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Comment on “Temperature dependence of the Casimir force for lossy bulk media”
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Recently Yampol’skii et al. [Phys. Rev. A 82, 032511 (2010)] advocated that Lifshitz theory is not applicable
when the characteristic wavelength of the fluctuating electromagnetic field, responsible for the thermal correction
to the Casimir force, is larger than the size of the metal test bodies. It was claimed that this is the case in experiments
which exclude Lifshitz theory combined with the Drude model. We calculate the wavelengths of the evanescent
waves making the dominant contribution to the thermal correction and we find that they are much smaller than
the sizes of the test bodies. The opposite conclusion obtained by the authors arose from confusion between
propagating and evanescent waves.
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It is the subject of a considerable body of literature that
theoretical predictions for the thermal Casimir force between
lossy metal plates described by the Drude model, based on
Lifshitz theory, are in disagreement with experimental data
(see, e.g., review [1]). In Ref. [2] an attempt was made to
explain this contradiction by arguing that Lifshitz theory is
indeed inapplicable to test bodies of finite size, such as those
used in the experiments. According to Ref. [2], the thermal
electromagnetic fluctuations responsible for the predicted large
thermal correction [3], excluded by several experiments, have
a characteristic wavelength which is larger than the size
of the test bodies used in the experiments. On this basis,
the conclusion is made that the predicted correction can
be observed experimentally only for sufficiently large metal
bodies. Here we show that the wavelengths of the fluctuations
contributing to the large thermal correction engendered by
the Drude model are in fact much less than the sizes of
test bodies used in related experiments. Because of this, the
purported explanation of the contradiction between experiment
and theory in Ref. [2] is in error. We argue that the considerable
overestimate made in Ref. [2] of the wavelengths of the
contributing fluctuations was the result of confusion between
traveling (propagating) and evanescent waves.

The frequencies and wave vectors of a fluctuating elec-
tromagnetic field making a major contribution to the thermal
correction to the Casimir force can be found using the Lifshitz
formula written in terms of real frequencies. In modern
notation, the thermal correction to the Casimir force per
unit area, between two parallel semispaces at temperature
T separated by a gap of width l, can be represented in the
form [4,5]

Frad(l) = − h̄

π2

∫ ∞

0
k⊥dk⊥

∫ ∞

0
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Here, k⊥ = |k⊥| is the magnitude of the projection of the wave
vector onto the boundary planes, ω is the wave frequency, kB

is the Boltzmann constant, and q2 ≡ q2(ω,k⊥) = k2
⊥ − ω2/c2.

The reflection coefficients for two independent polarizations
of the electromagnetic field (transverse magnetic, α = TM,
and transverse electric, α = TE) are given by

rTM(ω,k⊥) = ε(ω) q − k

ε(ω) q + k
, rTE(ω,k⊥) = q − k

q + k
, (2)

where

k2 ≡ k2(ω,k⊥) = k2
⊥ − ε(ω)

ω2

c2
, (3)

and ε(ω) is the frequency-dependent dielectric permittivity of
the material of the semispaces. Equation (1) coincides with
Eq. (3) in Ref. [2], after correcting one misprint contained
there (in the exponent in the Boltzmann factor on the right-hand
side of Eq. (3), the factor of 2 should be erased; an analogous
misprint should be corrected in Eq. (5) in Ref. [2]).

In Ref. [6] it was shown that if the material of the semispaces
is described by the Drude model,

ε(ω) = 1 − ω2
p

ω(ω + iν)
, (4)

where ωp is the plasma frequency and ν is the relaxation
parameter, the major contribution to Frad is made by TE
evanescent waves. At room temperature T = 300 K this holds
at all separations l � h̄c/kBT ≈ 7.6 μm. For example, for
Au semispaces with h̄ωp = 9 eV and ν = 5.32 × 1013 rad/s
at a separation l = 162 nm, TE evanescent waves contribute
about 99.7% of the thermal correction. This contribution can
be denoted F evan

rad, TE. In Eq. (1), the quantity F evan
rad, TE is obtained

by taking the term with α = TE for frequencies ω varying
in the interval from 0 to ck⊥, for which the quantity q is
real. Even though the concept of evanescent waves is never
mentioned in Ref. [2], the contribution of TE evanescent waves
is actually reproduced by the quantity in the first pair of square
brackets in Eq. (3) in Ref. [2], integrated over imaginary
values of p ranging from i0 to i∞. The same contribution
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can be physically interpreted in terms of interaction of eddy
currents [7,8].

As also shown in Ref. [6], at short separations between two
semispaces described by Eq. (4), the frequencies ω making
a dominant contribution to F evan

rad, TE satisfy the inequality ω �
ν(ωc/ωp)2, where ωc = c/(2l) is the characteristic frequency.
This result was qualitatively confirmed in Ref. [2], where the
frequencies contributing to the quantity F evan

rad, TE − F evan
rad, TE|ν=0

were found to satisfy the inequality ω � ν (at l = 100 nm,
it holds that ωc ≈ ωp/9). We note that the term F evan

rad, TE|ν=0,
which is subtracted from F evan

rad, TE in Ref. [2], represents a
negligibly small thermal effect that results once the material
for the semispaces is described by the plasma model, and it
does not influence any of the obtained conclusions.

