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Effects of Doppler broadening on Autler-Townes splitting in six-wave mixing
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The effects of Doppler broadening on Autler-Townes (AT) splitting in six-wave mixing (SWM) are investigated
by the dressed-state model. We analyze the velocities at which the atoms are in resonance with the dressed states
through Doppler frequency shifting and find that, depending on the wave-number ratio, there may be two resonant
velocities which can originate from resonance with one of the dressed states or from resonance with two different
dressed states. Based on this model, we discuss a novel type of AT doublet in the SWM spectrum, where
macroscopic effects play an important role. Specifically, the existence of resonant peaks requires polarization
interference between atoms of different velocities in addition to a change in the number of resonant atoms
involved. Our model can also be employed to analyze electromagnetically induced transparency resonance and
other types of Doppler-free high-resolution AT spectroscopy.
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I. INTRODUCTION

When a two-level system is driven by a strong coupling
field at a resonant frequency, the populations of the states
undergo coherent Rabi oscillations. This coherent process is
reflected in the appearance of two sidebands offset by the Rabi
frequency from the main transition. The phenomenon can be
described in terms of dressed states, which are eigenstates of
the total system of an atom plus the coupling field. Dressed
states are usually probed through a transition to or from a third
level as a doublet excitation spectrum, called an Autler-Townes
(AT) doublet [1]. The AT doublet has been demonstrated in
both atomic [2] and molecular systems [3–5]. More recently,
they have also been observed in quantum dots [6–8] and in
superconducting qubits [9,10].

One important application of the AT effect is that it
can be used to measure directly the absolute value of the
molecular transition dipole moment [3] and its dependence
on the internuclear distance [11]. On the other hand, the
effects of inhomogeneous Doppler broadening on the AT
splitting have been investigated. Ahmed and Lyyra [12]
analyzed theoretically the AT splitting in a Doppler-broadened
three-level cascade system. They found that the observed AT
splitting is not only a function of the coupling-laser Rabi
frequency, as in the homogeneously broadened case, but can
also strongly depend on the wave-number ratio of the coupling
and probe lasers. Relevant experiments have been performed
in a three-level Na2 open molecular cascade system where, for
moderate Rabi frequencies, the fluorescence line shape from
the uppermost level in the system depends strongly on the
wave-number ratio of the two laser fields [13].

Traditionally, an AT doublet was observed through probe
absorption or fluorescence excitation spectroscopy. Recently,
Doppler-free four-wave mixing spectroscopy has been em-
ployed for probing dressed states [14–16]. Moreover, higher-
order wave mixing has attracted much attention [17–20].
In our previous works, we studied the AT splitting in
electromagnetically-induced-transparency-based (EIT-based)
six-wave mixing (SWM) in a Doppler-broadened system
[21,22]. An AT doublet appears in the SWM spectrum when

atoms with specific velocities have double resonance with one
of the dressed states and with a third level.

In this paper we study a novel type of AT splitting, where
atoms with certain velocities are only singly resonant with
one of the dressed states. For an AT doublet to appear in
the SWM spectrum, there must be some macroscopic effects
involved. Specifically, atoms in a wide region of velocities
can contribute to the SWM signal at resonance, whereas when
the incident laser frequency is detuned away from resonance,
destructive interference between the polarizations of atoms
of different velocities causes strong suppression of the SWM
signal. We have also employed the dressed-state model to
explain the strong wave-number-ratio dependence of the AT
splitting. For example, in the presence of a strong coupling
field the SWM spectrum exhibits either a single peak or an AT
doublet, depending on the ratio between the magnitudes of the
wave vectors [22]. In this paper, we analyze the velocities at
which atoms are in resonance with the dressed states through
Doppler frequency shifting. It is found that, depending on the
wave-number ratio, the two resonant velocities can originate
either from the resonance with one of the dressed states or
from that with two different dressed states. On the other hand,
in some cases there will be no atoms which can resonate
with the dressed states. Based on these features, the strong
dependence of the SWM spectra on the wave-number ratio
can be explained. Finally, we point out that our model can
also be employed to explain the EIT resonance in a Doppler-
broadened three-level system and other types of Doppler-free
high-resolution AT spectroscopy.

