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Experimental quantum error correction with high fidelity
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More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett.
81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement
QEC, and demonstrated that the error rate changed from ε to ∼ε2. In the current work we reproduce a similar
experiment using control techniques that have been since developed, such as the pulses generated by gradient
ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative
advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the
additional operations needed to protect the quantum states.
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I. INTRODUCTION

Quantum computers could solve some problems faster than
classical computers [1]. Performing a quantum computation
relies on the ability to preserve the coherence of quantum
states long enough for gates composing the algorithm to be
implemented. In practice, the quantum coherence is sensitive
to the uncontrolled environment and easily damaged by the
interactions with the environment, a process called decoher-
ence [2]. To protect the fragile quantum coherence needed for
quantum computation, schemes of quantum error correction
(QEC) and fault-tolerant quantum computation have been
developed [3].

The 3-bit QEC code was implemented in a liquid-state
nuclear magnetic resonance (NMR) quantum information
processor in 1998 as the first experimental demonstration of
QEC [4]. More recently, it has been implemented in trapped-
ion and solid-state systems [5,6]. Here we report on using the
gradient ascent pulse engineering (GRAPE) algorithm [7] to
implement a high-fidelity version of the 3-bit QEC code for
phase errors in liquid state NMR. The errors due to natural
transversal relaxation are shown to be suppressed to a first
order. In comparison with the work performed in 1998 [4],
the pulse sequence fidelity is improved by about 20%, and
the reduction of the first order in the decay of the remaining
polarization after error correction is improved by a factor of
∼2.3. The advantage of the QEC is obtained although the
extra operations for protecting the quantum states in QEC are
subject to errors in implementation.

II. EXPERIMENTAL PROCEDURE AND RESULTS

In the current implementation, we use 13C labeled
trichloroethylene (TCE) dissolved in d-chloroform as the
sample. Data were taken with a Bruker DRX 700 MHz
spectrometer. The structure of the molecule and the parameters
of the spin qubits are shown in Fig. 1, where we denote H as
qubit 1, C1 as qubit 2, and C2 as qubit 3. The Hamiltonian of
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the three-spin system can be written as

H = −π

3∑

i=1

νiZi + π

2
[J12Z1Z2 + J13Z1Z3

+ J23(X2X3 + Y2Y3 + Z2Z3)], (1)

where Xi , Yi , and Zi denote the Pauli matrices with i indicating
the spin location, νi denotes the chemical shift of spin i, and
Jij denotes the spin coupling between spins i and j . The
two carbon spins are treated in the strongly coupled regime,
because the difference in frequencies between the two carbons
is not large enough for the weak-coupling approximation [8].

We exploit radio-frequency (rf) spin selection techniques
to improve the linewidth, and hence the coherence, of the en-
semble qubits [9,10]. The effect of pulse imperfections due to
rf inhomogeneities is reduced by spatially selecting molecules
from a small region in the sample through the rf power. We
choose C1 as the qubit to carry the state for encoding and the
output state after decoding and error correction. The labeled
pseudopure states 0X0 and 0Y0, used as the reference states
with blank ancilla, are prepared by the circuit in Ref. [10],
where the order is arranged as qubits 1 to 3 and 0 ≡ |0〉〈0|.
The qubit readout is performed on C1, and the signals are nor-
malized with respect to 0X0 or 0Y0, for different input states.

The quantum network used for implementing the QEC code
is shown in Fig. 2(a), where ρin is chosen as X, Y , and Z, in
separate sequences. We optimize the encoding operation and
the decoding operation combined with the error correction as
two GRAPE pulses [7] with theoretical fidelity >99.9%. To
test the ability of the code to correct for the natural dephasing
errors due to the transversal relaxation of the spins, the
internal spin Hamiltonian (1) is refocused during the time delay
implemented between the encoding and decoding processes.
The refocusing pulse sequence is shown in Fig. 2(b), where
the selective π pulses applied to spin H are hard rectangle
pulses with a duration of 20 μs, while the π pulses applied to
C1 or C2 are GRAPE pulses with a duration of 2 ms. Taking
into account the strong coupling in the Hamiltonian (1), we
choose the phases of the π pulses shown in Fig. 2(b) to obtain
a fidelity |Tr{UrefocusE}|/8 > 99.96%, where Urefocus denotes
the simulated unitary implemented by the pulse sequence, and
E denotes the identity operation.
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FIG. 1. Parameters of the spin qubits. (a) Chemical shifts shown
as the diagonal terms and the couplings between spins shown as the
nondiagonal terms in Hz. The inset shows the molecule structure
where the three qubits are H, C1, and C2. (b) The relaxation times T1

