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Grating-coupled excitation of multiple surface plasmon-polariton waves
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The excitation of multiple surface plasmon-polariton (SPP) waves of different linear polarization states and
phase speeds by a surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied
theoretically, using rigorous coupled-wave analysis. The incident plane wave can be either p or s polarized. The
excitation of SPP waves is indicated by the presence of those peaks in the plots of absorptance vs the incidence
angle that are independent of the thickness of the rugate filter. The absorptance peaks representing the excitation
of s-polarized SPP waves are narrower than those representing p-polarized SPP waves. Two incident plane waves
propagating in different directions may excite the same SPP wave. A line source could excite several SPP waves
simultaneously.
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I. INTRODUCTION

Surface plasmon-polariton (SPP) waves are surface waves
guided by a planar interface of a metal and a dielectric
material. SPP waves find applications for sensing, imaging,
and communication [1,2]. If the dielectric partnering material
is isotropic and homogeneous, only one SPP wave—that too,
of the p-polarization state—can be guided by the metal-
dielectric interface at a given frequency [3,4]. If a periodic
nonhomogeneity normal to the wave-guiding interface is
introduced in the dielectric partnering material, multiple SPP
waves with different polarization states, phase speeds, and
spatial profiles can be guided by the metal-dielectric interface.
This has recently been shown both theoretically [5–7] and
experimentally [8–10]. In all of these studies, the dielectric
partnering material is also locally orthorhombic.

Very recently, we have solved a canonical boundary-value
problem [11] to show that multiple SPP waves can be guided
even if the dielectric partnering material is isotropic—provided
that material is also periodically nonhomogeneous normal to
the interface. This is a very attractive result, because both
partnering materials are isotropic and because the dielectric
partnering material can be fabricated as a rugate filter [12–16].

The canonical boundary-value problem does not possess
direct practical significance, because both partnering materials
are assumed to be semi-infinite normal to the planar interface.
Therefore, we set out to investigate the excitation of multiple
SPP waves by the periodically corrugated interface of a
metal and a rugate filter. This grating-coupled configuration
[2, pp. 35–41] is popular, when the dielectric partnering mate-
rial is homogeneous, because it allows the excitation of an SPP
wave by a nonspecular Floquet harmonic. The interplay of the
periodic nonhomogeneity of the dielectric partnering material
and a periodically corrugated interface is phenomenologically
rich [17,18], and should lead to the excitation of multiple SPP
waves as different Floquet harmonics.

The relevant boundary-value problem was formulated using
the rigorous coupled-wave analysis (RCWA) [19,20]. In this
numerical technique, the constitutive parameters are expanded
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in terms of Fourier series with known expansion coefficients,
and the electromagnetic field phasors are expanded in terms
of Floquet harmonics whose coefficients are determined by
substitution in the frequency-domain Maxwell curl postulates.
The accuracy of the solution is conventionally held to depend
only on the number of Floquet harmonics actually used in
the computations [21]. The RCWA has been used to solve
for scattering by a variety of surface-relief gratings [20–23],
generally with both partnering materials being homogeneous.

The theoretical formulation of the boundary-value problem
is provided in Sec. II and the numerical results are discussed
in Sec. III. Concluding remarks are presented in Sec. IV. An
exp(−iωt) time dependence is implicit, with ω denoting the
angular frequency. The free-space wave number, the free-space
wavelength, and the intrinsic impedance of free space are
denoted by k0 = ω

√
ε0μ0, λ0 = 2π/k0, and η0 = √

μ0/ε0,
respectively, with μ0 and ε0 being the permeability and
permittivity of free space. Vectors are in boldface, column
vectors are in boldface and enclosed within square brackets,
and matrices are underlined twice and square-bracketed. The
asterisk denotes the complex conjugate, the superscript T

denotes the transpose, and the Cartesian unit vectors are
identified as ûx , ûy , and ûz. The real part of a complex number
ζ is denoted by Re(ζ ).