Generally speaking, this work is a continuation of the
studies of Doppler effects in media with excited coherence.
For example, the effect of Doppler broadening on the width
of an EIT resonance has been investigated by Javan and
coworkers [23,24], and that on the group velocity in a slow-
light medium has also been studied [25,26]. In particular,
Scully and coworkers [27,28] have demonstrated three-photon
electromagnetically induced absorption and transparency in
rubidium atomic vapor driven by two coherent electromagnetic
fields. They observed narrow absorption as well as a transmis-
sion window on the background of high-contrast Doppler-free
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subnatural absorption resonance. The Doppler-free resonances
originate from the behavior of dressed states in coherent fields.
On the other hand, the effects of Doppler broadening on a
generalized double-dark resonance have been investigated by
Ye et al. [29].

This paper is organized as follows: Section II presents
the basic theory of EIT-based SWM in Doppler-broadened
four-level systems. The expression for the nonlinear polar-
ization responsible for the SWM signal is derived, based on
which conditions for observing AT splitting in the SWM
spectrum of a Doppler-broadened system are analyzed. We
then use a dressed-state model in Sec. III to analyze the
velocities at which atoms are in resonance with dressed
states through Doppler frequency shifting. The wave-number-
ratio dependence of the AT splitting is explained with this
model. In Sec. VI, we focus on the EIT-based SWM in a
Doppler-broadened folded four-level system. The anomalous
resonance, which involves macroscopic effects, is analyzed in
detail. Finally, Sec. V is the discussion and conclusion. We
point out that our model can be employed to explain the EIT
resonance in a Doppler-broadened three-level system and for
other types of Doppler-free high-resolution AT spectroscopy.

II. EIT-BASED SWM IN DOPPLER-BROADENED
FOUR-LEVEL SYSTEMS

Let us consider a cascade system and a folded four-level
system (Fig. 1), where the states between |0〉 and |1〉, |1〉
and |2〉, and |2〉 and |3〉 are coupled by dipolar transitions
with resonant frequencies �1, �2, and �3 and dipole moment
matrix elements μ1, μ2, and μ3, respectively. In SWM, beams
3 and 3′ have the same frequency ω3 and a small angle exists
between them. Beam 1 with frequency ω1 propagates along
the opposite direction to beam 3, while beam 2 with frequency
ω2 can propagate either along or in the opposite direction.
We assume that ωi � �i so that ωi drives the transition from
|i − 1〉 to |i〉. The simultaneous interactions of atoms with
beams 1, 2 and 3 will induce atomic coherence between |0〉
and |3〉 through a resonant three-photon transition. This three-
photon coherence is then probed by beams 3′ and 2, and as
a result a SWM signal of frequency ω1 is generated almost
opposite to the direction of beam 3′.

FIG. 1. Energy-level diagram for resonant SWM in (a) cascade
and (b) folded four-level systems.

Let the detunings be represented by �i = �i − ωi , so after
a canonical transformation we have

H (±) = h̄�1|1〉〈1| + h̄(�1 + �2)|2〉〈2|
+ h̄(�1 + �2 ± �3)|3〉〈3|
− [μ1E1|1〉〈0| + μ2E2|2〉〈1|
+μ3(E3 + E′

3)|3〉〈2| + H.c.]. (1)

Here, H (+) and H (−) are the effective Hamiltonians for
the cascade and folded four-level systems, respectively; the
quantities Ei = εie

iki ·r (i = 1 to 3) and E′
3 = ε′

3e
ik′

3·r are the
complex incident laser fields, where ki and k′

3 are the wave
vectors of beams i and 3′, respectively. In a Doppler-broadened
system, the nonlinear polarization responsible for the SWM
signal is given by

