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Light emission of a scarlike mode with assistance of quasiperiodicity
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In an elliptic InxGa1−xAsP microcavity laser, various scarlike modes are experimentally observed. Below the
lasing threshold, a bouncing-ball, a triangle, a double, and a triple bow-tie mode spontaneously emit. Above the
threshold, a bow-tie scarlike mode lases alone. Our numerical analysis reveals that the bow-tie scarlike mode is
not caused by regular islands in phase space due to the Goos-Hänchen shift, but by unstable periodic orbits and
that the light emission is assisted by a quasiperiodic orbit.
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In a closed chaotic system, some quantum energy eigen-
functions are localized on unstable periodic orbits of the
underlying classical system [1]. These eigenfunctions, named
scars, are widely observed in various systems such as quantum
dots, hydrogen atoms, microwave, and optical microcavities
[2,3]. The latter kind of systems is of particular interest, as
these systems are open due to the emission of light. The
quasibound states (modes, resonances) in chaotic dielectric
microcavities have been analyzed based on the scar theory and
resonances localized along periodic orbits (ray trajectories)
have been found [4,5]. In nonchaotic systems like circular,
elliptic, and rectangular dielectric microcavities, it has been
considered that there is no scarred resonance.

Recently, two kinds of abnormal scarred resonances were
found in dielectric microcavities: a quasiscarred resonance
(QSR) [6,7] and a scarlike resonance (SLR) [8]. In a spiral-
shaped dielectric cavity, the mode pattern often shows a simple
geometrical structure of a triangle and a star shape depending
on the refractive index. Because such a state cannot be found in
the corresponding closed cavity (so-called billiard), the QSR
is the resonance appearing in an open system. The QSR was
also experimentally observed [9]. In the case of the SLR,
although a rectangular and an elliptic cavity are not chaotic, the
resonances are localized along a periodic orbit due to avoided
resonance crossings appearing in open systems. The SLR is
analyzed by using the Goos-Hänchen shift [10], which perturbs
the integrable system to create chaotic regions and islands in
the reduced phase space (S, sin χ ), that is the Poincaré surface
of section, where S is the arc length and χ is the angle of
incidence. The SLRs were explained by localization of modes
on the islands and on unstable periodic orbits. Yet the SLR is
not observed in an experiment.

In this Rapid Communication, we report an experimental
observation of various SLRs in an elliptic InxGa1−xAsP
microcavity laser. Below the lasing threshold, spontaneous
emission from SLRs of a bouncing ball, a triangle, a double
bow tie, and a triple bow tie are observed. Above the threshold,
a bow-tie SLR is the lasing mode. In a numerical analysis,
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we reveal that the bow-tie SLR is not caused by islands due
to Goos-Hänchen shift but due to an unstable periodic orbit
and that the laser emission of the bow-tie SLR is assisted by
quasiperiodicity.

The elliptic microcavity laser is fabricated with
InxGa1−xAsP, whose effective refractive index is ne = 3.3.
The radius of the major and the minor axis is a = 95 μm and
b = 30 μm, respectively, with the aspect ratio b/a = 0.317.
The size of the cavity is about nekL/2π ∼ 873 for the
wavelength of λ = 1575 nm, where k is the wave number
and L is the boundary length. The fabrication process and
parameters are the same as in Ref. [11]. The light emission is
launched into a fiber, whose facet is spherical, and the emission
intensity is measured with a power detector (Newport 818-IR)
connected to a multifunction optical meter (Newport 1835C)
and the spectrum with an optical spectrum analyzer (Agilent
86142B).

Figure 1 shows the emission intensity depending on the
injection current. In the measurement, the fiber, which is
50 μm apart from the boundary, is faced to the major axis.
In the figure, the emission intensity increases slowly below
60 mA and it grows up rapidly above 60 mA. Hence the lasing
threshold is around 60 mA.