II. BOUNDARY-VALUE PROBLEM

A. Description

Let us consider the boundary-value problem shown
schematically in Fig. 1. The regions z < 0 and z > d3 are
vacuous, the region 0 � z � d1 is occupied by the dielectric
partnering material with relative permittivity εd (z), and the
region d2 � z � d3 by the metallic partnering material with
spatially uniform relative permittivity εm. The region d1 <

z < d2 contains a surface-relief grating of period L along the
x axis. The relative permittivity εg(x,z) = εg(x ± L,z) in this
region is taken to be as

εg(x,z) =
{
εm − [εm − εd (z)]U(d2 − z − g(x)), x ∈ (0,L1) ,

εd (z) , x ∈ (L1,L),

(1)
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FIG. 1. (Color online) Schematic of the boundary-value problem
solved using the RCWA.

for z ∈ (d1,d2), with

g(x) = (d2 − d1) sin

(
πx

L1

)
, L1 ∈ (0,L) , (2)

and

U(ζ ) =
{

1, ζ � 0 ,

0, ζ < 0 .
(3)

The depth of the surface-relief grating defined by Eq. (2) is
d2 − d1. This particular grating shape is chosen for the ease of
fabrication; however, the theoretical formulation given in the
remainder of this section is independent of the shape of the
surface-relief grating.

In the vacuous half-space z � 0, let a plane wave propagat-
ing in the xz plane at an angle θ to the z axis be incident on
the structure. Hence, the incident, reflected, and transmitted

FIG. 2. (Color online) Absorptance Ap as a function of the
incidence angle θ when the surface-relief grating is defined by either
(a) Eq. (53) or (b) Eq. (2). Black squares represent d1 = 1500 nm, red
circles d1 = 1000 nm, and blue triangles d1 = 800 nm. The grating
depth (d2 − d1 = 50 nm) and the thickness of the metallic layer
(d3 − d2 = 30 nm) are the same for all cases. The vertical arrows
identify SPP waves.

TABLE I. Relative wave numbers k(n)
x /k0 of Floquet harmonics

at the θ value of the peak identified in Fig. 2 by a vertical arrow. A
boldface entry signifies an SPP wave.

n = −2 n = −1 n = 0 n = 1 n = 2

θ = 12.5◦ −2.1645 −0.9740 0.2164 1.4069 2.5974

field phasors may be written in terms of Floquet harmonics as
follows:

Einc(r) =
∑
n∈Z

(
sna

(n)
s + p+

n a(n)
p

)
exp
[
i
(
k(n)
x x + k(n)

z z
)]

,

(4)

z � 0 ,

Hinc(r) = η0
−1
∑
n∈Z

(
p+

n a(n)
s − sna

(n)
p

)
exp
[
i
(
k(n)
x x + k(n)

z z
)]

,

(5)

z � 0 ,

Eref(r) =
∑
n∈Z

(
snr

(n)
s + p−

n r (n)
p

)
exp
[
i
(
k(n)
x x − k(n)

z z
)]

,

(6)

z � 0 ,

Href(r) = η0
−1
∑
n∈Z

(
p−

n r (n)
s − snr

(n)
p

)
exp
[
i
(
k(n)
x x − k(n)

z z
)]

,

(7)

z � 0 ,

Etr(r) =
∑
n∈Z

(
snt

(n)
s + p+

n t (n)
p

)
exp
{
i
[
k(n)
x x + k(n)

z (z − d3)
]}

,

(8)

z � d3 ,

Htr(r) = η0
−1
∑
n∈Z

(
p+

n t (n)
s − snt

(n)
p

)
× exp

{
i
[
k(n)
x x + k(n)

z (z − d3)
]}

, z � d3 , (9)

where k(n)
x = k0 sin θ + nκx , κx = 2π/L, and

k(n)
z =

⎧⎨
⎩+
√

k2
0 − (k(n)

x

)2
, k2

0 >
(
k(n)
x

)2
+i

√(
k

(n)
x

)2 − k2
0 , k2

0 <
(
k(n)
x

)2 . (10)

The unit vectors

sn = ûy (11)

and

p±
n = ∓k(n)

z

k0
ûx + k(n)

x

k0
ûz (12)

represent the s- and p-polarization states, respectively.
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B. Coupled ordinary differential equations

The relative permittivity in the region 0 � z � d3 can be
expanded as a Fourier series with respect to x, viz.,

ε(x,z) =
∑
n∈Z

ε(n)(z) exp(inκxx) , z ∈ [0,d3] , (13)

where

ε(0)(z) =
⎧⎨
⎩

εd (z) , z ∈ [0,d1] ,
1
L

∫ L

0 εg(x,z)dx , z ∈ (d1,d2) ,

εm , z ∈ [d2,d3] ,

(14)

and

ε(n)(z)

=
{

1
L

∫ L

0 εg(x,z) exp(−inκxx)dx , z ∈ [d1,d2]

0 , otherwise
; ∀ n �= 0 .

