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Experimental study of active LRC circuits with PT symmetries
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Mutually coupled modes of a pair of active LRC circuits, one with amplification and another with an equivalent
amount of attenuation, provide an experimental realization of a wide class of systems where gain and loss
mechanisms break the Hermiticity while preserving parity-time PT symmetry. For a value γPT of the gain and
loss strength parameter the eigenfrequencies undergo a spontaneous phase transition from real to complex values,
while the normal modes coalesce, acquiring a definite chirality. The consequences of the phase transition in the
spatiotemporal energy evolution are also presented.
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Parity (P) and time-reversal (T ) symmetries, as well as
their breaking, belong to the most basic notions in physics.
Recently there has been much interest in systems which do
not obey P and T symmetries separately but do exhibit a
combined PT symmetry. Examples of such PT -symmetric
systems range from quantum field theories and mathematical
physics [1–3] to atomic [4], solid state [5,6] and classical
optics [7–15]. A PT -symmetric system can be described by a
phenomenological “Hamiltonian” H. Such Hamiltonians may
have a real energy spectrum, although in general are non-
Hermitian. Furthermore, as some parameter γ that controls
the degree of non-Hermiticity of H changes, a spontaneous
PT symmetry breaking occurs. The transition point γ = γPT
shows the characteristic behavior of an exceptional point
(EP) where both eigenvalues and eigenvectors coalesce (for
experimental studies of EP singularities of lossy systems,
see Ref. [16]). For γ > γPT , the eigenfunctions of H
cease to be eigenfunctions of the PT operator, despite
the fact that H and the PT operator commute [1]. This
happens because the PT operator is antilinear, and thus
the eigenstates of H may or may not be eigenstates of
PT . As a consequence, in the broken PT -symmetric phase,
the spectrum becomes partially or completely complex. The
other limit where both H and PT share the same set of
eigenvectors corresponds to the so-called exactPT -symmetric
phase in which the spectrum is real. This result led Ben-
der and colleagues to propose an extension of quantum
mechanics based on non-Hermitian but PT -symmetric op-
erators [1,2]. The class of non-Hermitian systems with a
real spectrum has been extended by Mostafazadeh in order
to include Hamiltonians with generalized PT (antilinear)
symmetries [17].

While these ideas are still debatable, it was recently
suggested that optics can provide a particularly fertile ground
where PT -related concepts can be realized [7] and exper-
imentally investigated [8,9]. In this framework, PT sym-
metry demands that the complex refractive index obeys the
condition n(�r) = n∗(−�r). PT -synthetic materials can exhibit
several intriguing features. These include among others, power
oscillations and nonreciprocity of light propagation [7,9,11],
absorption-enhanced transmission [8], and unidirectional in-
visibility [15]. In the nonlinear domain, such nonreciprocal
effects can be used to realize a new generation of on-chip

isolators and circulators [10]. Other advances within the frame-
work ofPT optics include the study of Bloch oscillations [12],
the realization of coherent perfect absorbers–lasers [14], and
nonlinear switching structures [13]. Despite all these efforts
and the consequent wealth of theoretical results associated
with PT structures, to the best of our knowledge, only
one experimental realization of a system with balanced gain
and loss has been reported up to now [9]. These authors
studied the light propagation in two coupled PT -symmetric
waveguides where the spontaneous PT -symmetry-breaking
“phase transition” [18] was confirmed. The analysis has
relied on the paraxial approximation which, under appropriate
conditions, maps the scalar wave equation to the Schrödinger
equation, with the axial wave vector playing the role of
energy and with a fictitious time, related to the propagation
distance along the waveguide axis. However, to the best
of our knowledge, an experimental investigation of PT
systems in the spatiotemporal domain has, until now, remained
unexplored.

The purpose of this Rapid Communication is to present
a simple experimental setup which displays all the phe-
nomena encountered in systems with generalized PT sym-
metries: a pair of coupled oscillators, one with gain and
the other with loss. This “active” dimer is implemented
with simple electronics, and allows a direct observation
of a “phase transition” from a real to a complex eigen-
frequency spectrum. At the PT -breaking point, the nor-
mal modes coalesce and the relative phase differences
of their components acquire a definite value that is dic-
tated by the inductive coupling. We conclude with an in-
vestigation of the temporal behavior of the energy. The
generic properties of pseudo-Hermitian dynamics are iden-
tified and traced back to the properties of the normal
modes. Being free of theoretical approximations, and due
to its relative simplicity in the experimental implemen-
tation, the LRC networks with PT symmetry can of-
fer insights into the study of systems with generalized
PT symmetries and a practical means for testing PT
concepts.