For the two cases of the injection current, below and
above the threshold, the emission spectra are obtained around
the boundary. In the measurement, the fiber facet is 30 μm
apart from the boundary. At 55 mA, we obtain spontaneously
emitting four mode groups according to the measurement
angle. At the minor axis, an equidistantly spaced mode group
emits with mode spacing of about 5.37 nm; see Fig. 2(a). At
60◦ from the major axis, a different mode group emits as shown
in Fig. 2(b), whose mode spacing is about 1.33 nm. At 30◦,
the mode spacing is 1.56 nm; see Fig. 2(c). Around the major
axis, the mode spacing is about 1.73 nm as shown in Fig. 2(d).
When the injection current increases up to 59.2 mA, another
mode group begins to emit around the major axis. Figure 2(e)
displays the lasing mode group at 62 mA. From the five peaks
in the range from 1570 to 1580 nm, the average mode spacing
of about 1.695 nm is obtained. The peaks are narrow enough
as the evidence of lasing. On a further increase of the current,
the intensity of the mode group in Fig. 2(e) increases alone.
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FIG. 1. Total emission intensity around the major axis depending
on the injection current.

From the equation l = λ2/�λng , the path length l can
be obtained, where λ is the average wavelength of the
two neighboring modes, �λ is the mode spacing of two
neighboring modes, and ng is the group refractive index. Also,
when the path length is known, ng can be determined. The
mode spacing of 5.37 nm in Fig. 2(a) is the bouncing-ball-type
mode traveling along the minor axis because there is no such
large mode spacing except the bouncing ball. Although the
mode is not lasing, ng = 3.68 is obtained from 17 peaks.
This value of ng is confirmed in another elliptic cavity, whose
minor axis radius is 50 μm. The obtained ng is also similar to
what was observed elsewhere in InxGa1−xAsP semiconductor
lasers [12].

When we apply ng = 3.68, the path length of the mode
group in Figs. 2(b), 2(c), and 2(d) is about 498, 433, and
389 μm. The lengths correspond to the path lengths of the
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FIG. 2. (Color online) Optical spectra; (a) is the emission spec-
trum at minor axis (bouncing ball), (b) is at 60◦ from the major axis
(triple bow tie), (c) is at 30◦ (double bow tie), and (d) is around
the major axis (triangle) at 55 mA injection current. (e) The laser
emission around the major axis (bow tie) at 62 mA. The insets are
the diagrams of the relevant trajectories.

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

(a)

(b)

FIG. 3. (Color online) Far field pattern and measured angle;
(a) the black line is the experimental result at 62 mA and the red
line is the numerical result of the bow-tie SLR shown in (b). (b) The
resonance of the bow-tie SLR for nkL/2π ≈ 163. The resonance
point is Re(kL/2π ) = 49.40 and Im(kL/2π ) = −0.02.

triple bow-tie (497.2 μm), the double bow-tie (434.2 μm),
and the triangle SLR (387.3 μm) as shown by the insets in
Fig. 2. The path length of the lasing mode group shown in
Fig. 2(e) is about 398 μm within 0.1% accuracy, which nicely
corresponds to the path length of the bow-tie SLR of 398.1 μm.
We focus our attention on the emission of the bow-tie SLR. At
62 mA injection current, the angular dependence of the far-
field pattern is measured as shown by the black line in Fig. 3(a).
The fiber facet is 50 μm apart from the boundary, which is
about half of the major axis radius, that is a/2. The figure
shows two strong emission directions around ±25◦. To confirm
the emission direction, we obtain the bow-tie SLR by the
boundary element method [13] for nkL/2π ∼ 163 as shown
in Fig. 3(b), whose real and imaginary normalized frequencies
are Re(kL/2π ) ∼ 49.40 and Im(kL/2π ) ∼ −0.002. Although
the size is 5.3 times smaller than the experimental one, we
can qualitatively confirm the emission direction. The obtained
resonance is well fitted to the bow-tie ray trajectory. From
the bow-tie SLR, we extract the emission direction by taking
the emission intensity along the boundary apart from a half
of the major axis radius (a/2) according to the experimental
measurement. The emission direction of the red line shown in
Fig. 3(a) well coincides with the experimental result. Hence,
from the emission direction and the mode spacing, we can
confirm the lasing of the bow-tie SLR in a highly deformed
elliptic microcavity laser.