(15)

The field phasors may be written in the region 0 � z � d3 in
terms of Floquet harmonics as

E(r) =
∑
n∈Z

E(n)(z) exp
(
ik(n)

x x
)
,

H(r) =
∑
n∈Z

H(n)(z) exp
(
ik(n)

x x
)
, z ∈ [0,d3] , (16)

with unknown functions E(n)(z) = E(n)
x (z)ûx + E(n)

y (z)ûy +
E(n)

z (z)ûz and H(n)(z) = H (n)
x (z)ûx + H (n)

y (z)ûy + H (n)
z (z)ûz.

Substitution of Eqs. (13) and (16) in the frequency-domain
Maxwell curl postulates results in a system of four ordinary
differential equations and two algebraic equations as follows:

d

dz
E(n)

x (z) − ik(n)
x E(n)

z (z) = ik0η0H
(n)
y (z) , (17)

d

dz
E(n)

y (z) = −ik0η0H
(n)
x (z) , (18)

k(n)
x E(n)

y (z) = k0η0H
(n)
z (z) , (19)

d

dz
H (n)

x (z) − ik(n)
x H (n)

z (z) = − ik0

η0

∑
m∈Z

ε(n−m)(z)E(m)
y (z) ,

(20)
d

dz
H (n)

y (z) = ik0

η0

∑
m∈Z

ε(n−m)(z)E(m)
x (z) , (21)

k(n)
x H (n)

y (z) = − k0

η0

∑
m∈Z

ε(n−m)(z)E(m)
z (z) . (22)

Equations (17)–(22) hold ∀ z ∈ (0,d3) and ∀ n ∈ Z. These
equations can be recast into an infinite system of coupled
first-order ordinary differential equations. This system can not
be implemented on a digital computer. Therefore, we restrict
|n| � Nt and then define the column (2Nt + 1) vectors

[Xσ (z)] = [X(−Nt )
σ (z),X(−Nt )

σ (z), . . . ,X(0)
σ (z), . . . ,X(Nt−1)

σ (z),

X(Nt )
σ (z)

]T
, (23)

for X ∈ {E,H } and σ ∈ {x,y,z}. Similarly, we define (2Nt +
1) × (2Nt + 1)-matrices[

K
x

] = diag
[
k(n)
x

]
,
[
ε(z)
] = [ε(n−m)(z)] , (24)

where diag[k(n)
x ] is a diagonal matrix.

FIG. 3. (Color online) Variation of the x component of the time-
averaged Poynting vector P(x,z) along the z axis in the regions (left)
0 < z < d1 and (right) d1 < z < d3 at x = 0.75L for θ = 12.5◦, when
the surface-relief grating is defined by either (a) Eq. (53) or (b) Eq. (2)
and the incident plane wave is p polarized. Other parameters are the
same as for Fig. 2.

Equations (19) and (22) yield

[Ez(z)] = −η0

k0

[
ε(z)
]−1 · [K

x

] · [Hy(z)] (25)

and

[Hz(z)] = 1

η0k0

[
K

x

] · [Ey(z)], (26)

the use of which in Eqs. (17), (18), (20), and (21) eliminates
E(n)

z and H (n)
z ∀ n ∈ Z, and gives the matrix ordinary differen-

tial equation

d

dz
[f(z)] = i

[
P (z)

] · [f(z)] , z ∈ (0,d3) , (27)

where the column vector [f(z)] with 4(2Nt + 1) components
is defined as

[f(z)] = [[Ex(z)]T ,[Ey(z)]T ,η0[Hx(z)]T ,η0[Hy(z)]T ]T (28)

and the 4(2Nt + 1) × 4(2Nt + 1)-matrix [P (z)] is given by

[
P (z)

] =

⎡
⎢⎢⎢⎢⎢⎣

[
0
] [

0
] [

0
] [

P
14

(z)
]

[
0
] [

0
] −k0

[
I
] [

0
]

[
0
] [

P
32

(z)
] [

0
] [

0
]

[
P

41
(z)
] [

0
] [

0
] [

0
]

⎤
⎥⎥⎥⎥⎥⎦ . (29)

Whereas [0] is the (2Nt + 1) × (2Nt + 1) null matrix and [I ] is
the (2Nt + 1) × (2Nt + 1) identity matrix, the three non-null
submatrices on the right side of Eq. (29) are as follows:[

P
14

(z)
] = k0

[
I
]− 1

k0

[
K

x

] · [ε(z)
]−1 · [K

x

]
, (30)