P (±) = iNμ1G1|G2|2G3(G′
3)∗

∫ ∞

−∞
dvW (v)F (±)(v). (2)

Here, W (v) = [1/(
√

πu)]e−(v/u)2
with u = √

2KT/m where
m is the mass of an atom, K is Boltzmann’s constant, and T is
the absolute temperature; the quantities G denote the coupling
coefficients Gi = μiεi/h̄ and G′

3 = μ3ε
′
3/h̄, while [22]

F (±)(v) = 1{(
i�d

1 + �10
)[

i
(
�d

1 + �d
2

) + �20
] + |G2|2

}2

× 1

i
(
�d

1 + �d
2 ± �d

3

) + �30
. (3)

Here, �d
i = �i + ki · v is the Doppler-shift frequency detun-

ing and �n0 is the transverse relaxation rate between states
|n〉 and |0〉. Let us consider the case in which beam 2
propagates along the direction of beam 3; then by setting
k1 = −k1ẑ, k2 = k2ẑ, and k3 = k3ẑ, we have �d

1 = �1 − k1v,
�d

2 = �2 + k1ζ2v, and �d
3 = �3 + k1ζ3v, where ζ2 = k2/k1

and ζ3 = k3/k1 are the ratios between the magnitudes of the
wave vectors.

Now, we investigate the AT splitting in the SWM spectrum
in a Doppler-broadened system. We express F (±) in Eq. (3) as
a function of v explicitly, then

F (±)(v) = η(±)

[(v − �̃10)(v − �̃20) − |G̃2|2]2
(
v − �̃

(±)
30

) .

(4)

Here, η(±) = 1/[k3
1(1 − ζ2)(1 − ζ2 ∓ ζ3)], �̃10 = (�1 −

i�10)/k1, �̃20 = (�1 + �2 − i�20)/[k1(1 − ζ2)], �̃
(±)
30 =

[�1 + �2 ± (�3 − i�30)]/[k1(1 − ζ2 ∓ ζ3)], and |G̃2|2
= |G2|2/[k2

1(1 − ζ2)]. By solving the pole structure in Eq. (4);
namely,

(v − �̃10)(v − �̃20) − |G̃2|2 = 0, (5)

we obtain

F (±)(v) = η(±)

(v − ṽ+)2(v − ṽ−)2
(
v − ṽ

(±)
t

) . (6)

Here,

ṽ± = (1/2)(�̃10 + �̃20) ± (1/2)
√

(�̃10 − �̃20)2 + 4|G̃2|2,
(7)

ṽ
(±)
t = �̃

(±)
30 .
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Therefore, we have

P (±) ∝
∫ ∞

−∞
dv

e−(v/u)2

(v − ṽ+)2(v − ṽ−)2
(
v − ṽ

(±)
t

) , (8)

and the SWM signal intensity is proportional to |P (±)|2.
We are interested in the SWM spectrum in a Doppler-

broadened system. Let v± and v
(±)
t be the real parts of ṽ±

and ṽ
(±)
t , respectively, then the values of v± and v

(±)
t vary as

we scan the incident laser frequencies �i , and the integral
in Eq. (8) consists mainly of the contributions of atoms with
velocities v � v± and v � v

(±)
t . For the case of v±,v

(±)
t � u

then, due to the integration, the resonance of P (±) appears only
when v+ = v− or v± = v

(±)
t . If we neglect the relaxation rates

and define �10 = �1/k1, �20 = (�1 + �2)/[k1(1 − ζ2)], and
�

(±)
30 = (�1 + �2 ± �3)/[k1(1 − ζ2 ∓ ζ3)], then from v+ =

v− the resonant condition is

�10 − �20 = ± 2G2

k1
√

ζ2 − 1
. (9)