The experimental circuit is shown schematically in
Fig. 1. Each inductor is wound with 75 turns of no. 28 copper
wire on 15-cm-diameter polyvinyl chloride (PVC) forms in a
6 × 6 mm loose bundle for an inductance of L = 2.32 mH.

040101-11050-2947/2011/84(4)/040101(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.040101


RAPID COMMUNICATIONS

SCHINDLER, LI, ZHENG, ELLIS, AND KOTTOS PHYSICAL REVIEW A 84, 040101(R) (2011)

x 2

R C L

R

CL

M

V1 V2

Gain Loss

FIG. 1. Electronic implementation of a PT -symmetric dimer.
The negative resistance gain element is provided by feedback from
a voltage-doubling buffer. The coils are inductively coupled, and V1

and V2 provide access to the system variables.

The coils are mounted coaxially with a bundle separation of
4.6 cm providing a mutual coupling of μ = M/L = 0.2 used
for this work. The C = 10.7 nF capacitances are silver mica,
in parallel with the ∼320 pF coil bundle capacitance. The gain
side is further trimmed with a GR722-M precision condenser.
The resistors are carbon composite with the negative resistance
gain provided by an LM356 operational amplifier (op-amp).
The isolated natural frequency of each coil is ω0 = 1/

√
LC =

2 × 105 s−1.
The actual experimental circuit deviates from the ideal in

the following ways: (1) A resistive component associated with
coil wire dissipation is nulled out with an equivalent gain
component applied to each coil; (2) a small trim is included
in the gain buffer for balancing; and (3) additional LM356
voltage followers are used to buffer the measured voltages V1

and V2.
It is important to note that the linear nature of the system

allows an exact balance of the PT symmetry only to the
extent that component imbalance over a time scale necessary to
perform a measurement is negligible. The real system modes
ultimately either exponentially grow to the nonlinearity limit
of the buffers, or shrink to zero. Experimental practice allows
only for a marginal determination of gain and loss balance.
The gain and loss parameter is set by choosing the loss-side
resistance R (in the range 1–10 k� for this work) of Fig. 1,
giving γ = R−1√L/C, and matching the gain side R with
the help of the gain trim. Our ability to balance the system
parameters is estimated to be ∼0.1%.

Application of the first and second Kirchhoff’s law,
for the coupled circuits of Fig. 1, leads to the set of
equations

IC
n + IR

n + IL
n = 0,IR

n = (−1)nγω0Q
C
n ,

(1)
ω2

0Q
C
1 = İ L

1 + μİL
2 ,ω2

0Q
C
2 = İ L

2 + μİL
1 ,

where Q is the charge, I is the current, and İ = dI/dt . The
superindices C, L, and R indicate that the quantity is associated
with the capacitor, inductor, and resistor, while the subindices
correspond to the amplified (n = 1) and lossy (n = 2) sides.
Simple algebra allows us to rewrite Eqs. (1) for the charges
QC

n = CVn in the form

d2QC
1

dτ 2
= − 1

1 − μ2
QC

1 + μ

1 − μ2
QC

2 + γ
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,
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d2QC

2

dτ 2
= μ

1 − μ2
QC
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1 − μ2
QC

2 − γ
dQC

2

dτ
,

where τ ≡ ω0t . Hence, all frequencies are measured in units
of ω0. Equations (2) are invariant under a combined P (i.e.,
n = 1 ↔ n = 2) and T (i.e., t → −t) transformation.

In fact, Eqs. (2) can be recasted in a “rate equation” form
by making use of a Liouvillian formalism

d�

dτ
= L�, L =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

− 1
1−μ2

μ

1−μ2 γ 0
μ

1−μ2 − 1
1−μ2 0 −γ

⎞
⎟⎟⎟⎠ , (3)

where � ≡ (QC
1 ,QC

2 ,Q̇C
1 ,Q̇C

2 )T . It can be shown [19] that
there exists a similarity transformation mapping the matrix iL
to a PT -symmetric Hamiltonian H . This formulation opens
alternate directions for applications [19] of generalized PT
mechanics [17].