[
P

32
(z)
] = 1

k0

[
K

x

]2 − k0
[
ε(z)
]
, (31)[

P
41

(z)
] = k0

[
ε(z)
]
. (32)

C. Solution algorithm

The column vectors [f(0)] and [f(d3)] can be written using
Eqs. (4)–(9) as

[f(0)]=
[[

Y+
e

] [
Y−

e

][
Y+

h

] [
Y−

h

]
]

·
[

[A]

[R]

]
, [f(d3)] =

[[
Y+

e

][
Y+

h

]
]

· [T] ,

(33)
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TABLE II. Relative wave numbers κ/k0 of possible SPP waves obtained by the solution of the canonical boundary-value problem [11]
for � = λ0. Other parameters are provided in the beginning of Sec. III B. If κ represents an SPP wave propagating in the ûx direction, −κ

represents an SPP wave propagating in the −ûx direction.

Polarization Relative wave numbers

s 1.48639 + 0.00132i 1.7324 + 0.0014ia

p 1.36479 + 0.00169i 1.61782 + 0.00548i 1.87437 + 0.00998i 2.06995 + 0.01526i 2.21456 + 0.00246i

aThis solution had been missed when solutions for Fig. 1 of Ref. [11] were numerically searched.

where

[A] = [a(−Nt )
s ,a(−Nt+1)

s , . . . ,a(0)
s , . . . ,a(Nt−1)

s ,a(Nt )
s ,a(−Nt )

p ,

a(−Nt+1)
p , . . . ,a(0)

p , . . . ,a(Nt−1)
p ,a(Nt )

p

]T
, (34)

[R] = [r (−Nt )
s ,r (−Nt+1)

s , . . . ,r (0)
s , . . . ,r (Nt−1)

s ,r (Nt )
s ,r (−Nt )

p ,

r (−Nt+1)
p , . . . ,r (0)

p , . . . ,r (Nt−1)
p ,r (Nt )

p

]T
, (35)

[T] = [t (−Nt )
s ,t (−Nt+1)

s , . . . ,t (0)
s , . . . ,t (Nt−1)

s ,t (Nt )
s ,t (−Nt )

p ,

t (−Nt+1)
p , . . . ,t (0)

p , . . . ,t (Nt−1)
p ,t (Nt )

p

]T
, (36)

and the nonzero entries of (4Nt + 2) × (4Nt + 2)-matrices
[Y±

e,h
] are as follows:

(Y±
e )nm = 1 , n = m + 2Nt + 1 , (37)

(Y±
e )nm = ∓k(n)

z

k0
, n = m − 2Nt − 1 , (38)

(Y±
h )nm = ∓k(n)

z

k0
, n = m ∈ [1,2Nt + 1] , (39)

(Y±
h )nm = −1 , n = m ∈ [2Nt + 2,4Nt + 2] . (40)

In order to devise a stable algorithm [20,21,23,24], the
region 0 � z � d1 is divided into Nd slices and the region d1 <

z < d2 into Ng slices, but the region d2 � z � d3 is kept as just
one slice. So, there are Nd + Ng + 1 slices and Nd + Ng + 2
interfaces. In the j th slice, j ∈ [1,Nd + Ng + 1], bounded by
the planes z = zj−1 and z = zj , we approximate

[
P (z)

] = [P ]
j

=
[
P

(
zj + zj−1

2

)]
, z ∈ (zj ,zj−1) ,

(41)

so that Eq. (27) yields

[f(zj−1)] = [G]
j
· exp

{− i�j

[
D
]
j

} · [G]−1
j

· [f(zj )] , (42)

where �j = zj − zj−1, [G]j is a square matrix comprising the
eigenvectors of [P ]j as its columns, and the diagonal matrix
[D]j contains the eigenvalues of [P ]j in the same order.

Let us define auxiliary column vectors [T]j and auxiliary
transmission matrices [Z]j by the relation [23]

[f(zj )] = [Z]
j
· [T]j , j ∈ [0,Nd + Ng + 1] , (43)

where z0 = 0,

[T]Nd+Ng+1 = [T] , and
[
Z
]
Nd+Ng+1 =

[[
Y+

e

][
Y+

h

]
]

. (44)

To find [T]j and [Z]j for j ∈ [0,Nd + Ng], we substitute
Eq. (43) in Eq. (42), which results in the relation

[
Z
]
j−1 · [T]j−1 = [G]

j
·
⎡
⎣e−i�j [D]uj 0

0 e
−i�j

[
D

]l
j

⎤
⎦

· [G]−1
j

· [Z]
j
· [T]j , (45)

j ∈ [1,Nd + Ng + 1] ,

where [D]uj and [D]lj are the upper and lower diagonal
submatrices of [D]j , respectively, when the eigenvalues are
arranged in decreasing order of the imaginary part.