This equation is valid only when ζ2 > 1. On the other hand,
for v± = v

(±)
t we have

�
(±)
30 = (�10 + �20) ±

√
(�10 − �20)2 + 4|G̃2|2

2
. (10)

III. DRESSED-STATE MODEL

As is well known, in a homogeneously broadened system,
AT splitting is observed when dressed states are resonantly
excited by tuning the probe beam, thus the splitting equals
the energy separation between the two dressed states. The
situation is quite different in a Doppler-broadened system
because, as we tune the laser frequencies, there will be
atoms with specific velocities which can be in resonance
with the dressed states through Doppler frequency shifting.
One important consequence is that the AT spectrum depends
strongly on the wave-number ratios, especially on the value of
ζ2. For example, according to Eq. (9), to observe the resonance
originating from v+ = v− it is required that ζ2 > 1. Also, in
a cascaded four-level system, as �3 is scanned the SWM
spectrum exhibits a doublet structure only when ζ2 < 1 [22].
To reveal the underlying physics, in this section we shall
employ the dressed-state model to study how the Doppler
frequency shift affects the AT splitting. Through analyzing the
frequency dependence of the resonant velocities, the features
of the AT spectrum can be understood.

The strong coupling field from beam 2 which drives the
transition between |1〉 and |2〉 creates dressed states. The
corresponding Hamiltonian can be written as the matrix

H =
(

�d
1 −G∗

2

−G2 �d
1 + �d

2

)
, (11)

from which the eigenenergies of the dressed states |±〉 are

χ± = �d
1 + 1

2

[
�d

2 ±
√(

�d
2

)2 + 4|G2|2
]
. (12)

FIG. 2. (Color online) Dressed-state energy versus v with
�1/�30 = �2/�30 = 0 and ζ2 = (a) 0.8, (b) 1.2 for G2/�30 = 0
(solid curve), 5 (dashed curve), 10 (dotted curve), and 15 (dash-dotted
curve).

Due to the Doppler frequency shift, the energies of the dressed
states depend on the atomic velocity. Specifically, we have

χ±(v) = −k1v

(
1 − ζ2

2

)
+

(
�1 + �2

2

)

± 1

2

√
(�2 + k1ζ2v)2 + 4|G2|2. (13)

Since the energy of the ground state |0〉 is 0, the resonance
condition for the transition from the ground to the dressed
state is χ±(v) = 0; thus, from Eq. (13), we obtain the resonant
velocities

v± = (1/2)(�10 + �20)

± (1/2)
√

(�10 − �20)2 + 4|G̃2|2. (14)

The above equation is exactly the same as Eq. (7) when
relaxation rates are neglected. Physically, as a result of the
Doppler frequency shift, atoms with velocities v± will be in
resonance with the dressed states.

Let us first examine the velocity dependence of the dressed-
state energy. Figure 2 presents the dressed-state energy χ± ver-
sus v with �1/�30 = �2/�30 = 0, G2/�30 = 0 (solid curve),
5 (dashed curve), 10 (dotted curve), and 15 (dash-dotted
curve), while ζ2 = 0.8 for Fig. 2(a) and ζ2 = 1.2 for Fig. 2(b).
In the absence of the coupling field (solid curves in Fig. 2),
the dressed-state energies are just the frequency detunings for
the one-photon and two-photon transitions; that is, �1 − k1v

and �1 + �2 − k1v(1 − ζ2), respectively. The two lines cross
at v = −�2/(k1ζ2) and χ+ = χ− = �1 + �2/ζ2. On the other
hand, the presence of the coupling field prevents level crossing,
and the separation of the curves increases with the increase
of G2.
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FIG. 3. (Color online) Dressed-state energy versus v with
�1/�30 = 0, G2/�30 = 5, and (a) ζ2 = 0.8, �2/�30 = 0 (solid
curve), 4 (dotted curve), 8 (dashed curve), and 12 (dash-dotted curve);
(b) ζ2 = 1.2, �2/�30 = 3.5 (dotted curve), 4 (dashed curve), 4.47
(solid curve), and 5.5 (dash-dotted curve). The resonant velocities v±
correspond to the cross points of the curves χ±(v) with a line y = 0
(thin solid line).

