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We study the complex dynamics of a one-dimensional Bose gas subjected to a dissipative local defect which
induces one-body atom losses. In experiments these atom losses occur, for example, when a focused electron
or light beam or a single trapped ion is brought into contact with a quantum gas. We discuss how within such
setups one can measure or manipulate densities locally and specify the excitations that are induced by the defect.
In certain situations the defect can be used to generate entanglement in a controlled way despite its dissipative
nature. The careful examination of the interplay between hole excitations and the collapse of the wave function
due to nondetection of loss is crucial for the understanding of the dynamics we observe.
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Ultracold quantum gases offer the possibility to address
many open questions from various areas of physics due
to their excellent control and fast tunability. Achievements
of the past decade range from the observation of strongly
correlated one-dimensional bosonic gases, so-called Tonks-
Girardeau gases [1], to the realization of a Mott-insulating
state in optical lattices, both for bosonic [2] and fermionic
[3] atoms. Only very recently, unique experimental setups
opened the way to resolve single atoms in quantum gases.
Fluorescence techniques [4,5] or scanning with a highly
focused electron beam [6] can address single columns in
the quantum gas with a resolution of the optical lattice
spacing. Real three-dimensional resolution could be reached
using a trapped ion [7,8]. These local techniques can be
employed to detect or even to manipulate quantum gases.
Consequently, these tools enable one to take advantage of
the presence of the trap to access a large range of the
homogeneous phase diagram [9] in a single realization of an
experiment.

The main subject of this Rapid Communication is to explore
how a highly localized dissipative defect that generates atom
losses, such as anion or a focused electron or light beam, can be
used in a one-dimensional system to probe and to manipulate
properties of the quantum state. For instance, we show how
to measure the local density efficiently and explain how
shock waves emerge in superfluid states. At strong dissipative
strength, subsystems left and right from the defect separate
spatially, but entanglement between the subsystems can be
manipulated in a controlled way and is directly related to the
experimentally measurable atom loss. Our theoretical model
is a correlated one-dimensional (1D) bosonic lattice system
which is coupled to a Markovian environment by one-body
atom losses. Actually, the situation of a local defect immersed
in a quantum system is very general and not only of interest in
the context of cold atomic gases but also in condensed-matter
physics. It represents a nontrivial many-body problem, and
in order to capture the coaction of continuously created
losses and intrinsic dynamics of the correlated quantum
states correctly, the full treatment of the master equation
of the interacting system beyond the mean field [10,11] is
crucial. [12]
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In a broad parameter regime, a one-dimensional Bose gas
which is subjected to an optical lattice potential can be well
described by the Bose-Hubbard model

U
H =" —J(blbys1 + b} be)+ e =1, (D)
14

Here bl (by) are the bosonic creation (annihilation) operators
at site £, and ny is the density operator. We assume a system
with open boundaries; integer indices £ ranging from —(L —
1)/2 to (L — 1)/2 represent individual sites that are spaced
by distance a. The first term models the kinetic energy of the
atoms in the periodic potential and the second term the on-site
interaction due to s-wave scattering. Initially, in the absence of
a dissipative defect, the atomic cloud is prepared in its ground
state. For weak interaction this ground state is a superfluid with
large on-site density fluctuations. At integer filling the state is
Mott insulating for interactions above a critical strength [in
1D (U/J). =~ 3.4 at filling n = 1]. In contrast, at noninteger
filling, the weakly interacting superfluid is connected by a
crossover to the strongly interacting Tonks-Girardeau gas of
impenetrable bosons.

