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The most simple and seemingly straightforward application of the photon blockade effect, in which the transport
of one photon prevents the transport of others, would be to separate two incoming indistinguishable photons
to different output ports. We show that time-energy uncertainty relations inherently prevent this ideal situation
when the blockade is implemented by a two-level system. The fundamental nature of this limit is revealed in the
fact that photon blockade in the strong coupling regime of cavity QED, resulting from the nonlinearity of the
Jaynes-Cummings energy level structure, exhibits efficiency and temporal behavior identical to those of photon
blockade in the bad cavity regime, where the underlying nonlinearity is that of the atom itself. We demonstrate
that this limit can be exceeded, yet not avoided, by exploiting time-energy entanglement between the incident
photons. Finally, we show how this limit can be circumvented completely by using a three-level atom coupled to
a single-sided cavity, enabling an ideal and robust photon routing mechanism.
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I. INTRODUCTION

Often described as the optical equivalent of Coulomb
blockade [1,2], photon blockade [3–6], in which the trans-
port of only one photon through a nonlinear system is
possible, whereas excess photons are rejected, is one of the
few photon-photon interactions that have been demonstrated
experimentally to date. Such nonlinear interactions at the
single-photon level are inherently nonclassical and form the
basis for quantum information processing with photonic qubits
[7–10]. In particular, the demonstration of the photon blockade
is considered a significant step toward the goal of single-photon
routing [11]. Two mechanisms of photon blockade have been
demonstrated in recent years [4–6]. Both mechanisms rely on
the coupling of an atom (or another two-level system such as a
quantum dot [12]) to cavity-enhanced electromagnetic modes.

In this work we establish that such an apparatus is inherently
insufficient for the task of photon routing and that a three-level
system at least is needed to ensure a deterministic and efficient
routing process. We demonstrate this by analyzing the simplest
case of an input pulse containing exactly two photons and
deriving the probability for a successful routing event, namely
that the system will direct each photon to a different output
mode.

The limit on nonlinear interaction between a two-level
system and such a pulse results from the trade-off between
the interaction bandwidth and the memory time of the system,
which are both dictated by the coupling strength to the
electromagnetic mode. Thus, a pulse that is short enough to
guarantee that the two photons arrive within the memory time
of the system will have a bandwidth that exceeds the interaction
bandwidth. Conversely, a pulse that is narrow-band enough to
be included completely within the interaction bandwidth will
be long enough to allow the system to respond to each photon
as if it were the only one.

The outline of the paper is as follows. In Sec. II we present
both analytical derivations and numerical calculations of the
efficiency of two-photon routing based on photon blockade in
cavity quantum electrodynamics (QED) [13,14]. The temporal
behavior of the blockade mechanism is essentially the same
in the bad cavity regime as in the strong coupling regime,

despite the fact that the underlying nonlinearity differs in
the two regimes. We show that the routing efficiency is
inherently limited to ∼64% in both cases. In Sec. III we
study the possibility of exceeding this limit by using a
time-energy entangled photon pair as the input pulse. This
case seems especially relevant in light of the fact that such
entanglement can be created by a two-level system coupled
to a single electromagnetic mode [15,16], and so one could
think of a two-stage process in which the first interaction
creates the entanglement between the photons and the second
interaction performs the routing mechanism. However, our
analysis shows that even ideal time-energy entanglement can
increase the routing efficiency up to only ∼77%. Time-energy
entanglement generated by a two-stage interaction with a two-
level system is even more limited and increases the efficiency
up to only ∼68%. Finally, in Sec. IV we study the configuration
of a three-level atom coupled to a single-sided cavity. Recent
studies by Koshino et al. [17] and Gea-Banacloche et al.
[18] have shown that this configuration enables deterministic
mapping of a photonic state to the atom. We utilize this scheme
to construct an ideal photon router that does not suffer from
the inherent limits of photon blockade with a two-level system
and show that its efficiency can approach ∼100% with realistic,
experimentally achievable parameters.

II. FUNDAMENTAL LIMIT FOR PHOTON BLOCKADE
WITH A TWO-LEVEL SYSTEM

The first demonstration of the photon blockade was per-
formed with Cs atoms strongly coupled to a Fabry-Pérot
cavity [4] and later with quantum dots coupled to a photonic
crystal resonator [6]. In this strong coupling regime, where the
coupling rate between the atom and the cavity is larger than all
the other rates in the system, the photon blockade relies on the
anharmonicity of the energy levels of the coupled atom-cavity
system [4,19], meaning that multiphoton excitations of the
coupled system occur at frequencies that differ from those
of a single-photon excitation. A similar anharmonicity of
the spectrum of semiconductor systems has been used to
demonstrate single-photon sources [20,21].
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FIG. 1. (Color online) Schematic depiction of a microtoroid
setup. Note that bin (not shown here) is vacuum.

The second photon blockade mechanism occurs at the
bad cavity limit [22], in which the cavity-enhanced coupling
of the atom to one electromagnetic mode is faster than its
spontaneous emission to all other modes yet slower than the
cavity decay rate. Therefore, although strong coupling is not
achieved, the atom interacts mostly with one electromagnetic
mode and can thus be perceived as a one-dimensional atom
[23]. The blockade effect is then typically described as a
dynamical process, equivalent to antibunching in free space
resonance fluorescence [24]. This stems from the fact that
in the bad cavity regime, the scattered photon escapes the
cavity immediately, before the atom (which collapsed to the
ground state) can rebuild its polarization and scatter another
photon. Nonetheless, one can consider this mechanism in the
spectral domain as well, like in the strong coupling regime.
The difference is that, in this case, the anharmonicity is of the
atomic energy levels, where, again, multiphoton excitations
occur at frequencies that differ from those of a single-photon
excitation. In either case, the final result can be described as
a “photon turnstile” in continuous operation, since photons
are transmitted (or reflected) one by one, as was demonstrated
with Cs atoms coupled to a whispering gallery mode of a
fiber-coupled microtoroid cavity [5,11].