are measured by the standard inversion recovery sequence. T2’s are
measured by the Hahn echo with one refocusing pulse, by ignoring
the strong coupling in the Hamiltonian (1).

We choose the input states as ρin = X, Y , and Z, and
measure the polarization that remains after error correction
in ρout. The polarization ratios are denoted as fx , fy , and fz.
We use “entanglement fidelity,” represented as

f = (1 + fx + fy + fz)/4, (2)

(a)

(b)

FIG. 2. (Color online) Quantum network for quantum error
correction (a) where the T2 noise is introduced by a variable time delay
implemented by the pulse sequence (b) which refocuses the evolution
of the Hamiltonian (1) to an identity operation with theoretical fidelity
higher than 99.96%. In (b) the unfilled rectangle represents a hard π

pulse with duration of 20 μs. The filled rectangle represents a GRAPE
π pulse selective for C1 or C2 with duration of 2 ms. The phases of
the pulses are denoted above the rectangles.

to characterize how well the quantum information in ρin is
preserved [11].

The experimental results for QEC are shown in Fig. 3(a).
For each delay time, five experiments are repeated in order
to average the random experimental errors in implementation.
The results of error correction (EC) are represented by •. By
averaging the points for each delay time, we obtain the aver-
aged entanglement fidelity f shown as ×, which can be fitted to
0.9828 − 0.0166t − 0.5380t2 + 0.0014t3 with relative fitting
error 0.73%, shown as the thick dash-dotted curve.

In order to estimate the performance of the error correction
for the encoded states, we calculate the entanglement fidelity of
decoding (DE) through measuring the remaining polarization
before the application of the Toffoli gate, used as the error-
correcting step. In this case, the decoding operation is imple-
mented by one GRAPE pulse with theoretical fidelity >99.9%.
Similar to the measurement for error correction, we also repeat
five experiments for each delay time. The results are shown as
© in Fig. 3(a), and the data points after average are marked
by +, which can be fitted as 0.9982 − 0.4361t + 0.1679t2 +
0.2152t3 with relative fitting error 0.57%, shown as the thick
solid curve. Here the ratio of the first-order decay terms for
the two fits is found to be 26.2 ± 0.3. The important reduction
of the first-order decay term indicates the high quality of state
stabilization provided by QEC. As a comparison, we include
the experimental data from Ref. [4], which are marked as �
and � in Fig. 3(b) for the results of QEC and decoding. The
data can be fitted as 0.7895 − 0.0957t − 0.0828t2 + 0.0370t3

and 0.8539 − 1.1021t + 0.8696t2 + 0.0378t3 with relative
fitting errors 0.89% and 0.98%, respectively. The ratio of the
first-order decay terms is 11.5 ± 0.2.

In implementing the QEC code, the operations associated
with encoding, decoding, and error correction are subject to
errors, which would lower the ability of the code to protect
the quantum states. To estimate the effects of the errors, we
measure the free evolution decay (FED) of ρin under the
refocusing sequence shown in Fig. 2(b). Five experiments are
repeated for each delay time, and the experimental data for
f are shown as � in Fig. 3(a). The averaging points, shown
as �, can be fitted as 1.0056 − 0.4164t + 0.3363t2 − 0.2123t3

with relative fitting error 0.45%, shown as the dashed curve.
The ratio of the first-order decay terms in the fits of FED
and EC is 25.0 ± 0.3. Through comparing the results of
QEC and FED, one can find that the errors removed by the
QEC code can exceed the errors introduced by the extra
operations required by the code for delay time >0.0672 s
(∼6% of C1’s T2).