We next study how the wave-number ratio ζ2 affects v±.
Figure 3 presents χ± versus v for G2/�30 = 5, �1/�30 =
0, and [Fig. 3(a)] ζ2 = 0.8, �2/�30 = 0 (solid curve), 4
(dotted curve), 8 (dashed curve), and 12 (dash-dotted curve);
[Fig. 3(b)] ζ2 = 1.2, �2/�30 = 3.5 (dotted curve), 4 (dashed
curve), 4.47 (solid curve), and 5.5 (dash-dotted curve). The
resonant velocities v± correspond to the crossing points of
the curves χ±(v) with a line y = 0 (thin solid line). When
ζ2 < 1 [Fig. 3(a)], the velocities v+ and v− originate from
the resonances of the dressed states |+〉 and |−〉, respectively.
By contrast, we have both v+ and v− from the same dressed
states when ζ2 > 1 [Fig. 3(b)]. This is because, in the absence
of the coupling field, the dressed-state energy corresponding
to the frequency detuning of the two-photon transition [i.e.,
�1 + �2 − k1v(1 − ζ2)] changes the sign of the slope as ζ2

passes through 1 (see solid curves in Fig. 2). One important
consequence is that the frequency-detuning dependence of the
resonant velocities v± behaves in a completely different way
for ζ2 < 1 and ζ2 > 1. Figure 4 presents the resonant velocities
v± (solid curve), v(+)

t (dashed curve), and v
(−)
t (dotted curve) as

a function of the frequency detuning �2/�30 when G2/�30 =
5, �1/�30 = �3/�30 = 0, and [Fig. 4(a)] ζ2 = 0.8, ζ3 = 1.2;
[Fig. 4(b)] ζ2 = 1.2, ζ3 = 0.8. As shown in Fig. 4(a), v± exists
for any value of �2 when ζ2 < 1. The solid curves of v+ and v−
correspond to the velocities of atoms which are in resonance
with the dressed states |+〉 and |−〉, respectively. On the other
hand, there is a gap within which no v± exists when ζ2 > 1 [see
Fig. 4(b)]. Specifically, from Eq. (14) there is no solution for v±

FIG. 4. (Color online) Resonant velocities v± (solid curve), v
(+)
t

(dashed curve), and v
(−)
t (dotted curve) versus �2 with �1/�30 =

�3/�30 = 0, G2/�30 = 5, and (a) ζ2 = 0.8, ζ3 = 1.2; (b) ζ2 = 1.2,
ζ3 = 0.8.

in the regime |�10 − �20| < 2|G2|/k1
√

ζ2 − 1. For example,
the gap in Fig. 4(b) is |�2| < 2

√
ζ2 − 1|G2|, or between−4.47

and 4.47. Moreover, the v± in the left regime originate from
the resonance of the dressed state |+〉, while in the right regime
they originate from |−〉.

Based on the dressed-state model, the main features of
AT splitting in the SWM spectrum can be explained. Let
us consider a cascade four-level system. As mentioned in
Ref. [22], in the case of �1 = �2 = 0, the SWM spectrum
exhibits a doublet structure as �3 is scanned when ζ2 < 1;
however, there is only a single peak in the SWM spectrum
when ζ2 > 1 (see Fig. 2 in Ref. [22]). This can be explained
by using the frequency-detuning dependence of the resonant
velocities v±. As shown in Fig. 4(a), v± exists for any value
of �2 when ζ2 < 1. These atoms can be resonant with the
state |3〉 as �3 is scanned, leading to a doublet structure in
the spectrum. On the other hand, since there is no solution
for v± in the gap |�2| < 2

√
ζ2 − 1|G2| when ζ2 > 1, there is

only a single peak. Now, let us consider the spectrum when
�2 is scanned. As shown in Fig. 4, in this case both v± and
v

(±)
t vary. When ζ2 < 1 [Fig. 4(a)], the resonant condition

v+ = v− cannot be satisfied. In the cascade four-level system
the resonance appears when the values of v± (solid curve) and
v

(+)
t (dashed curve) cross, leading to a doublet structure. On the

other hand, since v± (solid curve) and v
(−)
t (dotted curve) do not

cross in a folded four-level system, there is only a single peak.