It is important to realize that the characteristic wavelength
of the evanescent waves making the largest contribution to
the thermal correction is determined, however, not by the
frequency spectrum of F evan

rad, TE but, rather, by its wave-vector
spectrum. In order to determine the latter spectrum numer-
ically, we have recast the quantity F evan

rad, TE in the following
equivalent form in terms of dimensionless variables:

F evan
rad, TE(l) = h̄ ν c2

π2ω2
p l5

∫ ∞

0
dvv2g(v), (5)

where

g(v) =
∫ ∞

0

du

exp
(

h̄ν
kBT

c2

ω2
pl2 u

)
− 1

Im

[
1 − e2v

r2
TE(u,v)

]−1

. (6)

Here, the new variables are defined as

u = ω2
pl2

νc2
ω, v = lq. (7)

In terms of these variables the TE reflection coefficient is
given by

rTE(u,v) =
v −

√
v2 + ω2

pl2u

iω2
pl2+c2u

v +
√

v2 + ω2
pl2u

iω2
pl2+c2u

. (8)

We have computed the range v1 � v � v2 of the variable
v which contributes 90% of F evan

rad, TE at the experimental
separation l = 162 nm. For ν = 5.32 × 1013 rad/s, we found
v1 = 0.26 and v2 = 3, while for ν = 1010 rad/s, we obtained
v1 = 0.28 and v2 = 3. Thus, independently of the values
of the relaxation parameter ν, the dimensionless quantity v

contributing to F evan
rad, TE is always of order 1, and therefore q is

always of order 1/l.
The wave vector of an evanescent wave is given by the

expression

k = (kx,ky,kz), kz =
√

ω2

c2
− k2

⊥ = iq, (9)

and its wavelength is determined as

λ = 2π

k⊥
= 2π√

k2
x + k2

y

. (10)

Keeping in mind the definition of q, we then obtain that for the
most contributing wave vectors, it holds that k2

⊥ > q2 ∼ 1/l2,

in such a way that the corresponding wavelengths satisfy the
inequality

λ � 2π l. (11)

In experiments aiming at measuring the Casimir force
between a sphere and a plate, these wavelengths are always
much smaller than the characteristic size L of the part of the
sphere surface,

L ≈ 2
√

R2 − (R − l)2 ≈ 2
√

2Rl, (12)

which contributes to the force. For example, in the experiment
in Ref. [9] the sphere radius is R = 150 μm, and the separation
distances vary from l = 162 nm to l = 750 nm. For such values
of R and l, the inequality λmax = 2πl < L, i.e., l < 2R/π2 ≈
30 μm is satisfied with large safety margins, for all separations
considered. In fact, the relevant contributing wavelengths are
smaller than the sizes of the bodies in all other experiments
measuring the Casimir force performed up to date as well [1].

The opposite conclusion obtained in Ref. [2] is caused by
the confusion between propagating and evanescent waves.
Starting from a qualitatively correct inequality for the con-
tributing frequencies ω � ν, the authors of Ref. [2] used the
relation between the frequency and the period

ω = 2πc

λ
(13)

to obtain the estimate λ � 2πc/ν for the wavelengths of
the fluctuations contributing to F evan

rad, TE. Thereafter, it was
concluded that Lifshitz theory is only applicable if the size
of test bodies L 	 2πc/ν, i.e., ν 	 2πc/L [Eq. (9) in
Ref. [2]]. The problem with this argument, though, is that
Eq. (13) is valid only for traveling (propagating) waves in
vacuum. In this case the two definitions of the wavelength
λ = 2πc/ω = 2π/|k| coincide. Unfortunately, in the case of
evanescent waves, which do not propagate and are more similar
to standing waves, Eq. (13) does not hold, and the wavelength
has no relation to the frequency. If instead of using Eq. (13),
the authors of Ref. [2] had considered the characteristic
values of their parameter x = 2ipωl/c (where in our notation
p = −iqc/ω) to determine the most contributing wavelengths,
our result λ � 2πl would have been reproduced. Indeed, as
shown in Ref. [2], x = 2lq ∼ 1, leading to q ∼ 1/(2l), in
qualitative agreement with our estimate, (11). Bearing in mind
that for evanescent waves the frequency is unrelated to the
wavelength, the second inequality, ω � kBT /h̄, considered in
Ref. [2] does not lead to any constraint on the size of bodies
L. For the same reason, the results of numerical computations
presented in Figs. 1 and 2 in Ref. [2] do not contain any
information concerning the role of finite sizes of the test bodies
in calculations of the thermal Casimir forces.

To conclude, the problem of the disagreement between the
experimental data of several experiments and the theoretical
prediction of the thermal effect in the Casimir force, obtained
by using Lifshitz theory in combination with the Drude model,
remains unsolved.
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