϕ).

(28)

The terms on the right-hand sides of these equations must be
all zero; otherwise, relation (23) as [xi,H ] = ih̄p(α,β)i/μ will
be violated. The only solution is simply

α = 1, β = 0, f (θ,ϕ) = g(θ,ϕ) = 0. (29)

The only undetermined function h(θ,ϕ) in Hq [Eq. (25)] can
be fixed by use of any one of three commutators (24), and the
solution is

h(θ,ϕ) = 0. (30)

Finally, we not only reproduce the Hamiltonian (11) but also
get a unique choice for the GM that can be simply denoted by
(px , py , pz),

px = −ih̄

(
cos θ cos ϕ

∂

∂θ
− sin ϕ

sin θ

∂

∂ϕ
− sin θ cos ϕ

)
, (31)

py = −ih̄

(
cos θ sin ϕ

∂

∂θ
+ cos ϕ

sin θ

∂

∂ϕ
− sin θ sin ϕ

)
, (32)

pz = ih̄

(
sin θ

∂

∂θ
+ cos θ

)
. (33)
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This offers a proper momentum description for a free particle
on a two-dimensional sphere.

Can a pair of the well-known canonical momenta (pθ ,pϕ)
be considered proper? The answer is negative. Application of
Dirac’s theory to two angular variables (θ,ϕ) and generalized
momenta (pθ ,pϕ) gives rise to nonvanishing relevant Dirac
brackets:

{θ,H }D = pθ

μr2
, {ϕ,H }D = pϕ

μ(r sin θ )2
, (34)

{pθ ,H }D = cot θ

μ(r sin θ )2
p2

ϕ, {pϕ,H }D = 0. (35)

The quantum commutators are simultaneously determined
by {A,B}D→ [A,B]/(ih̄). From two commutators pθ =
μr2[θ,H ]/(ih̄) and pϕ = μ(r sin θ )2[ϕ,H ]/(ih̄), we imme-
diately arrive at the operators pθ = −ih̄(∂θ + cot θ/2) and
pϕ = −ih̄∂ϕ . Most importantly, we have to know which
equations of motion they obey. The result shows [pϕ,H ] = 0
fulfills all principles, but another commutator [pθ ,H ], given
by

[pθ ,H ] = ih̄
cot θ

μ(r sin θ )2

(
p2

ϕ − h̄2

4

)
, (36)

violates the correspondence: [pθ ,H ] (→ ih̄{pθ ,H }D) =
ih̄ cot θp2

ϕ/μ (r sin θ )2. So we see that the canonical momen-
tum pθ breaks Dirac’s canonical quantization procedure, and
we can safely conclude that it is not a proper momentum for
the free particle on the two-dimensional sphere.

IV. GEOMETRIC MOMENTA AS GENERATORS OF THE
LORENTZ GROUP SO(3,1)

This section will show that the orbital angular momentum
Lk originally defined by εijkLk ≡ xipj − xjpi is the conse-
quence of the commutators between momentum components
[pi,pj ] and will give an interpretation of p2 in relation (9)
based on the dynamic group. For further demonstration of the
fact that the GM is proper, we will discuss the self-adjointness
of the GM (31)–(33) at end of the section.

With the help of the transformations xi → xi/r and pi →
pi/r , which render the position dimensionless and cause the
momentum to be a dimension of Planck’s constant h̄, the
fundamental (nontrivial) commutators (20)–(22) become

[xi,xj ] = 0, (37)

[xi,pj ] = ih̄(δij − xixj ), (38)

[pi,pj ] = −ih̄εijkLk. (39)

We can easily verify the following secondary commutation
relations:

[Li,pj ] = ih̄εijkpk, (40)

[Li,xj ] = ih̄εijkxk, (41)

[Li,Lj ] = ih̄εijkLk. (42)

Other commutation relations between Li,xi , and pi are zero.
Clearly, these commutators (37)–(42) between ten opera-

tors {1,xi,pi,Li} form a closed algebra. However, it contains

an equation (38) whose right-hand side is nonlinear in
terms of generator xi . So the algebra is associated with a
nonlinear SO(3,2) group. We leave this nonlinear group for
further studies. Moreover, we can easily identify two familiar
subgroups: one is Lorentz group SO(3,1) whose six generators
are {pi,Li}, satisfying commutators (39), (40), and (42), and
another is the usual rotational group SO(3), whose three
generators are three Cartesian components of the angular
momentum Li , defined by (42) alone. Even the nonlinear
SO(3,2) group is a little bit strange, the Lorentz group SO(3,1)
is elementary for theoretical physicists, and the GM pi acts as
the “boost” that is a vital part of group SO(3,1) in our research.
Note that the two infinitesimal boosts δψ and δφ along the x

and y directions involve a rotation δψδφ about the z axis,

exp(iδψpx) exp(iδφpy) exp(−iδψpx) exp(−iδφpy)