IV. MACROSCOPIC EFFECTS IN AT SPECTRUM

We have shown that, in a Doppler-broadened system,
resonance appears when the condition v± = v

(+)
t (v± = v

(−)
t )

or v+ = v− is satisfied. Previously, we studied the AT splitting
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corresponding to the resonant condition v± = v
(+)
t in a cascade

four-level system [22], where atoms with velocity v = v± =
v

(+)
t are doubly resonant with one of the dressed states and

state |3〉. In this section, we shall study the AT splitting
which originates from the condition v+ = v− when ζ2 > 1.
In contrast to the previous case, both v+ and v− correspond
to the same dressed state when ζ2 > 1 [Fig. 3(b)], thus atoms
with velocity v = v+ = v− will only be resonant with one
of the dressed states. Since there is a region for �2 where
atoms of two velocities v+ and v− are in resonance with the
dressed state [see Fig. 4(b)] and so contribute to the SWM
signal, a question arises concerning the nature of the resonant
peaks corresponding to the condition v+ = v−. We shall
show here that, in this situation, macroscopic effects play an
important role in the formation of resonant peaks in the SWM
spectrum.

Let us consider the case when �2 is scanned and ζ2 >

1. If we set �1 = �3 = 0 then, according to Eq. (9), the
resonant frequencies due to the condition v+ = v− are �2 =
±2

√
ζ2 − 1|G2|. In the following, we shall consider SWM in

the cascade and folded four-level systems with parameters
�10/�30 = �20/�30 = 0.2 and �30/(k1u) = 0.02. Figure 5
presents the SWM intensity versus �2 when ζ2 = 1.2, ζ3 =
0.8, �1/�30 = �3/�30 = 0, and G2/�30 = 0.1 (solid curve),
5 (dashed curve), and 10 (dash-dotted curve) for [Fig. 5(a)] a
cascade four-level system and [Fig. 5(b)] a folded four-level
system. When the polarization interference is ignored, we
obtain the dotted curve shown in Fig. 5(b) which is calculated
from

∫ ∞
−∞ dve−(v/u)2 |ρ10(r,v)|2 when G2/�30 = 5. Let us

consider first the case of a cascade four-level system. As shown

FIG. 5. (Color online) SWM intensity versus �2 with �1/�30 =
�3/�30 = 0, ζ2 = 1.2, ζ3 = 0.8, and G2/�30 = 0.1 (solid curve),
5 (dashed curve), and 10 (dash-dotted curve) for (a) cascade and
(b) folded four-level systems. The dotted curve in (b) is the spectrum
when G2/�30 = 5 and polarization interference is ignored.

FIG. 6. (Color online) Velocity dependence of (a) |ρ10| and
(b) φ, with �1/�30 = �3/�30 = 0, ζ2 = 1.2, ζ3 = 0.8, and
G2/�30 = 5, for �2/�30 = 3.5 (dotted curve), 4 (dashed curve),
4.47 (solid curve), and 5.5 (dash-dotted curve). In (a) the maximum
of |ρ10| with �2/�30 = 5.5 is normalized to 1.

in Fig. 4(b), the values of v± (solid curve) and v
(+)
t (dashed

curve) cross; thus, the resonance derived from v+ = v− is
always accompanied by the resonance from v± = v

(+)
t . In other

words, two types of resonance appear simultaneously when
ζ2 > 1 and the spectrum has four peaks [Fig. 5(a)]. We then
consider the SWM spectrum in a folded four-level system. As
shown in Fig. 4(b), v± (solid curve) and v

(−)
t (dotted curve) do

not cross, so the SWM spectrum exhibits a doublet structure
[see Fig. 5(b)] due to the resonance originating from v+ = v−.
The nature of this resonance can be clearly understood through
a detailed analysis of the spectrum, since the resonance at
v± = v

(−)
t is absent.

