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Comment on “Realization of a bipolar atomic Šolc filter in the cavity-QED microlaser”
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Seo et al. [Phys. Rev. A 81, 053824 (2010)] have studied the interaction of a TEM10 mode in a cavity-QED
microlaser. They claim that this scheme represents an experimental realization of an atomic Šolc filter proposed
by Hong et al. [Opt. Express 17, 15455 (2009)]. Even if the regime of interaction considered is nonperturbative,
we point out that this statement is valid only for a small range of intensity and is misleading in the general case
of an arbitrarily strong field where the effect is related to the nonadiabatic jump phenomenon [G. S. Vasilev and
N. V. Vitanov, Phys. Rev. A 73, 023416 (2006)].
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Seo et al. [1] report the results of an experimental study
on the interaction of an initially inverted two-level atom that
crosses a TEM10 mode interacting with the cavity field in
a strong-coupling regime. The authors interpret their results
by invoking a flat bipolar coupling model connecting this
experiment to the atomic Šolc filter described in Ref. [2]. Next,
to develop our arguments, we point out that the interaction of a
TEM10 mode with a two-level system with arbitrary detuning
and intensity has already been studied intensely in Ref. [3]
[shape envelope equation (8c)]. It is then natural to explain
the underlying physics at the highlight of this Reference.
Other envelope shapes have been studied in Refs. [4,5] for
coherent control purposes. Also, we want to emphasize that,
in this Comment, our criticism neither concerns the theoretical
model developed for the atomic Šolc filter in Ref. [2] nor the
numerical simulation in Ref. [1] [Figs. 3(d) and 4 account for
the exact shape of the pulses and, thus, are not questionable].
Our criticism concerns the interpretation of the present
experimental scheme (with a TEM10 pulse) as an experimental
realization of the atomic Šolc filter (as treated in Ref. [2]) in the
general case of an arbitrary intense field. This point was missed
by the authors in their discussion. Indeed, the authors have ex-
perimentally limited their investigation to relatively moderate
power. The regime is nonperturbative, and the analogy with
the atomic Šolc filter is justified (m � 1), but the exact picture
of the dynamics of the phenomenon for larger field intensities
goes far beyond the crude approximation of a flat coupling
model, excluding the extent of the results of Ref. [2] to this
regime. What Ref. [3] shows (through Fig. 6, for instance), is
that no matching conditions are generally required in the case
of a TEM10 mode: In the presence of detuning, an almost com-
plete inversion population is obtained if the Rabi frequency is
high enough. Since no matching conditions are required and
inversion can be obtained for (arbitrary) strong fields with
detuning, the analogy with the Šolc filter is not pertinent in the
general case. Except for the small experimental zone explored,
the atomic Šolc filter cannot be approached by smooth varying
pulses with adapted detuning and Rabi frequencies.

The realistic case with a smooth varying envelope (Gaus-
sian, sech, etc.) differs qualitatively and quantitatively with the
particular case where the electric field switches suddenly and
not smoothly (at the beginning and the end of the pulse and not
only at the period of sign change). In the latter, the dynamics

of the systems is dominated by Rabi oscillations, whereas, in
the former, a subtle interplay between adiabatic following and
Rabi oscillations occurs.

Next, we briefly explain the concrete case described in
detail in Ref. [3] and then consider some other fundamental
differences with a flat bipolar coupling model. When taking
the analytical form of the pulse into account, the dynamics is
obtained in the adiabatic basis, which is defined by
( |+,n〉

|−,n〉
)

=
[

cos[θn (t) /2] sin[θn (t) /2]

− sin[θn (t) /2] cos[θn (t) /2]

] ( |g,n〉
|e,n − 1〉

)
. (1)

Here, |±,n〉 are the dressed states and |g,n〉, |e,n − 1〉
are the bare states. The mixing angle θn is defined by
tan[θn(t)] = 2(η/δ)g(t)/g0 with η, δ, g(t) and g0 as the nor-
malized Rabi frequency, normalized detuning, TEM10 atom-
cavity coupling, and flat bipolar equivalent model atom-cavity
coupling, respectively. These quantities are defined, such as in
Ref. [1]. Writing the Schrödinger equation for the system, the
amplitudes α±,n of states |±,n〉 obey the following equation:

∂T

(
α−,n

α+,n

)
=

(
i�n(T )/2 −∂T θn

∂T θn −i�n(T )2

)(
α−n

α+n

)
(T ),

(2)

where ∂T = ∂/∂T , T = t/τ , and �n = [δ2 + 4ng2(T )]1/.2 is
the dimensionless generalized Rabi frequency. The diagonal
terms ±�n/2 represent the energy levels of the dressed
states, and ∂T θn is the nonadiabatic coupling. �n gives
the instantaneous separation of the dressed levels becom-
ing δ as T approaches ±∞ [with |−,n〉(±∞) = |g,n〉 and
|+,n〉(±∞) = |e,n − 1〉]. For pulses such that |∂T θn/�n| �
1, the evolution can be considered to be adiabatic, the dressed
levels experience a transient light shift during the action of the
driving pulse, and no population is transferred asymptotically.
In the opposite case, there can be nonadiabatic transitions
to the level |−,n〉 that result in an asymptotic population
in atomic state |g〉. The key point here is that the transfer
strongly depends on the shape of the pulse through ∂T θn,
and this dependence can lead asymptotically to a complete
population inversion. This is the case for asymmetric pulses
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(such as a TEM10 pulse or other forms studied in Refs. [3,4]).
Indeed, it has been shown that the coupling approximates to a
π -area δ-like function in the limit of strong driving (η/δ � 1)
explaining the surprising efficiency of such a nonresonant
process (see Fig. 3 in Ref. [3] or Fig. 1 in Ref. [4]). The very
abrupt transfer obtained in this case justifies the nonadiabatic
jump (NAJ) denomination for this phenomenon.

So, the NAJ phenomenon leads to population inversion,
such as the atomic Šolc filter, but the phenomena underlying
the inversion process are different.

The dynamics can also be explained in a Bloch picture.
For η/δ � 1, the Bloch vector evolves adiabatically from
the north pole (t → −∞) to the equator (t = 0) and from
the equator to the south pole (t → +∞). Around t = 0, NAJ
takes place ensuring that the Bloch vector does not evolve,
whereas, the rotating vector changes to the opposite position.
Paradoxically, the role of NAJ is to invert the population in
adiabatic states, whereas, in bare states it is to maintain the
Bloch vector in its position during the electric sign change
step. Thus, the population inversion is the consequence of
the combined role of adiabatic switching and NAJ. However,
because of NAJ, the sign change can be realized with smooth
pulses and not abrupt ones. So, the TEM10 case is not just a
form close to the ideal situation of an atomic Šolc filter but
represents both the ideal and the realistic cases.

In the experiment performed by the authors, the field
parameters were such that adiabatic following could not take
place and corresponded to the zone around the small lobe
(
 � √

2 and
√

�0 � 2) of Fig. 6 in Ref. [3]. In this situation,
the Bloch vector evolves from the north pole to the equator
and from the equator to the south pole under Rabi oscillations
as the authors state. However, and as mentioned above, this
interpretation cannot be extrapolated for the case of stronger

pulses. Moreover, by comparing Fig. 6 to Figs. 4 and 5 of
Ref. [3], an important effect appears: The change in the shape
of the envelope also changes the domain of the parameters
for which the process is efficient. Thus, the interpretation
of concrete cases cannot be reduced to a bipolar flat model
without missing important effects and has to be performed
within the framework of Ref. [3].

Invoking a flat bipolar model also leads to many misleading
consequences:

(1) The inversion population in the NAJ model (and, thus,
for the TEM10 mode), confirmed by numerical simulations
(Fig. 6 of Ref. [3]) is robust with excitation parameters (Rabi
frequency, detuning, and pulse duration). This is in contrast
with Eq. (1) in Ref. [1] that leads to the incorrect statement
that the population in the excited state oscillates between 0 and
1 when the interaction time is tuned, for instance. Compare, for
instance, Fig. 6 of Ref. [3] and the insets in Fig. 3 of Ref. [1].
This strengthens the importance of the fact that no matching
conditions are required here to obtain the population inversion,
whereas, in the atomic Šolc filter, adapted Rabi oscillations are
required to achieve this purpose.

(2) The situation described in the papers [3,4] is considered
for pulses with duration and detuning such that δ � 1. It
ensures that the frequency components at resonance are
negligible. For instance, for a Gaussian pulse and δ = 8, we
have S ∝ e−δ2 � e−64 � 10−28 for δ � 1 (S is the intensity
spectrum at atomic resonance). In this case, the presence of
residual resonant frequencies cannot be invoked to explain
the population inversion. Even if the coupling θ̇n reveals a
singular behavior (δ-like function with πarea), the electric field
is smooth. This is in contrast with the atomic Šolc filter case
for which the spectrum exhibits some long-range tails whose
influence cannot be neglected in the strong-field regime.
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