In the analysis of ray dynamics including the Goos-
Hänchen shift, we cannot find any regular islands in phase
space related to the bow-tie trajectory but, instead, we find
unstable periodic orbits. This seems to be in contradiction to
the numerically computed mode pattern shown in Fig. 4(d).
To resolve this apparent contradiction, we compute a survival
probability distribution (SPD) [6] for ne = 3.3, neglecting
the small Goos-Hänchen shift. Since our laser generates
transverse electric (TE) polarized modes, the SPD is obtained
by using 108 initial rays and TE polarization for the reflection
coefficients. The phase space (S/Smax,P = sin χ ) is divided
into 1000 × 1000 cells and the survived intensity of the rays
from 200 to 300 time steps is accumulated, where one time
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FIG. 4. (Color online) (a) SPD, where A and B denote the
faint lines of a bow-tie and a double bow-tie resonance mode,
respectively. S is the arc length from right major axis and χ is the
incident angle. (b) The transition from the bow-tie trajectory to a V
type in an elliptical cavity, where black is in between 0 and 100 time
steps, red is in between 1600 and 1700 time steps, and blue is in
between 2900 and 3000 time steps. (c) The decay time of the rays
for five different initial values near the bow-tie trajectory. (d) The
emerging Husimi function on the SPD.

step is the normalized time to pass the ray on the major
axis. Figure 4(a) shows the SPD, where 10 faint lines exist.
Since the ellipse is an integrable system, there is no chaotic
sea but instead only quasiperiodic orbits. The faint lines
originated from these quasiperiodic orbits. The lines labeled
by A and B correspond to the bow-tie and the double bow-tie
SLR, respectively. The other lines, which correspond to the
experimentally observed SLRs, cannot be found in the SPD
because they escapes from the cavity rapidly due to the small
value of the incident angle.

To show that the faint lines are related to the SLRs, the
trajectory variation and decay times of rays are determined.
Figure 4(b) shows the trajectory variation from a bow-tie to
a V type when the deviation of the initial values from the
unstable periodic orbits of the bow-tie trajectory is about �S =
5.53 × 10−5 and �P = 2.36 × 10−4. 1700 time steps later, the
bow-tie trajectory shown by the black line transits to the red
trajectory. 2900 time steps later, the red trajectory transits to
the V type trajectory as shown by the blue trajectory. We note
here that the V type trajectory transits to the � type through the
bow-tie trajectory. The variation of the trajectory is caused by
the quasiperiodic orbits in the elliptic cavity. In our case, since
the smallest incident angle of the bow-tie trajectory is larger
than the critical angle for total internal reflection, the rays
cannot escape from the cavity. During the variation, when the
incident angle becomes the critical angle, that is, the trajectory
touches the critical line in phase space, the rays escape from

the cavity. This is the emission of the bow-tie SLR. Because it
takes a long time for the incident angle of the bow-tie trajectory
to come close to the critical angle, the faint lines exists in phase
space.

Figure 4(c) shows the decay times of rays for five different
initial values around the bow-tie trajectory. The decay time
reaches to 1700 time steps for the initial value of Fig. 4(b).
The decay time is taken for the trajectory to transit from the
black to the red trajectory. The closer the initial point to the
unstable periodic orbit of the bow-tie trajectory is, the longer
the decay time is. Because the smallest incident angle of the
bow tie and double bow tie of 41.77◦ and 31.46◦ is larger than
the critical angle of 17.64◦, the ray cannot escape from the
cavity until the incident angle is less than the critical angle
leading to the faint lines in the SPD. However, because the
incident angle of the triple bow-tie and the triangle SLR of
17.54◦ and 9.26◦ is less than the critical angle, the faint lines
for them do not exist.