Since [T]j and [Z]j cannot be determined simultaneously
from Eq. (45), let us define [23]

[T]j−1 = exp
{− i�j

[
D
]u
j

} · [W ]u
j
· [T]j , (46)

where the square matrix [W ]uj and its counterpart [W ]lj are
defined via [[

W
]u
j[

W
]l
j

]
= [G]−1

j
· [Z]

j
. (47)

Substitution of Eq. (46) in Eq. (45) results in the relation

[
Z
]
j−1 = [G]

j
·
[ [

I
]

exp
{−i�j

[
D
]l
j

} · [W ]l
j
· {[W ]u

j

}−1 · exp
{
i�j

[
D
]u
j

}
]

, j ∈ [1,Nd + Ng + 1]. (48)

From Eqs. (47) and (48), we find [Z]0 in terms of [Z]Nd+Ng+1.
After partitioning

[
Z
]

0 =
[[

Z
]u

0[
Z
]l

0

]
, (49)

and using Eqs. (33) and (43), [R] and [T]0 are found as
follows:

[
[T]0

[R]

]
=
[[

Z
]u

0 −[Y−
e

]
[
Z
]l

0 −[Y−
h

]
]−1

·
[[

Y+
e

][
Y+

h

]
]

· [A] . (50)
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FIG. 4. (Color online) Absorptances (a) Ap and (b) As as
functions of the incidence angle θ , when the surface-relief grating
is defined by Eq. (2) with L1 = 0.5L, λ0 = 633 nm, � = λ0, and
L = λ0. Black squares are for d1 = 6�, red circles for d1 = 5�, and
blue triangles for d1 = 4�. The grating depth (d2 − d1 = 50 nm) and
the thickness of the metallic layer (d3 − d2 = 30 nm) are the same
for all plots. Each vertical arrow identifies an SPP wave.

Equation (50) is obtained by enforcing the usual boundary
conditions across the plane z = 0. After [T]0 is known, [T] =
[T]Nd+Ng+1 is found by reversing the sense of iterations in
Eq. (46).

III. NUMERICAL RESULTS AND DISCUSSION

A. Homogeneous dielectric partnering material

Let us begin with the dielectric partnering material being
homogeneous, i.e., εd (z) is independent of z. This case has
been numerically illustrated by Homola [[2], p. 38] and
we adopted the same parameters: λ0 = 800 nm, εd = 1.766
(water), εm = −25 + 1.44i (gold), and L = 672 nm. The
incident plane wave is p polarized (a(n)

p = δn0 V m−1 and
a(n)

s ≡ 0 ∀ n ∈ Z), and the quantity of importance is the
absorptance

Ap = 1 −
Nt∑

n=−Nt

(∣∣r (n)
s

∣∣2 + ∣∣r (n)
p

∣∣2 + ∣∣t (n)
s

∣∣2 + ∣∣t (n)
p

∣∣2)
× Re

(
k(n)
z

/
k(0)
z

)
, (51)

TABLE III. Relative wave numbers k(n)
x /k0 of Floquet harmonics

at the θ values of the peaks identified in Fig. 4 by vertical arrows
when � = λ0 and L = λ0. Boldface entries signify SPP waves.

n = −2 n = −1 n = 0 n = 1 n = 2

θ = 16.3◦ −1.7210 −0.7210 0.2790 1.2790 2.2790
θ = 21.0◦ −1.6416 −0.6416 0.3584 1.3584 2.3584
θ = 28.4◦ −1.5244 −0.5244 0.4756 1.4756 2.4756
θ = 31.6◦ −1.4760 −0.4760 0.5240 1.5240 2.5240
θ = 37.7◦ −1.3885 −0.3885 0.6115 1.6115 2.6115

FIG. 5. (Color online) Variation of the x component of the time-
averaged Poynting vector P(x,z) along the z axis in the regions (left)
0 < z < d1 and (right) d1 < z < d3 at x = 0.75L, when the surface-
relief grating is defined by Eq. (2). The grating period L = λ0 and the
incident plane wave is p polarized. Other parameters are the same as
for Fig. 4.