A. Photon blockade in the bad cavity limit

We begin by analyzing the blockade mechanism in the bad
cavity limit. For this we consider a system similar to that of
Ref. [11], namely a single atom interacting with a fiber-coupled
microtoroid, as depicted in Fig. 1.

The two counterpropagating modes of the microtoroid, â

and b̂, are evanescently coupled to the atom with coupling
strength g and decay to the tapered fiber at a rate 2κex � g.
Since we are interested in inherent limits to the routing effect,
we shall assume at first that parasitic effects such as scattering
between the cavity modes, intrinsic losses of the cavity, and
the natural decay of the atom are significantly slower than all
the other processes in the system. The dominant parameter
in the system is, thus, the cavity decay rate into the fiber,
which brings us into the bad cavity regime. It is important,
however, to make a distinction between this situation, in
which the cavity is intentionally made to decay into the
fiber, and a truly “bad” cavity that decays quickly due to
high intrinsic losses. Thus, we shall henceforth refer to this
regime as the fast cavity regime instead of the bad cavity
regime.

We define the routing efficiency C tr as the probability of
detecting one photon in the transmitted mode âout and one in

the reflected mode b̂out, given that the input mode âin initially
contains a two-photon pulse. Neither the time interval between
the two clicks, nor their absolute time of occurrence are of
importance, and, hence, for calculating the probabilities for the
four possible detection events, we integrate over all possible
detection times:

P tr =
∫ ∞

0

∫ ∞

−∞
�tr dtdτ,

P rt =
∫ ∞

0

∫ ∞

−∞
�rt dtdτ,

(1)

P rr =
∫ ∞

0

∫ ∞

−∞
�rr dtdτ,

P tt =
∫ ∞

0

∫ ∞

−∞
�tt dtdτ ,

where r stands for reflected and t for transmitted, and

�tr(t,τ ) = 〈â†
out(t)b̂

†
out(t + τ )b̂out(t + τ )âout(t)〉,

�rt(t,τ ) = 〈b̂†out(t)â
†
out(t + τ )âout(t + τ )b̂out(t)〉,

(2)
�rr(t,τ ) = 〈b̂†out(t)b̂

†
out(t + τ )b̂out(t + τ )b̂out(t)〉,

�tt(t,τ ) = 〈â†
out(t)â

†
out(t + τ )âout(t + τ )âout(t)〉,

are the second-order correlation functions of the two output
modes. Note that this definition is already normalized so
P tr + P rt + P rr + P tt = 1. The appropriate expression for the
routing efficiency is thus given by

C tr = P rt + P tr. (3)

Accordingly, P tt and P rr denote the probabilities of the
two failure mechanisms of the routing process, namely the
probabilities for both photons to be transmitted or for both
photons to be reflected, respectively.

For an ideal router, events where both photons are transmit-
ted or both are reflected should not occur: P tt = P rr = 0 and
thus C tr = 1. In comparison, for a simple 50:50 beam splitter,
any of the four possibilities is equally likely, hence C tr = 0.5.
Any useful photon router should thus satisfy C tr > 0.5, which
is also the quantum limit, above which the Cauchy-Schwartz
inequality for classical fields is violated.

B. One- and two-photon source: The feeder cavity

In order to analyze the temporal behavior of a pulse inter-
acting with this system and the resulting routing efficiency,
we model the fiber by a feeder cavity containing the desired
number of excitations (Fig. 2).

The decay rate of the feeder cavity 2κs gives a measure
of the inverse of the resulting driving pulse width. Using the
input-output formalism [25–27] and eliminating the micro-
toroid cavity modes adiabatically, which is justified in the fast
cavity regime for which κex � g, we can write for the output
modes

âout =
√

2κsâs +
√

2γcσ̂ , (4a)

b̂out =
√

2γcσ̂ , (4b)

where âs is the annihilation operator of the feeder cavity field,
σ̂ is the lowering operator for the atom, and 2γc = 2g2/κex
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FIG. 2. A schematic of the photon router model. The input pulse
is modeled by introducing a feeder cavity which leaks into the system
with rate 2κs .

is the cavity-enhanced atomic decay rate per output channel.
Since only normally ordered moments of the output operators
are considered, the vacuum noise input operators âs,in and
b̂in have been discarded. Equation (4a) reflects the fact that
emission of a photon into âout by the feeder cavity and by the
cavity-enhanced atom are indistinguishable. Accordingly, it is
the interference between both paths that is detected. However,
since we assumed the scattering between the cavity modes
is negligible, only the atom is able to reflect a photon, and
hence no interference will be observed in the reflected mode
described in Eq. (4b) (assuming b̂in is vacuum).

The non-Hermitian effective Hamiltonian corresponding to
the cascaded system of Fig. 2 is given by (h̄ = 1) [28]

Ĥ1 = −iκs â
†
s âs − 2iγcσ̂

†σ̂ − 2i
√

κsγcσ̂
†âs . (5)

Note that the interaction between the feeder cavity and the
system is unidirectional and that it produces an exponentially
decaying driving pulse. Also, since the atom can decay into
two counterpropagating modes, the atomic population decay
rate is 4γc instead of 2γc.