= 1 − [px,py]δψδφ + · · ·
= 1 + ih̄Lzδψδφ + · · · . (43)

This implies that three GM operators pi are generators of the
infinitesimal parallel transport of a vector on the surface, which
will be studied in detail elsewhere.

Two Casimir operators of Lorentz group SO(3,1) are

C1 ≡ LiLi − pipi = −h̄2/4, (44)

C2 ≡ piLi = 0. (45)

Clearly, quantum Hamiltonian (11) (proportional to LiLi) is
not the direct quantization of the classical Hamiltonian (16)
(proportional to pipi); they differ in a constant that is one of
the Casimir operators of group SO(3,1).

As a consequence of relation (40), the operators px and
py can be obtained from pz by rotation of the axis’s rotation.
Explicitly, rotation π/2 around the y axis renders pz to be px ,
and −π/2 around the x axis renders pz to be py ,

px = exp(−iπLy/2)pz exp(iπLy/2),
(46)

py = exp(iπLx/2)pz exp(−iπLx/2).

Here we follow the convention that a rotation operation affects
a physical system itself [63]. Hence the eigenvalue problem
for operators px and py is simultaneously determined once the
complete solution to p̂zψpz

(θ ) = pzψpz
(θ ) is known, where

over operator pz on the left-hand side of this equation the
carat is used to distinguish it from the eigenvalue pz on the
right-hand side. The eigenfunctions form a complete set once
the eigenvalues pz are real and continuous,

ψpz
(θ ) = 1

2π

1

sin θ
tan−ipz

(
θ

2

)
. (47)

They are δ function normalized,∮
ψ∗

p′
z
(θ,φ)ψpz

(θ,ϕ) sin θdθdϕ

= 1

2π

∫ π

0
exp

[
i(p′

z − pz)

(
ln tan

θ

2

)]
1

sin θ
dθ

= 1

2π

∫ π

0
exp

[
i(p′

z − pz) ln tan
θ

2

]
d ln tan

θ

2
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= 1

2π

∫ ∞

−∞
exp[i(p′

z − pz)z]dz

= δ(p′
z − pz), (48)

where the variable transformation ln tan θ/2 → z is used.
So we see explicitly that the eigenfunctions ψpz

(θ ) form a
complete set.

V. CONCLUSIONS AND DISCUSSIONS

In Dirac’s canonical quantization theory on systems with
second-class constraints, the commutators between the po-
sition, momentum, and Hamiltonian form a set of algebra
relations that are fundamental in the construction of both the
quantum momentum and the Hamiltonian. For the particle
moving on a spherical surface or the rotation of a spherical
top, it gives rise to profound consequences. Some of them
are the following. (i) The well-known canonical momentum
operator pθ represents no physical quantities because it breaks
Dirac’s canonical quantization procedure, and the proper
momentum is obtainable from an extrinsic description in flat
space rather than an intrinsic one within the surface itself.
(ii) Three nontrivial commutators between components of
the GM generate three components of the orbital angu-
lar momentum. So another well-known canonical momen-
tum operator pϕ is meaningful and actually represents the

z component of the angular momentum Lz. (iii) The compo-
nents of angular momentum and GM are six generators of the
Lorentz SO(3.1) group, where the GM acts as the boost.

The five different forms of the GM in the current literature
are revisited, and only one of them is shown to be self-
adjoint and completely compatible with Dirac’s theory. Dirac’s
canonical quantization theory for the second-class constraints
is more insightful than it used to seem to be, and one must
use it with great care. As far we can see today, among all
previous publications, including some by the current authors
and possibly this one, “Some are correct; some are less
correct. Some have original features; some are less rich in
this praiseworthy property” [4]. In any case, we hope this
contribution to the literature will be a valuable one.
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for ṗi = [pi,Hp] = −2λxi = −xip

2/(μr2). It is identical to
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