We are interested in the evolution of eigenfrequencies, and
normal modes of our system as the gain and loss parameter
γ increases. The exact phase will be associated with the γ

regime for which the eigenfrequencies ωl are real, while the
broken phase corresponds to the regime where one or all the
eigenfrequencies ωl become complex.

The eigenfrequencies ωl can be found either by a direct
diagonalization of the matrix L, or by solving the secular
equation resulting from Eq. (2) after the substitution QC

n =
An exp(iωτ ). We get

ω1,4 = ±
√

−2 + γ 2(μ2 − 1) +
√

4(μ2 − 1) + [2 + γ 2(μ2 − 1)]2

2(μ2 − 1)
(4)

ω2,3 = ±
√

−2 + γ 2(μ2 − 1) −
√

4(μ2 − 1) + [2 + γ 2(μ2 − 1)]2

2(μ2 − 1)

For γ = 0, we have two frequency pairs ω1,4 = ±√
1/(1 − μ)

and ω2,3 = ±√
1/(μ + 1). These modes are associated with

the pair of double-degenerate frequencies ω = ±1 related to a
single isolated circuit (μ = 0). At γ = γPT , these eigenmodes

undergo a level crossing and branch out into the complex plane,
with

γPT = 1/
√

1 − μ − 1/
√

1 + μ. (5)
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FIG. 2. (Color online) Parametric evolution of the experimentally
measured eigenfrequencies vs the normalized gain and loss parameter
γ /γPT . A comparison with the theoretical results of Eq. (4) indicate
an excellent agreement. In all cases, we show only the Re(ωl) > 0
eigenfrequencies. The open circles in the lower panel are reflections
of the experimental data (lower curve) with respect to the Im(ω) = 0
axis.

Near γPT the eigenvalues display the characteristic behavior

|ω| ∝ ±
√
γ 2 − γ 2

PT . This square-root singularity is a generic
feature of the PT -symmetry breaking. A second crossing
between the pairs of degenerate frequencies (and another
branching) occurs for a larger value γ2 = √

1/(1 − μ) +√
1/(1 + μ). For γ > γ2 all frequencies are imaginary. Since

this large γ regime is physically impractical, we will confine
ourselves to values of γ < γ2.

In Fig. 2 we report our measurements for the frequencies
and compare them with Eq. (4). Our setup allows a detailed
analysis for gain and loss parameters γ on either side of the
PT -phase transition point. In the exact phase γ < γPT the
eigenfrequencies are obtained by trimming both the gain and
capacitance balance until both modes become simultaneously
marginal. The imaginary part of the frequency is then zero by
construction. Individual modes are then measured by slightly
unbalancing the trim for marginal oscillation of that mode. The
amplitude grows to the nonlinearity-limited amplitude, and the
voltage wave forms in both coils are captured and analyzed for
frequency and relative phase. The values obtained are checked
to assure that they are independent of the small imbalances
applied, typically less than 0.3%.

In the broken phase γ > γPT marginal oscillation is not
possible: The gain and capacitance trim are kept fixed at the
values obtained in the exact phase near γPT . The resistances R

(and −R) are inserted, and the gain side coil is temporarily
short circuited to prevent oscillation. The short is then
removed, and the subsequent oscillatory growth triggers the
wave-form capture. The wave forms in both coils are analyzed,
including an exponential growth factor. With this method, only
the exponentially growing mode with Im(ω) < 0 is observed.

Very close to γ ∼ γPT attempts to trim the dimer to the
marginal configuration result in either V = 0 (too small gain),
or a chaotic interplay of the two modes with the op-amp
nonlinearity if the gain is larger. This behavior serves as an
indication that γPT has been exceeded.
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FIG. 3. (Color online) Parametric evolution of the phase differ-
ence θl = φ

(l)
2 − φ

(l)
1 . The experimental measurements for μ = 0.2

are shown in filled circles and match well the theoretical predictions
(lines). The theoretical θPT (μ) is shown in the inset.