Attime t = 0 the dissipative defect (localized at site £ = 0),
e.g., a trapped ion or an electron or light beam, is brought
into contact with the bosonic cloud and starts generating
atom losses at the central lattice site only. Experiments have
reached or are close to reaching such a resolution [4,6,7].
From a theoretical point of view it is of secondary importance
if one or few sites are affected. We assume that atoms
are expelled quickly (compared to the time scales of the
quantum gas) to the free-space continuum and that the defect
itself does not become correlated to the quantum gas. For
this case a Markovian approximation can be used to derive
a master equation [13] for the density matrix p of the
bosoniccloud p = Lp + LPp, LCp := —i[H,p], with the
dissipator LPp := Fbopb$ — gnop — g,ono. The strength of
the coupling to the environment I" depends on the cross section
of the scattering processes between the atoms and the defect.
In the ion-atom hybrid system the loss mechanism can be seen
as an elastic scattering event of an atom with a hot ion. In
principle, its strength can be widely tuned by using a suitable
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magnetic Feshbach resonance [14] or using different kinds of
atoms and ions. Typical energies of an ion are of the order
of 1kpK, while the atomic trapping potential is of the order
of 1kguK [7]. Therefore, the atoms will be scattered to the
free continuum in a time much shorter than the many-body
time scales in the cloud (e.g., J ~ 1078kzK). When shining a
focused electron beam on the cold atomic sample [6] the loss
mechanism corresponds to an ionization process, for which a
similar separation of energy scales is present (in this case I"
can be tuned by the intensity of the beam). Also in experiments
with fluorescent light [5] the energy gain by spontaneous
emission is sufficient to transfer an atom to the continuum or
at least to higher bands. Contrarily to previous experiments [5]
in which the lattice was increased prior to illumination in order
to avoid this process, in the current proposal the lattice is kept
constant and the focus is on the induced dynamics.

The nonequilibrium problem of the master equation is
solved by sampling over quantum trajectories [13,15]. The
propagation of the stochastic wave functions with the non-
Hermitian Hamiltonian H.s = H —il'ng [15] is achieved
by the time-dependent density matrix renormalization group
(DMRG) [16,17]. The imaginary part of Hg represents the
effect of nondetection of atom loss. Detection of atom loss is
simulated by annihilation of bosonic fields at stochastically
chosen times. For the study of the dynamics of locally
created defects in one-dimensional systems, DMRG works
quite efficiently, as seen in a spin system in Ref. [18].
In the present context, bond dimensions 100-200 in the
DMRG and time steps of 0.001-0.005%/J lead to errors
that er negligible compared to the statistical error of the
sampling procedure. The optimal choice of DMRG parameters
is important, since averaging over more than 6000 trajectories
may be necessary. Quantum trajectories allow for a natural
definition of entanglement entropy in this open system [19].
One defines S;, the entropy of entanglement for a bipartition
of the system at a site /, by the average over the von Neumann
entanglement entropies of single trajectories.

One of the experimentally accessible quantities is the total
atomic loss N(1) = >, [ne(t) — ny(t = 0)] measured after a
given time ¢ (ny(t) = (n¢)(¢)). On short time scales, as long
as current flows into the central site are negligible (guaranteed
fort < h/J,t < h/T),the total loss is

N@) = nin(1 —e "), where niyy =no(t =0). (2)
We will focus on the response of the system for times
beyond this short-time behavior in which a complex many-
body dynamics sets in, which depends on the nature of the
underlying quantum state in a nonobvious manner.

First we analyze the time evolution of the density profiles
in the case of a weak dissipative defect I'/J = 0.25 [Figs. 1(a)
and 1(b)]. For the strongly interacting Tonks gas [U/J = 8§,
ni; = 0.5 in Fig. 1(b)] a dark density modulation moving at
the speed of sound (close to 2Ja/h [20]) is the dominating
feature in the relaxation. Nearly identical evolutions of the
density were found for a Mott-insulating state (not shown), in
which hole modes [21] are also propagating with velocity v ~
2Ja/h. The insulating nature does not play an important role
for the transport of the excitation. In contrast to these strongly
interacting cases, in the weakly interacting superfluid state
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FIG. 1. (Color online) Weak dissipative coupling I'/J = 0.25,
L =105 and 53 or 105 particles. In (a) and (b) we show density
profiles at different times. Densities are rescaled by their initial values
and size-dependent features in the vicinity of the edges of the systems
are discarded. We depict the “light cone” of waves moving with the
sound velocity [20] by vertical lines. Star and cross symbols represent
[Yna(?)), |¥nole (7)), respectively. In the lower panels we plot the total
atom loss (c) and the central density (d), both rescaled by the initial
density 7;,. In (¢) four curves almost lie on top of each other. Boundary
effects are eliminated by interrupting simulations before reaching the
recurrence times. Statistical errors are either marked by bars or are
smaller than the line width or symbol sizes.