which simplifies to

Ap = 1 −
Nt∑

n=−Nt

(∣∣r (n)
p

∣∣2 + ∣∣t (n)
p

∣∣2)Re
(
k(n)
z

/
k(0)
z

)
, (52)

because all materials are isotropic.
Figure 2(a) shows the variation of Ap vs the incidence angle

θ for a sinusoidal surface-relief grating defined by [2]

g(x) = 1

2
(d2 − d1)

[
1 + sin

(
2πx

L

)]
(53)

instead of Eq. (2), and Fig. 2(b) shows the same for the
surface-relief grating defined by Eq. (2) with L1 = 0.5L.
For computational purposes, we set Nd = 1, Ng = 50, and
Nt = 10, after ascertaining that all nonzero reflectances
|r (n)

p |2Re(k(n)
z /k(0)

z ) and transmittances |t (n)
p |2Re(k(n)

z /k(0)
z ) con-

verged within ±0.5% for all n ∈ [−Nt,Nt ].
Each figure shows plots of Ap vs θ for three different values

of the thickness d1, in order to distinguish [25] between
(i) surface waves [11], which must be independent of d1

for sufficiently large values of that parameter, and
(ii) waveguide modes [26,27], which must depend on d1,
as has been shown elsewhere [28,29]. In both figures,

an absorptance peak at θ 	 12.5◦ for all three values of d1

indicates the excitation of an SPP wave. Parenthetically, let
us note here that an SPP wave is a solution of a canonical
boundary-value problem involving the planar interface of two
semi-infinite half spaces, one of which is occupied by a metal
and the other by a dielectric material; but, as the canonical
boundary-value problem cannot be implemented practically,

FIG. 6. (Color online) Same as Fig. 5 except that the incident
plane wave is s polarized.

033852-5



MUHAMMAD FARYAD AND AKHLESH LAKHTAKIA PHYSICAL REVIEW A 84, 033852 (2011)

FIG. 7. (Color online) Absorptance Ap as a function of the
incidence angle θ , when the surface-relief grating is defined by
Eq. (2) with L1 = 0.5L, λ0 = 633 nm, � = λ0, and L = 0.75λ0.
Black squares are for d1 = 6�, red circles for d1 = 5�, and blue
triangles for d1 = 4�. The grating depth (d2 − d1 = 50 nm) and the
thickness of the metallic layer (d3 − d2 = 30 nm) are the same for all
plots. Each vertical arrow identifies an SPP wave.

both materials must be present as sufficiently thick layers in a
real situation so that the SPP wave decays appreciably through
the thickness of each layer.

The relative wave numbers k(n)
x /k0 of a few Floquet

harmonics at θ = 12.5◦ are given in Table I. The solution of the
canonical boundary-value problem [2] (when both partnering
materials are semi-infinite along the z axis and their interface
is planar) shows that the relative wave number κ/k0 of the SPP
wave that can be guided by the planar gold-water interface is

κ/k0 =
√

εdεm/(εd + εm) = 1.3784 + 0.0030i . (54)

A comparison of Table I and Eq. (54) confirms that an SPP
wave is excited at θ = 12.5◦ as the Floquet harmonic of order
n = 1. The spatial profiles of the x component of the time-
averaged Poynting vector

P(x,z) = 1
2 Re[E(x,z) × H∗(x,z)] (55)

along the z axis for x = 0.75L for the p-polarized incident
plane wave at θ = 12.5◦ (the θ value of the peak identified in
Fig. 2 by a vertical arrow), presented in Fig. 3, also indicate
that p-polarized SPP waves are indeed excited for both types
of the surface-relief grating because Px decays quickly away
from the interface z = d1.

We note that the absorptance peak in Fig. 2(b) is not only
wider than in Fig. 2(a), but also of lower magnitude, which
points out the critical importance of the shape function g(x) of
the surface-relief grating. The incidence angle θ determined by
Homola [2, p. 38] is approximately 11◦, the small difference
between his and our results being (i) due to the different
methods of computation and (ii) the fact that, while Homola

TABLE IV. Relative wave numbers k(n)
x /k0 of Floquet harmonics

at the θ values of the peaks identified in Fig. 7 by vertical arrows
when � = λ0 and L = 0.75λ0. Boldface entries signify SPP waves.

n = −2 n = −1 n = 0 n = 1 n = 2

θ = 32.5◦ −2.1294 −0.7960 0.5373 1.8760 3.2040
θ = 50.9◦ −1.8906 −0.5573 0.7760 2.1094 3.4427
θ = 64.2◦ −1.7664 −0.4330 0.9003 2.2336 3.5670

FIG. 8. (Color online) Variation of the x component of the time-
averaged Poynting vector P(x,z) along the z axis in the regions (left)
0 < z < d1 and (right) d1 < z < d3 at x = 0.75L, when the surface-
relief grating is defined by Eq. (2) and the incident plane wave is p

polarized. The grating period L = 0.75λ0, � = λ0, and d1 = 6�.

had semi-infinite dielectric and metallic partnering materials,
we have the two of finite thickness.