C. Results

1. Single-photon driving pulse

As a simple example, consider a driving pulse containing a
single photon. The initial state is then

|ψ(0)〉 = |1g〉 , (6)

where the first index in the ket gives the number of photons in
the feeder cavity and the second index describes whether the
atom is excited (e) or in its ground state (g). The state evolves
according to the Schrödinger equation iψ̇ = Ĥ1ψ to

|ψ(t)〉 = a(t) |1g〉 + b(t) |0e〉 , (7)

with

a(t) = e−κs t ,
(8)

b(t) = − 2
√

κsγc

2γc − κs

(e−κs t − e−2γct ),

where, henceforth, the exponential functions are defined to be
zero for t < 0. We use Eq. (4) to evaluate the photon flux at the
output modes with this state and integrate over time to define

single-photon transmission and reflection probabilities

T =
∫ ∞

0
〈â†

out(t)âout(t)〉 dt = κs

κs + 2γc

, (9a)

R =
∫ ∞

0
〈b̂†out(t)b̂out(t)〉 dt = 2γc

κs + 2γc

, (9b)

respectively.
As is evident from Eq. (9), for long enough pulses (κs �

γc), T → 0,R → 1 and all light is reflected. This is due to the
destructive interference between the atomic dipole radiation
and the driving field in the forward direction. For short pulses
(κs � γc), however, the atom has no time to build up the
necessary dipole, and the photon is transmitted.

2. Two-photon driving pulse

For deducing the routing properties of this system, we need
to study the deviation from the linear behavior of Eq. (9) and
analyze the case of more than one photon in the pulse. The
source of the nonlinearity is evident already in Eq. (4), in the
presence of the atomic lowering operator in the expressions for
the output mode operators. In particular, detection of a reflected
photon projects the atom to its ground state, preventing the
immediate scattering of a second photon and also disrupting
the destructive interference in the forward direction, possibly
allowing the second photon to slip through and be transmitted
[28]. In order to derive an analytic description for this effect
we follow the evolution of a state in which the feeder cavity
initially contains two photons. This initial state evolves to

|ψ(t)〉 = α(t) |2g〉 + β(t) |1e〉 , (10)

where

α(t) = e−2κs t ,
(11)

β(t) = −2
√

2γcκs

2γc − κs

[e−κs t − e−2γct ]e−κs t .

After the detection of one photon, the wave function collapses
to a state containing only a single excitation, which can be
either in the cavity or in the atom. In the first case the
subsequent evolution is again given by Eqs. (7) and (8),
whereas in the second case, the state evolves to |ψ(t)〉 =
c(t) |0e〉, with

c(t) = e−2γct . (12)

Substituting these expressions into Eq. (2), the second-order
correlation functions become

�tr(t,τ ) = 4|√γc{[
√

2κsα(t) + √
γcβ(t)]b(τ )

+√
κsβ(t)c(τ )}|2,

�rt(t,τ ) = 4|√γcβ(t)[
√

κsa(τ ) + √
γcb(τ )]|2, (13)

�rr(t,τ ) = 4|γcβ(t)b(τ )|2,
�tt(t,τ ) = 4|[

√
2κsα(t) + √

γcβ(t)][
√

κsa(τ ) + √
γcb(τ )]

+√
γcκsβ(t)c(τ )|2.

Substituting these correlation functions into Eq. (1) and
performing the integration leads to the following expressions
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FIG. 3. (Color online) Two-photon detection probabilities as a
function of the pulse width κ−1

s .

for the various probabilities for transmission or reflection of
the photons

P tr = 12κsγc(γc + κs)

(2γc + κs)2(2γc + 3κs)
,

P rt = 4κsγ
2
c

(2γc + κs)2(2γc + 3κs)
,

(14)

P rr = 8γ 3
c

(2γc + κs)2(2γc + 3κs)
,

P tt = κs

(
3κ2

s + 4γ 2
c + 2κsγc

)
(2γc + κs)2(2γc + 3κs)

.

These probabilities and the corresponding routing efficiency
C tr = P tr + P rt are presented in Fig. 3 as a function of the
pulse width.

As is evident, there is no pulse width for which both
failure mechanisms P tt,P rr are zero, and, therefore, the routing
efficiency C tr is a compromise, reaching a maximal value
of only ∼64%. These results are consistent with previous
works by Koshino et al. [29,30] and Shapiro [31], although
our model and derivation differ. The physical origin of the
limited routing efficiency relies on the interplay between two
counteracting effects. On one hand, if the pulse is significantly
longer than γ −1

c , the atom has time to re-establish its dipole
after the first scattering and, therefore, will be able to scatter
the second photon backward as well when it arrives. On the
other hand, due to time-energy uncertainty relations, a pulse
that is significantly shorter than γ −1

c must have a bandwidth
that exceeds 2γc, which is also the interaction bandwidth of the
atom. Thus, such a pulse will have some spectral components
that cannot interact with the atom, and, consequently, there
will be a probability for both photons to be transmitted. Since
these two effects occur on the same time scale, the efficiency
is inherently limited.

In order to gain more insight into the dynamics of this
process, we present in Fig. 4 the correlation functions of
Eq. (13) with t integrated over the entire pulse for long, short
and intermediate pulses. This integration results in a marginal
probability density function, displaying the relative probability
for each of the four detection events as a function of the time
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FIG. 4. (Color online) Marginal probability density functions of
the various reflection and transmission events, as a function of the
interval between the photon detection times τ , for (a) long pulses
(κs = 0.05γc), (b) short pulses (κs = 5γc), and (c) intermediate pulses
(κs = 1.5γc). The different curves correspond to events of double
reflection (RR), double transmission (TT), a transmission followed
by a reflection (TR), and a reflection followed by a transmission (RT).
Note that RR is practically zero in (b).

interval between the two detections τ . A second integration
over τ would result in the probabilities of Eq. (14).

