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Semi-device-independent random-number expansion without entanglement
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By testing the classical correlation violation between two systems, true random numbers can be generated and
certified without applying classical statistical method. In this work, we propose a true random-number expansion
protocol without entanglement, where the randomness can be guaranteed only by the two-dimensional quantum
witness violation. Furthermore, we only assume that the dimensionality of the system used in the protocol has a
tight bound, and the whole protocol can be regarded as a semi-device-independent black-box scenario. Compared
with the device-independent random-number expansion protocol based on entanglement, our protocol is much
easier to implement and test.
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I. INTRODUCTION

True random numbers have significant applications in
numerical simulation, lottery games, biological systems, and
cryptography [1]. More particularly, security of the quantum
key distribution (QKD) protocol [2] is based on the random
selection of the state preparation and measurement. If the
state preparation and measurement are pecisely known by the
eavesdropper, she can apply the man-in-the-middle attack [3]
to get all of the secret information without being discovered.
True random numbers should be unpredictable for the third
party, so most true random-number-generation protocols are
based on unpredictable physical processes [4–11]. Unfortu-
nately, the true random numbers generated by these proto-
cols can only be characterized with the classical statistical
method, such as the Statistical Test Suite from NIST [12,13].
Inspired by the device-independent quantum information
processing based on nonlocal correlations of entanglement
particles [14–16], Colbeck et al. [17,18] have proposed
the true random-number-generation protocol based on the
Greenberger-Horne-Zeilinger (GHZ) test and Pironio et al.
[19,20] have proposed the true random-number-generation
protocol certified by the Bell inequality violation. They have
also given a proof-of-concept experimental demonstration of
their protocol by approximately a one meter distance. The true
random-number-generation protocol based on entanglement
requires no assumption about the internal working of the
device in both states of measurement, thus the true random
number cannot be generated with only the classical method,
and the randomness of their experimental result can only be
certified by the Bell-inequality violation. Since the protocol
requires the preestablished true random number to select the
measurement bases, it can also be called a device-independent
random-number expansion protocol, correspondingly. In com-
parison with the random-number-generation protocol certified
by the classical statistical method, the device-independent
random-number expansion protocol offers a new method to
unequivocally quantify the observed random numbers.
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Both of the device-independent random-number expan-
sion protocols strongly suggest that only entanglement-based
protocols are suitable for establishing the quantified true
random numbers [17–20]. However, the entanglement-based
protocol has much more complicated experimental setups
compared with the one-way system, where the first black box
prepares an arbitrary quantum state and sends it to the other
black box to perform an arbitrary measurement. Furthermore,
most commerical true random-number-generation systems
are based on one-way protocols. Inspired by the method
of device-independent test of the classical and quantum
dimensions given by Gallego et al. [21], Pawlowski et al.
[22] have proposed a semi-device-independent one-way QKD
protocol with four input states and two measurement bases,
security of which was based on the two-dimensional quantum
witness and the quantum random access code. Here, we pro-
pose the one-way semi-device-independent random-number
expansion protocol without entanglement, the randomness
of which can be quantified with two-dimensional quantum
witness violation, and the experimental demonstration can be
established by combining the commerical QKD setup with
different modulation protocols, the randomness of which can
be proved in the following section by applying the numerical
calculation method. Similar to Colbeck and Pironio’s models,
our protocol requires no assumption about the internal working
of the state preparation and measurement device, except that
the two-dimensional quantum system and collective attacks
are bounded. However, we need the quantum state to be
prepared and measured in the same safe area; the quantum
state and classical information should not be divulged to the
eavesdropper in the unsafe area.

II. MODEL DESCRIPTION

We first illustrate the semi-device-independent random-
number expansion protocol, where only two black boxes in the
same safe area should be considered. The two black boxes can
be used for illustrating the state preparation and measurement,
respectively. A detailed scenario is depicted precisely in Fig. 1.

In the semi-device-independent random-number expansion
protocol, we randomly select four classical input bits a ∈
{00,01,10,11} in the first black box. When pressing the button
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FIG. 1. (Color online) Semi-device-independent random-number
expansion protocol. The protocol requires the state preparation black
box and the state measurement black box, respectively. Both of the
black boxes are in the same safe area.

a, the first black box will emit the classical or quantum
state ρa , then the prepared state ρa will be sent to the
second black box, correspondingly. When pressing the button
y = {0,1}, the second black box will emit the measurement
outcome b = {0,1}. Similar to the previous analysis based on
quantum dimension witness violation, we suppose that only
a two-dimensional system will be considered in this protocol,
thus ρa ∈ C2.