With the off-diagonal density matrix element expressed
as ρ10(v) = |ρ10|eiφ , Fig. 6 presents [Fig 6(a)] |ρ10| and
[Fig. 6(b)] φ versus v when ζ2 = 1.2, ζ3 = 0.8, G2/�30 = 5,
�1/�30 = �3/�30 = 0, and �2/�30 = 3.5 (dotted curve),
4 (dashed curve), 4.47 (solid curve), and 5.5 (dash-dotted
curve). There exist three different regimes for the resonant
velocities v± [Fig. 4(b)]. As shown in Fig. 3(b), there are
no solutions for v± when �2/�30 = 3.5 (dotted curve) and
4 (dashed curve), thus all atoms are off resonance from the
dressed states. The amplitude of the polarization increases
as �2 is tuned to the resonant frequency 2

√
ζ2 − 1|G2|.

Since χ−(v) is relatively flat near the point v = v+ = v−
[solid curve in Fig. 3(b)], atoms in a relatively wide region
of velocity will contribute to the signal at resonance [solid
curve in Fig. 6(a)]. On the other hand, atoms of velocities
v = v+ and v = v− will be in resonance with the dressed state
when �2/�30 = 5.5 [dash-dotted curves in Fig. 3(b)]. As a
result, there are two peaks in the velocity dependence of the
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polarization amplitude [dash-dotted curve in Fig. 6(a)]. These
two peaks have narrower linewidths (i.e., a fewer number of
atoms will contribute to SWM), causing a decrease in the
signal. However, the change of the number of atoms involved
cannot completely explain the sharp resonant peaks in the
SWM spectrum. Specifically, if we neglect the polarization
interference, then the SWM signal decreases slowly as �2

is detuned from resonance [dotted curve in Fig. 5(b)]. Let
us consider the velocity dependence of the phase of the
polarization φ, as shown in Fig. 6(b). The phase φ varies
sharply through about 2π near v = v− and v = v+ (dash-
dotted curve). As a result, destructive interference between
the atom polarizations greatly suppresses the SWM. On the
other hand, the interference is basically constructive near
v = v+ = v−, leading to enhancement of the signal.

V. DISCUSSION AND CONCLUSION

In this paper, we have studied AT splitting in the SWM
spectrum under the condition v+ = v−. This type of resonance
is completely different in nature from the resonance originating
from the condition v± = v

(+)
t studied in our previous paper

[22]. Specifically, the condition v± = v
(+)
t corresponds to the

case in which atoms with velocity v = v± = v
(+)
t have double

resonance with one of the dressed states and with |3〉. By
contrast, atoms with velocity v = v+ = v− have only a single
resonance with one of the dressed states. The appearance of
this type of resonant peak in the SWM spectrum requires the
involvement of macroscopic effects. As shown in Fig. 4(b),
there are three different regimes as we scan �2. At first, there
is a gap within which no v± exists, so no atoms can be in
resonance with the incident fields. Then, atoms with velocity
v = v+ = v− will be in resonance with one of the dressed
states when �2 is tuned to the frequency ±2

√
ζ2 − 1|G2|,

causing resonant enhancement of the SWM signal. Finally,
there are two groups of atoms which are in resonance with
the dressed states when �2 is tuned to the regime with
v+ �= v−. However, besides the reduction in the number of the
resonant atoms involved, destructive interference between the
polarizations of atoms of different velocities greatly suppresses
the SWM signal.