[U/J =1, ni, = 0.5 in Fig. 1(a)] we observe the formation
of a remarkably strong bright shock wave at a speed which
strongly exceeds the sound velocity. Only after this density
wave does the expected dark modulation propagate.

To reveal the origin of this shock wave we analyze in
Fig. 1(a) density profiles of single trajectories which allow
to separate the effects of the detection and nondetection of
atom losses: (i) The wave function evolves in time by the
Hamiltonian and the nondetection part of the dissipative action
only, [Ynq(t)) = e~ e’/ |y} and (ii) the wave function is
the evolution of a hole, generated at + = 0 by a single local
atom loss, with the Bose-Hubbard Hamiltonian (1) |¢h01e(?)) =
e 1Mo |Yro). From this analysis it follows clearly that the
continuously induced collapse of the wave function by the non-
detection of atom losses is the driving force behind the shock
waves. The propagation of a localized hole does not lead
to significant shock-wave formation, although in the present
case the dark perturbation in the density of |Ypoe(f)) is
much larger than in |y,q(¢)). The highly nonlinear effect of
the nondetection of loss is directly related to the nonlocal
correlations present in the superfluid and therefore is not
observed in the more strongly interacting cases.

Surprisingly almost no sign of this very different dynamics
due to the underlying quantum phase can be noticed in the
evolution of the total atom losses [Fig. 1(c)]. At short times,
before a current sets in, N (¢) should obey the exponential law
(2) for any type of system, which is indeed the case up to
t & h/4J. More interestingly, at larger times N (¢)/ni, shows
a linear increase with practically no dependence on the initial
state. In Fig. 1(d) the central density n¢(t) is plotted in order to
visualize the tiny differences in the behavior of the total loss [it
represents the loss rate by the relation N(¢) = I'ng(t)]. no(t)
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FIG. 2. (Color online) (a) 7, in the weakly dissipative regime.
Error bars indicate systematic fluctuations and statistical errors.
(b) Long-time loss rate for the strongly dissipative case. (c) Loss
rate from weak to strong dissipation. Lines are guides to the eye.

describes how, through a slowly decaying, oscillatory transient
regime, a quasisteady value is reached. In order to investigate
systematically the onset of current, we extract a stationary
value 77y by averaging over the time interval 10/J <t <
151/ J . Looking at 71 for various dissipative coupling strengths
[Fig. 2(a)], we found a generically obeyed relation ngy/ni, ~
e~T/2) up to coupling strength I'/J &~ 0.4. From this result
we can conclude that /1/2J is the characteristic time scale
for the onset of a current. From our analysis of the density
profiles we can understand this time scale from the modes that
dominate the relaxation process. Indeed, from the velocities of
sound and “hole” modes observed in Tonks and Mott systems
(v & 2Ja/h), a relaxation time % /2J would be expected. In
principle, for the weakly interacting superfluid one has a much
smaller sound velocity [20] [v ~ 1.1Ja/h in the case plotted
in Fig. 1(a)]. However, we found that the faster shock waves
are the dominant modes, which apparently again lead to a
relaxation time scale 71/2J .

Hence, the short-time exponential decay (2), followed by
a long-time linear rise with slope ~e/?/, is generic and is
obeyed for very different types of systems. This means that
one can actually infer the value of the initial density from
atom loss measurements without explicit knowledge of the
nature of the state of the sample beyond the short-time regime
(2). Long exposure of the sample to the defect is helpful to
increase the detected signal.