Formally, we can estimate the probability distribution by
repeating this procedure many times, which can be illustrated
precisely as the following equation:

P (b|ay) = tr
(
ρaM

b
y

)
, (1)

where Mb
y is the measurement operator acting on two-

dimensional Hilbert space with input parameter y and output
parameter b by considering the prepared state ρa . In this
protocol, the true random number can be produced by only
considering the date table P (b|ay). More precisely, we do
not require any assumption on how the probability was
obtained with two black boxes, except that the state preparation
and measurement can be guaranteed with two-dimensional
quantum witness.

We will use the following expectation value to illustrate
the probability distribution for the convenient analysis in the
following section:

Eay = P (b = 0|ay), (2)

where P (b = 0|ay) + P (b = 1|ay) = 1; the set of probability
distributions Eay can be used for illustrating the quantum
dimension witness. From the theoretical aspect, two types
of two-dimensional quantum witness inequalities have been
proposed, respectively [21,22]. We will apply the following
tight two-dimensional classical witness in our randomness
analysis

T ≡ E000 + E001 + E010 − E011

−E100 + E101 − E110 − E111 � 2, (3)

where we only consider the four state preparation and
two measurement bases case in this inequation. The other
similar expression with the three state preparation and two
measurement bases case has also been given in Ref. [21],
but we can simply verify that the two-dimensional quantum
witness in this case cannot be used for generating true random
numbers.

More precisely, the tight two-dimensional quantum witness
can be given as the following inequation (more detailed
information about this inequation can also be found in
Ref. [22]):

T ≡ E000 + E001 + E010 − E011

−E100 + E101 − E110 − E111 � 2.828. (4)

The maximal value of the two-dimensional quantum witness
can be calculated numerically. More interestingly, it can also
be analyzed by applying the 2-to-1 quantum random access
code protocol [22,25], where Alice receives two uniformly
distributed bits a and sends the encoded physical system ρa to
Bob, and Bob is asked to guess one of Alice’s bits randomly.
This two-dimensional quantum witness is the main tool to
analyze the proposed random-number expansion protocol, and
our main result is to establish the relationship between the
randomness of the measurement outcome and its expected
two-dimensional quantum witness violation.

We quantify the randomness of the measurement outcome
b conditioned on the input values a and y by the following
min-entropy function [26]:

H∞(B|A,Y ) ≡ −log2[maxb,a,yP (b|a,y)]. (5)

From this equation, we can see that the purpose of this paper
is to obtain the upper bound of the conditional probability
distribution P (b|a,y) for a given two-dimensional quantum
witness T . More precisely, the maximal probability distribu-
tion maxb,a,yP (b|a,y) denotes the solution to the following
optimization problem:

maxb,a,yP (b|a,y)

subject to :

Eay = tr
(
ρaM

0
y

)
,

E000 + E001 + E010 − E011

−E100 + E101 − E110 − E111 = T , (6)

where the optimization is carried out by arbitrary quantum
states {ρ00,ρ01,ρ10,ρ11} and measurement operators {M0

0 ,M0
1 }

defined over two-dimensional Hilbert space. In the most
general case, we should consider the positive-operator-valued
measure (POVM) {M0

0 ,M1
0 } and {M0

1 ,M1
1 }, where M0

0 +
M1

0 = M0
1 + M1

1 = I . Fortunately, Masanes [27] has proved
that only the projective measurement should be considered in
the case of two-observable and two-measurement outcomes.
Since T is the linear expression of the probabilities, we can
only consider pure states [21] preparation in our numerical cal-
culation. Without loss of generality, the state preparation and
measurement in our numerical calculation can be illustrated
precisely with the following equations, respectively:

ρa = |ϕ(a)〉〈ϕ(a)|, (7)

|ϕ(a)〉 =
(

cos( θa

2 )

eiηa sin( θa

2 )

)
, (8)

M0
0 =

(
1 0

0 0

)
, (9)

M0
1 =

(
cos2( θ

2 ) 1
2e−iη sin(θ )

1
2eiη sin(θ ) sin2( θ

2 )

)
, (10)
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where a ∈ {00,01,10,11}, 0 � θa, θ � π , 0 � ηa, η � 2π .
By solving the maximization problem, we get the min-entropy
bound of the measurement outcome for given two-dimensional
quantum witness T . A detailed expression of the relationship
between the two-dimensional quantum witness violation and
the min-entropy boundis depicted precisely in Fig. 2.