B. Periodically nonhomogeneous dielectric partnering material

Now let us move on to the excitation of multiple SPP waves
by a surface-relief grating where the dielectric partnering
material has a periodic nonhomogeneity normal to the mean
metal-dielectric interface:

εd (z) =
[(

nb + na

2

)
+
(

nb − na

2

)
sin

(
π

d2 − z

�

)]2

,

z > 0 , (56)

where 2� is the period. We chose na = 1.45 and nb = 2.32
from an example provided by Baumeister [ [30], Sec. 5.3.3.2 ].
For all calculations reported in the remainder of this paper, we
chose the metal to be bulk aluminum (εmet = −56 + 21i) and
the free-space wavelength λ0 = 633 nm. The surface-relief
grating is defined by Eq. (2) with L1 = 0.5L. We fixed
Nt = 8 after ascertaining that the absorptances for Nt = 8
converged to within ±1% of the absorptances calculated
with Nt = 9. The grating depth d2 − d1 = 50 nm and the
thickness d3 − d2 = 30 nm were also fixed, as their variations
would not qualitatively affect the excitation of multiple SPP
waves. Numerical results for � = λ0 and � = 1.5λ0 are now
presented.

1. � = λ0

Let us commence with � = λ0. The solution of the cor-
responding canonical boundary-value problem [11,31] (when
both the rugate filter and the metal are semi-infinite in thickness
and their interface is planar) results in five p-polarized and two

FIG. 9. (Color online) Same as Fig. 8 except that d1 = 4�.
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TABLE V. Same as Table II except for � = 1.5λ0.

Polarization Relative wave numbers

s 1.4363 + 0.00025ia 1.61507 + 0.00114i 1.78735 + 0.00078i 1.9512 + 0.00037ia

p 1.40725 + 0.00052i 1.54121 + 0.00374i 1.71484 + 0.0049i 1.88541 + 0.00739i

2.11513 + 0.0045i 2.02159 + 0.01301i

aThese solutions had been missed when solutions for Fig. 1 of Ref. [11] were numerically searched.

s-polarized SPP waves, the relative wave numbers κ/k0 being
provided in Table II. We used the solution of the canonical
boundary-value problem as a guide to choose the grating
period L and as a reference for the relative wave numbers
of SPP waves. To analyze the excitation of s-polarized SPP
waves in the grating-coupled configuration, we calculated the
absorptance

As = 1 −
n=Nt∑

n=−Nt

(∣∣r (n)
s

∣∣2 + ∣∣t (n)
s

∣∣2)Re
(
k(n)
z

/
k(0)
z

)
(57)

for a(n)
s = δn0 V m−1 and a(n)

p ≡ 0 ∀ n ∈ Z. Both Ap and As

were calculated as functions of θ for d1 ∈ {4�,5�,6�}, with
Ng and Nd selected to have slices of thickness 2 nm in the
region 0 � z � d1 but 1 nm in the region d1 < z < d2.

For all three values of d1, a peak is present at θ = 37.7◦ in
the plots of Ap vs θ in Fig. 4(a). The relative wave numbers
k(n)
x /k0 of several Floquet harmonics at this incidence angle are

given in Table III. At θ = 37.7◦, k(1)
x /k0 = 1.6115 is close to

Re(κ/k0) = 1.61782, where κ/k0 is the relative wave number
of a p-polarized SPP wave in the canonical boundary-value
problem as provided in Table II. Thus, this Ap peak represents
the excitation of a p-polarized SPP wave as a Floquet harmonic
of order n = 1. In order to confirm this conclusion, we plotted
the spatial profile of Px(0.75L,z) in Fig. 5 for θ = 37.7◦.
Indeed, Px decays quickly away from the plane z = d1 in
the region containing metal, and it also decays—periodically,
according to the Floquet–Lyapunov theorem [32]—inside the
rugate filter away from the same interface, thereby providing
confirmation.