For all pulse lengths the reflection-reflection component
RR is antibunched, corresponding to the projection of the
atom to the ground state following the reflection of the first
photon. This is the blockade effect, which implies that photons
are reflected on a one-by-one basis. The antibunching of RR
naturally leads to a complementary peak in the reflection-
transmission graph RT, since at that time scale a second
photon must be transmitted. The transmission-transmission
component TT, however, results from different mechanisms at
short and long pulses; at short pulses (Fig. 4(b)) it reflects
the probability that the (spectrally broad) photons did not
interact with the atom at all, and, therefore, the peak in TT
is as narrow as the pulse. For long pulses (Fig. 4(a)), TT
results from the probability that the atom let one photon “slip
through,” since it was already excited at that moment by
the other photon. In that case the atom can emit the second
photon both forward and backward at equal probabilities;
emission forward is the one that is presented in the TT
graph, which is thus as wide as the atomic time scale
γ −1

c . Backward emission of the second photon leads to a
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transmission-reflection event TR, which is perhaps the most
interesting process of the four. In particular, as we see in
Fig. 4(c), TR is the component that contributes the most to
the routing efficiency C tr at intermediate pulses and not, as
one would have expected naively, the antibunching of the RR
process, whose contribution is negligible at intermediate and
short pulse lengths.

The underlying mechanism of the TR event with interme-
diate pulses is the simple fact that the photon emission rate
from a feeder cavity occupied by two photons is twice as
large as the emission rate from a cavity containing only one
photon. Consequently, a first photon is very likely to arrive
shortly after the beginning of the pulse, before the atom builds
its dipole field, and thus it is likely to be transmitted. The
time interval between the first photon and the arrival of the
remaining second photon is expected to be longer, giving
the atom enough time to reflect it. As in the case of TT,
transmission of the first photon does not necessarily leave
the second photon in the feeder cavity but can also result
in the collapse of the atom to its excited state, from which the
photon has a 50% probability of being reflected. These two
mechanisms interfere constructively for the case of TR, but
destructively for TT, thus considerably enhancing the routing
efficiency.

D. Simulations

In our calculations so far, the temporal profile of the pulse
is the only free parameter in the problem, and, thus, the limited
efficiency of the photon blockade mechanism is inherent and
unavoidable. In order to verify the analytic calculations, and
also to check the effect of using various pulse shapes, a
wave function approach using a nonunitary Hamiltonian was
used to provide a fully quantized and complete simulation
of the setup, including the microtoroid cavity (which was
adiabatically eliminated in our analytical calculations). The
initial two-photon state is specified by

|ψ〉 =
∫ ∫ ∞

−∞
f (x1,x2)

â
†
r (x1)â†

r (x2)√
2

|0g〉 dx1dx2, (15)

where â
†
r (x) and âr (x) [â†

l (x) and âl(x)] create and annihilate
a right (left) propagating photon at a location x in the fiber.
|0〉 denotes the vacuum state of the microtoroid cavity, and |g〉
the ground state of the atom. f (x1,x2) is a normalized weight
function that describes the probability amplitude of the two
photons to be located at x1 and x2. The effective Hamiltonian
is given by [32,33]

Heff =
∫

dxâ†
r (x)

(
ω0 − ivg

∂

∂x

)
âr (x)

+
∫

dxâ
†
l (x)

(
ω0 + ivg

∂

∂x

)
âl(x)

+ (ωc − iκi)(â
†â + b̂†b̂) + (ωa − iγ )σ̂ †

0 σ̂0

+
∫

dx χ (x)[V â†
r (x)a + V ∗â†âr (x)]

+
∫

dx χ (x)[V â
†
l (x)b + V ∗b̂†âl(x)]

+ (gâσ̂
†
0 + g∗â†σ̂0) + (g∗b̂σ̂

†
0 + gb̂†σ̂0), (16)
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FIG. 5. (Color online) Simulated results for the two-photon
detection probabilities as a function of the pulse width for square
pulses (dashed curves), Gaussian pulses (dash-dotted curves), and
exponential pulses (solid curves). For square and Gaussian pulses the
pulse width κ−1

s is defined by their half width at half maximum. The
parameters are g/2π = 70 MHz, κex/2π = 500 MHz, without losses
(κi = γ = 0). We note that the simulated results for exponential
pulses are practically identical to the analytically calculated results
presented in Fig. 3.

with â and â† (b̂ and b̂†) the annihilation and creation operators
associated with the counterclockwise (clockwise) microtoroid
cavity modes of frequency ωc. ω0 is the central frequency
of the pulse around which the fiber dispersion relation is
linearized. σ̂

†
0 and σ̂0 are the bare atom raising and lowering

operators of the transition with frequency ωa . vg is the group
velocity of the pulse as it propagates through the fiber. 2γ

is the population decay rate of the bare atom and 2κi is the
intrinsic microtoroid cavity decay rate. The coupling strength
between the fiber and the cavity is denoted by V = √

2κexvg .
The coupling between the cavity and the fiber is assumed to
have a normal distribution χ (x) ∝ e− 1

2 (2x/LT )2
, where LT is the

effective interaction length.
Figure 5 presents the routing efficiency for various input

pulse shapes, demonstrating little dependence on the pulse
profile. Gaussian pulses have been found to yield the best
results, with a routing efficiency of C tr = 66.8%, yet the
inherent conflict and the resulting limited efficiency remain.