III. DISCUSSION

The pulse durations for encoding, decoding, and the combi-
nation of decoding and error correction are 8, 8, and 13.6 ms,
respectively. We exploit the results from simulation with ideal
pulses to estimate the errors due to the imperfection in pulse
implementation. In simulation, we choose an uncorrelated
error model for T2 errors and ignore T1 errors [12]. We
represent the measured fidelity as f = Afideal, where fideal

denotes the ideal fidelity by simulation and A denotes a factor
to estimate the deviation between experiment and simulation.
One should note that the theoretical entanglement fidelity of

034303-2



BRIEF REPORTS PHYSICAL REVIEW A 84, 034303 (2011)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.85

0.9

0.95

1

t (s)

f

(a)
EC, data

EC, average

DE, data

DE, average

EC, fit

DE, fit

EC, simulation

DE, simulation

FED, data

FED, average

FED, fit

FED, simulation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.5

0.6

0.7

0.8

0.9

f

(b)
EC, data, Cory [4]

DE, data, Cory [4]

EC, fit, Cory [4]

DE, fit, Cory [4]

FIG. 3. (Color online) (a) Experimental results for error correction (EC), decoding (DE), and free evolution decay (FED). For each delay
time, we take five data points by repeating experiments, shown as • for EC, © for DE, and � for FED. The averages are shown as ×, +, and
�, which can be fitted as 0.9828 − 0.0166t − 0.5380t2 + 0.0014t3 with relative fitting error 0.73%, 0.9982 − 0.4361t + 0.1679t2 + 0.2152t3

with relative fitting error 0.57%, and 1.0056 − 0.4164t + 0.3363t2 − 0.2123t3 with relative fitting error 0.45%, shown as the thick dash-dotted,
solid, and dashed curves, respectively. The ratios of the first-order decay terms in the fitted curves are calculated as 26.2 ± 0.3 for DE and EC, and
25.0 ± 0.3 for FED and EC, respectively. The thin dash-dotted, solid, and dashed curves show the fitting results using the ideal data points from
simulation by introducing factors of 0.983 ± 0.006, 0.998 ± 0.007, and 1.0098 ± 0.0064 for EC, DE, and FED, respectively. (b) Results in the
previous experiment [4], shown as the data marked by � and � for EC and DE, which can be fitted as 0.7895 − 0.0957t − 0.0828t2 + 0.0370t3

and 0.8539 − 1.1021t + 0.8696t2 + 0.0378t3 with relative fitting errors 0.89% and 0.98%, respectively. The ratio of the first-order decay terms
is 11.5 ± 0.2.

DE is the same as FED [12]. By fitting the data, we obtain
A = 0.983 ± 0.006, 0.998 ± 0.007, and 1.0098 ± 0.0064 for
EC, DE, and FED, respectively. The fitting results are shown as
the thin dash-dotted, solid, and dashed curves in Fig. 3(a). From
the simulation results, we estimate the errors in implementing
the operations associated with the QEC codes are about 1.2%
for DE and 2.7% for EC.

IV. CONCLUSION

We optimize the encoding, decoding, and error correction
as GRAPE pulses with high theoretical fidelities (>99.9%).
The refocusing sequence is exploited to suspend the evolution
of the Hamiltonian (1) with high fidelity (>99.96%). The
quality of readout signals is further improved by rf selection.
Compared with the experimental results of QEC obtained in
1998 [4], the pulse sequence fidelity is improved by about
20%. By the comparison with the free evolution decay, one
can benefit from QEC even when errors exist in implementing
the operations required for QEC. The improvement provided

by the error correction is also demonstrated by the reduction
of the first order in the decay of the remaining polarization
after error correction, compared with the decay of the encoded
states recovered by decoding and free evolution decay of the
input states. The “QEC advantage” for the encoded states
is improved by a factor of ∼2.3 from the 1998 result. In
the current experiment, the second-order term in the decay
after error correction is larger than the previous experiment
because of the larger phase errors due to the shorter T2 time
constants [see Fig. 1(b)], noting that T2’s are 3 s for H, 1.1 s
for C1, and 0.6 s for C2 in the previous experiment [4]. The
experimental errors arise mainly from the imperfection in im-
plementing the GRAPE pulses. Additionally, inhomogeneities
of magnetic fields and the limitation of T1 also contribute to
errors.
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