Based on the dressed-state model, we can explain the strong
wave-number-ratio dependence of the AT splitting in the SWM
spectrum. It is found that the characteristics of the resonant
velocities v± depend strongly on the wave-number ratio ζ2.
As shown in Fig. 3, when ζ2 < 1, the velocities v+ and v−
originate from the resonances of the dressed states |+〉 and
|−〉, respectively. On the other hand, both v+ and v− originate
from the same dressed state when ζ2 > 1. Correspondingly,
v± exists for any value of �2 when ζ2 < 1, while there
is a gap within which no v± exists when ζ2 > 1 (Fig. 4).
The underlying physics is that the two-photon detuning
�d

1 + �d
2 is independent of the velocity when ζ2 = 1, while

its derivative [i.e, d(�d
1 + �d

2 )/dv = −k1(1 − ζ2)] changes
sign as ζ2 passes through 1 (Fig. 2). Based on these features,
the completely different SWM spectra for ζ2 < 1 and ζ2 > 1
presented in Ref. [22] and in this paper can be understood.

The condition v+ = v− can also be employed to explain
the EIT resonance in a Doppler-broadened three-level system.

FIG. 7. (Color online) (a) Absorption of the EIT resonance
and (b) SWM spectra against �1 with �10/k1u = 0.02, �20/�10 =
�30/�10 = 0.2, ζ2 = 1.2, ζ3 = 0.8, and �2/�10 = �3/�10 = 0, for
G2/�10 = 2 (solid curve), 5 (dashed curve), and 10 (dotted curve).

Let us consider a Doppler-broadened cascade |0〉-|1〉-|2〉
three-level system, where a strong coupling field couples the
transition |1〉-|2〉, while a weak probe field is applied on
the transition |0〉-|1〉. We are interested in the absorption of
the probe beam in the presence of the coupling field. In a
Doppler-broadened system the total susceptibility for the probe
beam in the presence of a coupling field can be expressed as
χ ∝ i

∫ ∞
−∞ dvW (v)F (v), where

F (v) = i
(
�d

1 + �d
2

) + �20(
i�d

1 + �10
)[

i
(
�d

1 + �d
2

) + �20
] + |G2|2

, (15)

and the absorption is proportional to the imaginary part
of χ [30]. We consider the case of counterpropagating
incident beams. Figure 7 presents [Fig. 7(a)] the absorption
of the EIT resonance and [Fig. 7(b)] the SWM spectra
versus �1 in the folded four-level system, with the param-
eters �10/k1u = 0.02, �20/�10 = �30/�10 = 0.2, ζ2 = 1.2,
ζ3 = 0.8, and �2/�10 = �3/�10 = 0, for G2/�10 = 2 (solid
curve), 5 (dashed curve), and 10 (dotted curve). Let us first
consider the EIT resonance [Fig. 7(a)], where a transparency
window appears in the absorption spectrum with a width that
increases with the coupling-field intensity. On the other hand,
there are two absorption peaks at the edges of the EIT window.
If we compare Figs. 7(a) and 7(b), we find that the apparent
coincidence of the peaks in the EIT resonance and SWM
spectrum indicates that the absorption peaks in the former
originates from the condition v+ = v−. A more detailed study
of the effects of Doppler broadening on EIT is underway and
will be presented later.

Finally, our dressed-state model can also be employed to
study other types of high-resolution AT spectroscopy. For
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example, Ahmed and Lyyra [12] have analyzed the effects of
Doppler broadening on AT splitting in the excitation spectra
of a cascade |0〉-|1〉-|2〉 three-level system. They studied the
fluorescence line shape from |2〉 and found that, in the case
of counterpropagating incident beams, the Doppler-free AT
doublet can be observed only when ζ2 > 1. According to
our theory, this AT doublet originates from v+ = v−, and
the resonant condition is given by Eq. (9). Some related
experiments have been performed in sodium [13].
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