E. Photon blockade in the strong coupling regime

The analysis so far relied on the fact that only one-
photon transitions could take place, since atomic two-photon
transitions (such as from 5S1/2 to 5D5/2 in Rb) occur at a
different frequency. Thus, the atom behaves as a two-level
system capable of dealing with only one excitation, with a
linewidth dictated by the cavity-enhanced coupling to the
output modes γc. Exactly the same results are expected in
the case of photon blockade in the strong-coupling regime
of cavity QED. In that regime, the nonlinear system is not
the atom but rather the coupled atom-cavity system, in which
one-photon resonance and two-photon resonance are indeed
at different frequencies [34]. The linewidth of each of the
vacuum Rabi sidebands in that case is (κ + γ )/2, with κ being
the bare cavity linewidth and γ the atomic linewidth in free

033854-5



SERGE ROSENBLUM, SCOTT PARKINS, AND BARAK DAYAN PHYSICAL REVIEW A 84, 033854 (2011)

2γs κ′
s

κs
γc

âs
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FIG. 6. The feeder cavity is driven by a three-level atom emitting
two photons at once.

space. Thus, all our results so far are relevant for the photon
blockade in the strong coupling regime as well, in which the
interaction involves one of the Rabi sidebands, at detuning g

from the bare-cavity resonance. The only difference, therefore,
is that the bandwidth (κ + γ )/2 replaces γc in all the preceding
expressions. We verified this by performing fully quantized
simulations using the above method in the strong coupling
regime, with the photons tuned to one of the Rabi sidebands.
Indeed, these simulations yield results indistinguishable from
those obtained in the fast cavity regime.

III. ROUTING EFFICIENCY USING TIME-ENERGY
ENTANGLED PHOTONS

As established in the previous section, time-energy uncer-
tainty relations are the key mechanism that limits the routing
efficiency. Therefore, it is interesting to study the possible
influence of using time-energy entangled photon pairs as the
input two-photon pulse.

A. Three-level atom source of photon pairs

In order to obtain analytic expressions, the input pulse is
now modeled by introducing a two-photon emitting atom with
an infinitesimal intermediate state lifetime (Fig. 6) driving the
feeder cavity. Two photons are, thus, simultaneously emitted
into the feeder cavity at a rate 2γs , from which they decay
independently at a rate 2κs . The feeder cavity then “smears
out” the ideal entanglement generated by the three-level
atom. Therefore, the ratio κs/γs sets the amount by which the
two-photon pulse that drives the router is temporally squeezed.

The effective Hamiltonian to be used in this case is

Ĥ = −iκs â
†
s âs − 2iγs σ̂s

†σ̂s − 2iγcσ̂
†σ̂

− 2i
√

2κ ′
sγs σ̂s(â

†
s )2 − 2i

√
κsγcσ̂

†âs , (17)

where σ̂s
†, σ̂s are the raising and lowering operators of the

three-level atom for the transition from the upper state e to the
ground state g. κ ′

s � κs is the linewidth of the left mirror of
the feeder cavity and is taken to be very small but nonzero to
allow the feeder cavity to be driven by the three-level atom.
Note that although the quantity of interest is the entangled
pulse transmitted to the router, most of the pulse does not
enter the feeder cavity, and, hence, only events whereby both
photons enter the feeder cavity are taken into account. The
two-photon state can be expanded as

|ψ(t)〉 = ξ (t) |e0g〉 + α(t) |g2g〉 + β(t) |g1e〉 , (18)

where the first index describes the state of the three-level atom.
Solving the Schrödinger equation we obtain

ξ (t) = e−2γs t , α(t) = −2

√
κ ′

sγs

κs − γs

[e−2γs t − e−2κs t ],

(19)

β(t) = −4
√

2κ ′
sκsγsγc

(2γc − κs)e−2γs t + (2γs − 2γc − κs)e−2κs t + 2(κs − γs)e−(2γc+κs )t

(2γc − κs)(2γs − 2γc − κs)(κs − γs)
.

By substituting these expressions into Eq. (13), the routing
efficiency can be calculated using Eqs. (1)–(3), where a(t),
b(t), and c(t) are those of Eqs. (8) and (12). This leads to
the following expressions for the transmission and reflection
probabilities:

P tr = 4κsγc (6γs(γc + κs) + (γc + 2κs)(2γc + 3κs)

(2γc + κs)2(2γc + 3κs)(2γs + 2γc + κs)
,

P rt = 4κsγ
2
c (2(γs + γc) + 3κs)

(2γc + κs)2(2γc + 3κs)(2γs + 2γc + κs)
,

P rr = 8γ 3
c (2(γs + γc) + 3κs)

(2γc + κs)2(2γc + 3κs)(2γs + 2γc + κs)
, (20)

P tt =
κs

[
8γ 2

c (γs + γc) + 4γcκs(γs + 2γc)
+ 2κ2

s (3γs − 2γc) + 3κ3
s

]

(2γc + κs)2(2γc + 3κs)(2γs + 2γc + κs)
.

Note that these equations coincide with Eqs. (14) in the limit of
an unentangled input pulse (γs → ∞). We see that the routing
efficiency (Fig. 7) increases significantly as the entanglement

is increased, reaching a 10% improvement at κs/γs ≈ 5.
For even larger values of κs/γs , the increase becomes less
pronounced, and the efficiency tends to an asymptotic value
of ∼77%, as was also verified with the simulation described
above. Thus, we see that even an entangled state at the input
cannot completely eliminate the conflict that limits the routing
efficiency of a two-level system.