Figure 4(d) is the emerging Husimi function (the projection
of a mode onto the Poincaré surface of section [14]) of the
bow-tie SLR superimposed onto the SPD. The function is
well matched to the faint lines of the bow-tie trajectory. The
high intensity region is overlapped with the faint lines and
the function touches the critical line. This is another evidence
of the lasing of the bow-tie SLR with the assistance of the
quasiperiodicity.

The faint lines are the route for the bow-tie SLR to emit
light. This phenomenon is similar to that of lasing emission
due to chaos-assisted tunneling in chaotic cavities [15–18],
where light tunnels from a regular island around a stable
periodic orbit to the neighboring chaotic sea and escapes
from the cavity by following the unstable manifolds. In our
case, the elliptic cavity is an integrable system having only
quasiperiodic orbits. When a light beam has a Gaussian profile,
the light around the unstable periodic orbit of the bow tie
follows the nearby quasiperiodic orbits. Hence the bow-tie
SLR should emit when the trajectory becomes the red one
in Fig. 4(b). Similar behavior was observed in a hexagonal
cavity [19].

The experimentally obtained modes are the very SLRs
because an elliptic billiard cavity does not exhibit scarred
modes. In previous experimental studies of an elliptic cavity,
not these modes but whispering gallery modes were found
when the aspect ratio is larger, that is, the cavity is not much
deformed [20–22]. The difference between our results and
the others relies on the aspect ratio and the refractive index.
The modes in an elliptic billiard can be classified into two
types: bouncing ball and whispering gallery. The two types are
distinguished by the foci of the ellipse, whether a trajectory
goes between the two foci or not [23]. The bow-tie SLR
belongs to the bouncing-ball type. When the aspect ratio is
large enough for the incident angle to be less than the critical
angle, the bow-tie SLR cannot be a lasing mode in a dielectric
microcavity because the losses are too high. Then a whispering
gallery mode emits. When the aspect ratio is small, that is, the
incident angle of a bow-tie SLR is larger than the critical angle,
the bow-tie SLR can emit. According to our further numerical
studies, as the aspect ratio increases, the faint lines for the
double bow tie disappear first. For example, when the aspect
ratio is 0.5, we can find the faint lines of the bow tie only, but
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not those of the double bow tie. On a further increase of the
aspect ratio, the faint lines of the bow tie disappear as well. We
confirm the disappearance when the aspect ratio is 0.7. Thus
we can speculate that the lasing of the bow-tie SLR in elliptic
cavities is caused by the small aspect ratio, by which the faint
lines exist to assist the lasing through the quasiperiodic orbit.

In the analysis, by using the Poincaré surface of section
including Goos-Hänchen shift, we find many small islands
corresponding to the diamond, the rectangular SLR, etc.
However, to emphasize, the islands corresponding to the
bouncing-ball-type SLRs like the bow tie, double bow ties, etc.
cannot be found. Hence we can say that the islands supporting
bouncing-ball-type SLRs do not exist in an elliptic cavity, but
the SLRs are caused by the unstable periodic orbits.

In conclusion, various SLRs are experimentally observed
in an elliptic-shaped InxGa1−xAsP semiconductor microcavity

laser, whose aspect ratio is 0.317. As the evidence, the accurate
path length is obtained from the mode spacing by considering
the group refractive index. Especially, in the case of a bow-tie
SLR, the resonance is computed by the boundary element
method and the experimentally obtained emission direction
well coincides with that of the resonance. We also show that
the bow-tie SLR is not supported by islands, but by unstable
periodic orbits. The emission is assisted by the quasiperiodic
orbit of the bow tie, although the mode is confined in the cavity
by total internal reflection.
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