Another manifestation of PT symmetry is the relative
phase difference θl = φ

(l)
2 − φ

(l)
1 between the two components

(Q(l)
1 ,Q

(l)
2 )T = (|Q(l)

1 | exp(iφ(l)
1 ),|Q(l)

2 | exp(iφ(l)
2 ))T of the lth

eigenmode. Experimentally, Q(l)
n (t) = CVn(t) when mode (l)

is marginally oscillated. The PT symmetry imposes the con-
dition that the magnitude of the two components of the charge
vector are equal to one another in the exact phase. For γ = 0,
the phases corresponding to the symmetric and antisymmetric
combination are θ1 = 0 and θ2 = π , respectively. When γ

is subsequently increased and the system is below the PT
threshold, the eigenstates are not orthogonal and their phases
can be anywhere (depending on γ /γPT ) in the interval [0,π ].
An example of the parametric evolution of phases is reported
in Fig. 3, where the experimental measurements are plotted
together with the theoretical results. The value of the phase
difference θPT (μ) ≡ θ (μ,γPT ) at γ = γPT can be calculated
analytically and it is given by the expression

θPT (μ) = arccos
(√

1 −
√

1 − μ2
/√

1 +
√

1 + μ2
)
. (6)

We note that in the limit of μ → 0 we get θPT = π/2,
corresponding to a “circular” polarization of the eigenmode.
The opposite limit of μ → 1 is associated with a broken
time-reversal symmetry [20] and is reflected in the strong
asymmetry of the L matrix for large μ values.

The signatures of PT symmetry and the transition from
the exact phase to the broken phase are reflected in the
temporal behavior of our system. We have traced these
universal features by studying the time dependence of the
total capacitance energy

Etot
C (τ ) = 1

2C
(Q1(τ ),Q2(τ ))(Q1(τ ),Q2(τ ))T . (7)

The initial condition used in the experiment corresponds to the
case IL

1 = Iinit, with all other dynamical variables zero. With
the appropriate R inserted and the dimer trim either marginal
(exact phase) or fixed (broken phase), the initial current is
injected into the gain side by connecting the V1 node of Fig. 1
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FIG. 4. (Color online) Experimentally measured temporal dy-
namics of the capacitance energy Etot

C (τ ) of the total system for
various γ values. As γ → γPT , the τ 2 behavior signaling the
spontaneous PT -symmetry breaking is observed.

to a voltage source through a resistor. Oscillation in the broken
phase is suppressed by the additional ac dissipation. Again,
wave-form capture is triggered by removing the injection
resistor.

Even though the frequencies are real for γ < γPT , the
total energy of the system Etot is not conserved. Instead, we
expect power oscillations which are due to the unfolding of
the nonorthogonal eigenmodes [1,7,9,11]. This is evident in
the temporal behavior of Etot

C (τ ) (see Fig. 4). For γ > γPT the
dynamics is unstable and Etot

C (τ ) grows exponentially, with a
rate given by the maximum imaginary eigenvalue max{Im(ωl)}
(see Fig. 4).

The most interesting behavior appears at the spontaneous
PT -symmetry-breaking point γ = γPT . At this point the

matrix L has a defective eigenvalue. In this case, the evolution
U = exp(Lτ ) can be calculated from the Jordan decompo-
sition of L as J = SLS−1. Having in mind the form of
the exponential of a Jordan matrix, it follows immediately
that linear growing terms appear in the evolution of the
charge vector (Q1(τ ),Q2(τ ))T [21]. This results in a quadratic
increase of the capacitance energy, i.e., Etot

C (τ ) ∼ τ 2. Although
all systems typically become very sensitive to parameters near
a critical point, we are able to control the circuit elements
sufficiently well to observe the approach to the predicted
τ 2 behavior of the energy. The time range is limited by the
dynamic range of our circuit linearity.

In conclusion, we demonstrated that a pair of coupled,
active LRC circuits, one with amplification and the other with
equivalent attenuation, exhibits PT symmetry. This minimal
example, which is experimentally simple and mathematically
transparent, displays all the universal phenomena encountered
in systems with generalized PT symmetries. At the same
time, the accessibility of experimental quantities of interest
enable us to perform accurate investigations and comparisons
with theoretical predictions. We envision that their use will
allow experimental studies in the spatiotemporal domain of
more complicated structures, and shed light on scattering
phenomena [22] recently proposed in the realm of generalized
PT symmetries [14,15,23–25]. From integrated tuning of
antenna arrays to real-time control of exotic metamaterials,
the wealth of problems which have their counterparts in PT
electronic circuits, and the lessons they can teach, are far from
being exhausted.
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