B. Cavity QED source of photon pairs

Although an entangled two-photon input pulse does not
enable ideal routing, the increased efficiency obtained in this
scenario seems potentially useful, especially since time-energy
entanglement can be generated within a two-photon pulse by
reflecting it from a single-sided cavity containing a two-level
atom [15,16], as depicted in Fig. 8. Thus, one could imagine
performing a two-stage interaction with a cavity QED system,
the first for generating the entanglement and the second for
performing the routing. The underlying physical effect behind
the generation of entanglement is the same interference that
occurs between the driving field and the atomic dipole, which
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FIG. 7. (Color online) The routing efficiency C tr as a function of
the pulse length κ−1

s and the ratio κs/γs .

suppresses the forward transmission in the regular cavity
configuration and leads to the backscattering of the photon.
However, in the case of a single-sided configuration, there is
only one cavity mode, and the destructive interference between
the atomic dipole and the driving field is only partial such
that the emitted photon flux equals the incoming photon flux.
Once a photon is scattered, however, the atomic state flips its
phase, and, subsequently, the destructive interference becomes
a constructive one. In more detail, the effective Hamiltonian
modeling the passage of a pulse through a single-sided cavity
QED system in the fast cavity regime is given by

Ĥ2 = −iκs â
†
s âs − iγc1σ̂

†σ̂ − 2i
√

κsγc1σ̂
†âs , (21)

where we assume that the atom is coupled to only one standing
wave in the cavity, explaining why the decay rate of the atom
is twice as small as in Eq. (5). The two-photon state is now
expanded as

|ψ(t)〉 = α(t) |2g〉 + β(t) |1e〉 , (22)

with

α(t) = e−2κs t ,
(23)

β(t) = −2
√

2
√

γc1κs

γc1 − κs

[e−κs t − e−γc1t ]e−κs t .

Note that due to the single-sided configuration of the cavity,
these expressions differ from those of Eq. (11). It is evident
that the driving and the atomic radiation are out of phase. To
illustrate the dynamics more clearly let us assume a long pulse
(κs � γc1) and neglect transient effects that occur at t ∼ γ −1

c1 .
Under these approximations the state of the system is

|ψ(t)〉 ≈ e−2κs t

[
|2g〉 − 2

√
2
√

κs

γc1
|1e〉

]
. (24)

Applying the output operator of Eq. (4a) yields

âout |ψ(t)〉 ≈ −2
√

κse
−2κs t

[
|1g〉 + 2

√
κs

γc1
|0e〉

]
, (25)

corresponding to a photon detection probability rate of
〈â†

outâout〉 ≈ 4κs e−4κs t . As evident, the detection of the first
photon has led to a sign flip between the driving field and
the atom, resulting now in a constructive interference rather

âs

γc2

γc1

QWP

PBS

[Feeder cavity]

b̂in

âout

b̂out

FIG. 8. Cascading of a single-sided cavity QED system and a
photon router. Due to the quarter-wave plate (QWP), the pulse is
reflected by the polarizing beam splitter (PBS) after interaction with
the single-sided cavity. The trajectory of the two-photon pulse is
shown by the dashed line.

than the previous destructive one. Normalizing the state and
applying âout again shows that this leads to a sudden increase
of the photon detection rate by a factor of 4.5 to 〈â†

outâout〉 ≈
18 κse

−4κs t . Since after one photon detection there is only one
excitation left in the system, one, naively, could have expected
the probability for a second photon detection to drop and not
increase; this increase is, therefore, larger by a factor of 9
compared to the expected value at steady state, and, thus,
the output state exhibits strong bunching and, consequently,
time-energy entanglement between the two photons [16].

Solving the evolution of the two-photon state (22) using
Eq. (21) without approximations, we get that the probability
amplitude of photon detections at times t and t + τ is (Fig. 9)

f (t,τ ) = [1 − 4e−(γc1−κs )τ ]e−2κs t e−κsτ

−2[1 − 3e−(γc1−κs )τ ]e−γc1t e−κs t e−κsτ . (26)

The terms in the second brackets correspond to the transient
behavior of the cavity-enhanced atom and have influence only
for short pulses, as evident from their fast decay by e−γc1t .
The two terms in the first brackets thus demonstrate the main
dynamics of the system. The first term presents the possibility

FIG. 9. (Color online) Probability of detecting two photons at
times t ′ and t ′′ for an exponential pulse (γc1 = 5κs) after passage
through a single-sided cavity QED system.
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FIG. 10. (Color online) Routing efficiency as a function of the
cavity-enhanced decay rates during the first and second passages
through the system.

that no interaction occurred with the atom, and the second,
nonlinear, term is the one that leads to the bunching of the
two-photon pulse.

The entanglement appearing in Fig. 9 indeed suggests
that by utilizing this pulse as the input to a routing system,
higher efficiency might be obtained. In order to investigate
this possibility, a triply cascaded system needs to be considered
(Fig. 8). The feeder cavity drives a single-sided cavity QED
system with effective linewidth γc1, and the resulting bunched
light drives the photon router with linewidth γc2.

The Hamiltonian of this system consists of the Hamiltoni-
ans of its subsystems, given by Eq. (5) and Eq. (21), and a
term corresponding to the driving of the photon router by the
single-sided cavity

Ĥ3 = Ĥ1 + Ĥ2 − 2i
√

γc2σ̂
†
2 (

√
κsâs + √

γc1σ̂1). (27)

The analytic solution of the detection probabilities is calculated
in the appendix. The resulting routing efficiency is shown in
Fig. 10.

Note that for γc1 = 0 we recover the result of Fig. 3. By
increasing γc1 the pulse becomes bunched, and the routing
efficiency reaches ∼68%. However, while the bunching ratio
increases, the bunching efficiency decreases. This is due to the
decreasing area of the bunched part in Fig. 9 as it becomes
narrower. Hence, further increase of γc1 ceases to improve the
routing efficiency. We conclude that a two-stage interaction
with the cavity-enhanced atom can only improve the routing
efficiency by at most ∼4%.