Let us turn to the response of the atomic cloud to a strong
dissipative defect (I' > J,U). The density profiles [Figs. 3(a)
and 3(b)] show the propagation of modes that are very similar
to the weakly dissipative case, but with more pronounced
density modulations. At the central site the strong dissipation
leads to a very rapid suppression of the density, suggesting
a decoupling of the system at the defect. In contrast to the
previously considered weakly dissipative case, the atom loss
is now highly sensitive on the initial state [Fig. 3(c)]. The von
Neumann entropy S also strongly depends on the initial state
and shows quite unexpected behavior: Strong entanglement
between the two separated subsystems can be generated by
the defect [Fig. 3(d)]. Only at short times the entropy of
entanglement is reduced by the projection performed by
the measurement. At larger times the entanglement grows
approximately linearly in time. In the strongly interacting
systems, the linear rise is found numerically to be proportional
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FIG. 3. (Color online) Numerical results for strongly dissipative
coupling I'/J = 8. For an explanation of (a)—(c), see Fig. 1. (d) shows
the evolution of the von Neumann entropy between the subsystems
separated by the defect.

to the atom loss S‘o(t) ~ aN(t), o < 0.5, where a maximal
efficiency o = 0.5 isreached in the hard-core limit U /J — oo
(not shown). For the curves at strong but finite interactions
plotted in Fig. 3(d) we find  ~ 0.3. The effect of nondetection
of atom loss is crucial for this specific relation between
loss and entanglement entropy. If there was only creation
of holes at different instances of times, we would expect
that each hole, which splits into two mutually entangled
excitations propagating into opposite directions, would lead
to an increase in the entanglement entropy by one unit.
However, the collapse of the wave function by nondetection of
loss destroys such pairs and apparently limits the efficiency
of entanglement generation to o« < 0.5. When decreasing
the interaction, efficiency « is lowered and the production
of entanglement becomes nearly completely suppressed in
the weakly interacting superfluids [Fig. 3(d)]. This could be
explained by the presence of density fluctuations in the initial
wave function. The propagating hole pairs do not create highly
excited states, as is the case at strong interactions, but only
leads to a redistribution of weights between the states.

It is interesting to gain an analytical understanding of
the long-time limit of the density profiles and the corre-
sponding atom loss, especially because of their relation to
the entanglement entropy in strongly interacting states. A
perturbative analysis by adiabatic elimination of occupations
of the central site (see, e.g., Ref. [22]) can be performed.
From the effective master equation so derived, N(t > h/J) =

WS 2n,(t) + (Blb_ )] + O(L), it follows that the

loss rate decreases at increasing coupling strength as J?Z This
is a counterintuitive result [11,18], which is known for discrete
measurements as the quantum Zeno effect [23]. Using that
the density close to the center can be described by a static
boundary situation and correlations between the two sites next
to the defect can be neglected, the perturbative expression can
be further simplified

2

. 8J
N@>n/J)~ Tn:t(L—l)/Z(t =0). 3)
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A comparison between this expression and the numerical
results gives an excellent agreement down to a dissipative cou-
pling of I' &~ 8J for strong interactions [Fig. 2(b)] (the loss rate
is extracted by averaging over the stationary state for 10i2/J <
t < 151/ J). In contrast, the agreement to the weakly interact-
ing superfluid is not yet fully established. The averaged values
nevertheless obey the characteristic J2/ I scaling with a strong
tendency toward the stationary rate. We expect that for longer
times than were accessible to us, this value will be reached.
In conclusion, we have shown that dissipative coupling can
be used to measure densities accurately and to manipulate
properties of a quantum gas in a controlled way, although it
induces highly nontrivial many-body dynamics. Rather unex-
pected is the strong growth of entanglement between seem-
ingly decoupled subsystems. It is very interesting for practical
applications that this entanglement can be manipulated, and,
at the same time, be monitored by the experimentally easily
accessible atom loss. We have calculated these effects in a one-
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dimensional system with great precision, but the main features,
e.g., density measurements or the Zeno effect, are expected
to occur in higher dimensions as well. Further, entanglement
generation should be possible analogously when placing a
one-dimensional defect into a two-dimensional lattice. In
experiments, one interesting avenue to follow now would be
to use a moving defect to measure static or time-resolved
correlation functions or to manipulate different regions of the
system. Moreover, the loss mechanism can be used to remove
entropy-rich regions and thus may serve as a tool to further
cool down an atomic gas. The unique experimental tools that
manipulate quantum gases by local dissipation open a different
perspective on many-body dynamics of correlated systems.
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