The calculation result show that if the the violation of the
two-dimensional quantum witness is larger than 2.64, the semi-
device-independent true random number can be expanded
correspondingly. The maximal value of the min-entropy bound
in our numerical calculation is 0.206, which can be satisfied in
cases where the two-dimensional quantum witness violation
is 2.828.

III. EXAMPLE DESCRIPTION

In this section, we give a practical protocol to illustrate the
semi-device-independent random-number expansion protocol.
This protocol is equal to the (2,1,0.85) quantum random access
code protocol [22–25]. In this particular protocol, the state
preparation in the first black box can be illustrated precisely
as the following equations:

|ϕ(00)〉 = cos

(
π

8

)
|0〉 + sin

(
π

8

)
|1〉,

|ϕ(01)〉 = cos

(
7π

8

)
|0〉 + sin

(
7π

8

)
|1〉,

|ϕ(10)〉 = cos

(
3π

8

)
|0〉 + sin

(
3π

8

)
|1〉, (11)

|ϕ(11)〉 = cos

(
5π

8

)
|0〉 + sin

(
5π

8

)
|1〉.

FIG. 2. (Color online) The relationship between the two-
dimensional quantum witness and the the min-entropy bound. The
min-entropy starts at zero in the two-dimensional classical witness
case; systems that violate the two-dimensional quantum witness 2.64
have a positive min-entropy.

For the state measurement in the second black box, we will
apply the two projective measurements with the following
bases: {

M0
0 = |0〉〈0|, M1

0 = |1〉〈1|},
(12){

M0
1 = |+〉〈+|, M1

1 = |−〉〈−|},
where |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = − 1√

2
(|0〉 − |1〉). The

two-dimensional quantum witness in this protocol is 2.828,
which is the maximal two-dimensional quantum witness
violation. Combining this state preparation and measurement
protocol with the true random-number extraction analysis
result, we can numerically calculate that min-entropy bound
of the expanded random bit is 0.206. Note that we only need
true random numbers a and y to estimate dimension witness
value. No more random numbers should be preestablished by
two black boxes, thus our random-number expansion protocol
only needs few true random number seeds.

Since the BB84 protocol is also based on the four input
states and two measurement bases case, one natural question
is to consider whether the BB84 protocol can be used for gener-
ating true random numbers, applying our randomness analysis
method. Unfortunately, the quantum dimension witness value
in this case does not violate 2.64. More precisely, the state
preparation in the BB84 protocol can be illustrated as

ϕ̃(00)〉 = |0〉, |ϕ̃(01)〉 = |−〉,
(13)

|ϕ̃(10)〉 = |+〉, |ϕ̃(11)〉 = |1〉.
The measurement bases are equal to the (2,1,0.85) quantum
random access code case {M0

0 = |0〉〈0|, M1
0 = |1〉〈1|} and

{M0
1 = |+〉〈+|, M1

1 = |−〉〈−|}. Then the dimension witness
achieves T = 2, which indicates that no true random numbers
can be generated and certified by considering the semi-device-
independent random -number expansion protocol.

IV. DISCUSSION

We have proposed a true random-number expansion pro-
tocol in this paper. The generated random numbers can be
quantified with two-dimensional quantum witness violation,
not based on the classical statistical method. Compared with
the quantified random-number expansion protocol based on
entanglement, we provide a much simpler method. Our proto-
col does not need any entanglement, which is a complicated to
produce and high-cost resource. Unfortunately, since the max-
imal ratio of the expanded random number is 0.206, our pro-
tocol has a much lower random-number expansion efficiency.
However, since our semi-device-independent random-number
expansion protocol is much easier to implement than the full-
device-independent protocol based on entanglement, thus the
semi-device-independent protocol will generate much more
random numbers than the full-device-independent protocols
in the same period of time.

The question remains on whether a much higher efficiency
random-number expansion protocol can be found in future
research based on quantum dimension witness violation. We
suppose that the n-to-m (n > 2) quantum random access code
protocol may be used for generating much more true random
numbers. Similar to the security analysis given by Pironio
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et al. [20], it also will be very interesting to analytically prove
the min-entropy bound H (B|A,Y ) by considering the quantum
dimension witness violation T .

Device-independent quantum information processing has
attracted much attention for its higher-level security in compar-
ison with the protocol based on trusted devices. Combining the
semi-device-independent random-number expansion protocol
with the device-independent QKD protocol, we hope to get a
much higher-level security than the QKD protocol based solely
on some mathematical methods certified random numbers.
More interestingly, we can also apply this min-entropy bound
to estimate the upper bound of the eavesdropper’s information

in the security proof of semi-device-indepdnent one-way QKD
protocol [22].
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