IV. IDEAL ROUTING EFFICIENCY USING
A THREE-LEVEL ATOM

In the previous sections we have studied the limitations of
a two-level system as a photon router. The situation changes
dramatically when another cavity-enhanced atomic transition
is introduced, for example, by utilizing a three-level atom in
the � configuration inside the cavity. We shall consider the
behavior of this system in the single-sided cavity setup, as
depicted in Fig. 11.

The two ground states are denoted by |g1〉 and |g2〉 and the
excited state by |e〉. We denote the fields resonant with the

âH

PBS

|g1 |g2

|e

γcH γcV

âV

[Feeder cavity]

FIG. 11. Schematic depiction of a three-level atom in the �

configuration inside a single-sided cavity. The trajectory of the pulse
is shown by the dashed line.

g1 → e transition and with the g2 → e transition as H and
V fields, respectively, assuming they differ in polarization.
This enables separation of both fields by a polarizing beam-
splitter (PBS). In this configuration, therefore, routing to the
two different output ports is performed by manipulating the
polarization of the photons.1

Taking the feeder cavity to be resonant with the H

transition, the appropriate Hamiltonian is

Ĥ = −iκs â
†
H âH − i (γcH + γcV ) σ̂ee − 2i

√
κsγcH σ̂1eâH ,

(28)

where σ̂ee = |e〉〈e| and σ̂1e = |g1〉〈e|. 2γcH , 2γcV are the
cavity-enhanced decay rates from the excited state into ground
states |g1〉 and |g2〉, respectively.

For a long input pulse (κs � γcH ,γcV ) containing a single
H photon, the probability of a full transfer to the right ground
state |g2〉 starting with an atom in the left ground state |g1〉 is
given by

PV = 1

1 + (γcV − γcH )2 /4γcV γcH

. (29)

Thus, by choosing transitions for which γcH � γcV = γc, one
can approach PV → 1 and obtain deterministic transfer of
the atom from one ground state to the other. In that process,
the H photon is absorbed and released as a V photon. This
configuration was studied by Koshino et al., who demonstrated
that it may be used to implement deterministic quantum state
transfer and a

√
SWAP gate between a photon and an atom

[17,35].
In order to use this apparatus for photon routing, we

generalize this result by starting with a Fock state |n〉 of type
H in the feeder cavity. Assuming the atom is initialized in the
left ground state |g1〉, the wave function evolves to

|ψ(t)〉 = α(t) |n,g1〉 + β(t) |n − 1,e〉 . (30)

By solving the Schrödinger equation with the Hamiltonian of
Eq. (28), we get

α(t) = e−nκs t ,
(31)

β(t) = − 2
√

nκsγcH

γcH + γcV − κs

(e−nκs t − e−[(n−1)κs+γcH +γcV ]t ).

1Alternatively, the modes can differ in their frequency. In that case,
spatial separation is obtained by using a frequency filter such as a
Bragg grating.
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Using the output operators from Eq. (4), we get that the probability of first detecting a V photon is

PV (n) = 1

1 + [
(γcV − γcH )2 + (γcV + γcH ) (3n − 2) κs + (2n − 1) (n − 1) κ2

s

] /
4γcH γcV

. (32)

Once again, by using a long enough pulse and symmetric
transitions, the first detected photon will with certainty be
a V photon. When that happens, the atom collapses to the
ground state |g2〉 and becomes transparent to all the remaining
H photons, which are consequently reflected from the cavity
unchanged. The mapping resulting from the passage through
the system is thus

(â†
H )n|0〉 → (â†

H )n−1â
†
V |0〉, (33)

i.e., it acts as an ideal photon router, which is transparent to all
but one photon.

Specifically, in the case of n = 2, we obtain for the routing
efficiency (Fig. 12)

C tr = PV H + PHV , (34)

where PV H = PV (n = 2) is the probability of detecting an
H photon after a V photon has been detected, and PHV is
the probability of first detecting an H photon and then a V

photon. Taking into account that PV H can be made close
to unity by itself, we see that this routing process includes
an inherent robustness, or error-correction mechanism, since
in the unlikely event in which the first photon stays H (for
example, due to a slight mismatch between γcH and γcV or due
to non-negligible κs), the second photon is likely to be turned
into V , leading to the desired result nonetheless. Naively, one
could expect PHV to be (1 − PV H )PV (n = 1), namely the
probability that the first photon was not turned to V times
the probability of turning the last remaining photon into V ;
however, PV (n) is correct only for an atom that begins at
the ground state |g1〉, whereas after detection of an H photon
the atom has some probability amplitude to be in the excited
state |e〉. The full solution for PHV , following the same
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FIG. 12. (Color online) Routing efficiency C tr as a function of
the cavity-enhanced decay rates γcH and γcV .

procedure as for PV H , is:

PHV = κs(7γcV − γcH + 6κs) + (γcV − γcH )2

(κs + γcH + γcV )(γcH + γcV )
PV (n = 2).

(35)
The overall routing efficiency is presented in Fig. 12. The
contribution of PHV adds to already-high values of PV H

to result in efficiencies that approach unity for reasonable
γcV ,γcH , and thus we see that this process acts as a robust and
nearly ideal photon router, free from the limitations discussed
in the previous sections.

Finally, we wish to estimate the robustness of this routing
scheme to losses in the system. We approximate the effect of
the coupling to the environment by calculating the probability
of a quantum jump in the system, neglecting the change in
Eq. (31). The effect of spontaneous emission into the vacuum
at rate γ for long pulses and γcH = γcV = γc is then given by

P sp =
∫

2γ |β(t)|2 dt = γ /γc , (36)

which is independent of κs . The efficiency of the routing is
thus not increased by taking longer and longer pulses, as is
the case for stimulated Raman adiabatic passage, but can be
suppressed by increasing the cavity-enhanced atomic decay
rate. The effect of intrinsic losses of the microtoroid cavity can
be evaluated by omitting the fast-cavity approximation and in-
cluding the microtoroid cavity modes in the system dynamics.
The probability of losing a photon is then calculated to be

P loss = 4κi/κex. (37)

This effect can be suppressed by increasing the cavity decay
rate into the fiber. Hence, by taking γc � γ and κex � κi ,
the routing mechanism is made robust against both loss
mechanisms.

V. CONCLUSION

In this work we analyzed photon routing in cavity QED,
focusing on the task of separating two incoming indistinguish-
able photons to different ports. We have shown that using just
one cavity-enhanced two-level system is insufficient for this
task, since the bandwidth of the system and the time scale
of its nonlinearity, namely the temporal duration at which
the system will respond differently to two photons than to
one photon, are inherently linked by the uncertainty principle.
This inherent conflict limits the efficiency of photon routing
to ∼64%. We have shown that even the use of time-energy
entangled photons at the input pulse does not circumvent this
conflict completely, although it does enable some increase in
the efficiency of the process. Finally, we have shown how the
use of a three-level system does enable ideal photon routing,
free from the limitations of a two-level system. Specifically,
we presented a scheme that uses an atom in the � configuration
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with both transitions enhanced by a single-sided cavity to
create a photon routing mechanism in which one and only
one photon from the incoming pulse is directed to one port,
while the remaining photons are directed to the other port.
This scheme is robust against variations in the pulse width
and parasitic losses with realistic parameters and provides a
promising method for efficient routing of single photons.
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APPENDIX

The two-photon state of the cascaded system depicted in
Fig. 8 can be decomposed into

|ψ(t)〉 = α(t) |2gg〉 + β(t) |1eg〉 + δ(t) |1ge〉 + η(t) |0ee〉 ,

(A1)
where the second and third indices describe the atomic states of
the single-sided subsystem and the photon router subsystem,
respectively. Using the Schrödinger equation, the coefficients
of Eq. (A1) are found to be

α(t) = e−2κs t , β(t) = −2
√

2
√

γc1κs

γc1 − κs

[e−κs t − e−γc1t ]e−κs t ,

δ(t) = 2
√

2
γc1 + κs

γc1 − κs

√
γc2κs

2γc2 − κs

e−2κs t − 4
√

2
γc1

γc1 − κs

√
γc2κs

2γc2 − γc1
e−(γc1+κs )t + 2

√
2

2γc2 + γc1

2γc2 − γc1

√
γc2κs

2γc2 − κs

e−(2γc2+κs )t ,

η(t) = 4
√

2
κs

√
γc1γc2

(γc1 − κs)(2γc2 − κs)

{
2γc2 − γc1 − 2κs

2γc2 + γc1 − 2κs

[e−2κs t − e−(2γc2+γc1)t ] + 3γc1 − 2γc2

2γc2 − γc1
[e−(γc1+κs )t − e−(2γc2+γc1)t ]

− 2γc2 + γc1

2γc2 − γc1
[e−(2γc2+κs )t − e−(2γc2+γc1)t ]

}
. (A2)

After a photon detection, the system can collapse into three
different single-excitation states. If the photon collapses to the
feeder cavity, the state evolves according to

|ψ1(t)〉 = a1 |1gg〉 + b1 |0eg〉 + c1 |0ge〉 , (A3)

where

a1(t) = e−κs t , b1(t) = −2
√

γc1κs

γc1 − κs

(e−κs t − e−γc1t ),

c1(t) = 2
√

γc2κs

2γc2 − κs

{
γc1 + κs

γc1 − κs

e−κs t − 2
γc1

γc1 − κs

e−γc1t

+2γc2 + γc1

2γc2 − γc1
e−2γc2t

}
. (A4)

If the system collapses to a state in which the first atom is
excited, we have

|ψ2(t)〉 = b2 |0eg〉 + c2 |0ge〉 , (A5)

where

b2(t) = e−γc1t ,
(A6)

c2(t) = −2
√

γc1γc2

2γc2 − γc1
(e−γc1t − e−2γc2t ).

And finally, if the state collapses to a state in which the second
atom is excited, we have |ψ3(t)〉 = c3(t) |0ge〉, with

c3(t) = e−2γc2t . (A7)

Using Eq. (4), the correlation functions are given by

�tr(t,τ ) = 4|√γc2η(t)[
√

γc1b2(τ ) + √
γc2c2(τ )] + √

γc2δ(t)[
√

κsa1(τ ) + √
γc1b1(τ ) + √

γc2c1(τ )],|2
�rt(t,τ ) = 4|√γc2[

√
2κsα(t) + √

γc1β(t) + √
γc2δ(t)]c1(τ ) + √

γc2[
√

γc2η(t) + √
κsβ(t)]c2(τ )

+√
γc2[

√
γc2η(t) + √

κsδ(t)]c3(τ )|2,
�rr(t,τ ) = 4|γc2[η(t)c2(τ ) + δ(t)c1(τ )]|2,
�tt(t,τ ) = 4|[

√
2κsα(t) + √

γc1β(t) + √
γc2δ(t)][

√
κsa1(τ ) + √

γc1b1(τ )

+√
γc2c1(τ )] + [

√
γc2η(t) + √

κsβ(t)][
√

γc1b2(τ ) + √
γc2c2(τ )] + √

γc2[
√

γc2η(t) + √
κsδ(t)]c3(τ )|2. (A8)

Integrating these expressions yields the results plotted in Fig. 10.
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