For the Ap peak at θ 	 21◦, the angular location changes
slightly with the change in the value of d1. However, this
peak also represents the excitation of a p-polarized SPP wave
because (i) k(1)

x /k0 = 1.3584 (Table III) is close to Re(κ/k0) =

FIG. 10. (Color online) Absorptance Ap as a function of the
incidence angle θ , when the surface-relief grating is defined by Eq. (2)
with L1 = 0.5L, λ0 = 633 nm, � = 1.5λ0, and L = 0.8λ0. Black
squares are for d1 = 6�, red circles for d1 = 5�, and blue triangles
for d1 = 4�. The grating depth (d2 − d1 = 50 nm) and the width of
the metallic layer (d3 − d2 = 30 nm) are the same for all the plots.
Each vertical arrow indicates an SPP wave.

1.36479 (Table II), and (ii) the spatial profile of Px(0.75L,z)
provided in Fig. 5 is also indicative of a surface wave guided
by the metal–rugate-filter interface. The reason for the change
in the θ value of the Ap peak is the weak localization of this
SPP wave in the region z < d1 (see the left panel in Fig. 5
for θ = 21◦). However, for a sufficiently large value of d1, the
peak should be independent of the value of d1.

Three As peaks are present at θ 	 16.3◦, 28.4◦, and
31.6◦ in the plots of As vs θ , for all three values of d1 in
Fig. 4(b). The relative wave numbers of Floquet harmonics
at these values of the incidence angle are also provided in
Table III. At θ = 16.3◦, an s-polarized SPP wave is excited
as a Floquet harmonic of order n = −2 because k(−2)

x /k0 =
−1.7210 (Table III) is close to Re(κ/k0) = −1.7324
(Table II). The spatial profile of Px(0.75L,z) given in Fig. 6 for
θ = 16.3◦ also confirms this conclusion. Let us also note that
the s-polarized SPP wave is propagating in the −ûx direction
because it is excited as a Floquet harmonic of a negative
order.

The As peak at θ = 28.4◦ represents the excitation of an
s-polarized SPP wave, as a Floquet harmonic of order n = 1,
because (i) k(1)

x /k0 = 1.4756 (Table III) is close to Re(κ/k0) =
1.48639 (Table II), and (ii) the spatial profile of Px(0.75L,z)
provided in Fig. 6 shows that an s-polarized SPP wave is guided
by the interface z = d1 in the +ûx direction. Coincidently, the
As peak at θ = 31.6◦ represents the excitation of the same
s-polarized SPP wave but as a Floquet harmonic of order
n = −2 because k(−2)

x /k0 = −1.4760 (Table III) is close to
Re(κ/k0) = −1.48639 (Table II). This is also evident from the
comparison of the spatial profiles given in Fig. 6 for θ = 28.4◦
and 31.6◦. Although the two spatial profiles are mirror images
of each other, the excitation of the s-polarized SPP wave at
θ = 31.6◦ is not very efficient because it is excited as a Floquet
harmonic of a higher order (|n| = 2).

Since not all possible p-polarized SPP waves (predicted
from the solution of the canonical boundary-value problem)

TABLE VI. Relative wave numbers k(n)
x /k0 of Floquet harmonics

at the θ values of the peaks identified in Fig. 10 by vertical arrows
when � = 1.5λ0 and L = 0.8λ0. Boldface entries signify SPP waves.

n = −2 n = −1 n = 0 n = 1 n = 2

θ = 8.8◦ −2.3470 −1.0970 0.1530 1.4030 2.6530
θ = 16.3◦ −2.2193 −0.9693 0.2807 1.5307 2.7807
θ = 20.8◦ −2.1416 −0.8916 0.3584 1.6084 2.8584
θ = 27.5◦ −2.0382 −0.7882 0.4618 1.7118 2.9618
θ = 37.3◦ −1.8940 −0.6440 0.6060 1.8560 3.1060
θ = 40◦ −1.8572 −0.6072 0.6428 1.8928 3.1428
θ = 51.8◦ −1.7141 −0.4641 0.7859 2.0359 3.2859
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FIG. 11. (Color online) Variation of the x component of the time-
averaged Poynting vector P(x,z) along the z axis in the regions (left)
0 < z < d1 and (right) d1 < z < d3 at x = 0.75L, when the surface-
relief grating is defined by Eq. (2) and the incident plane wave is p

polarized. The grating period L = 0.8λ0 and d1 = 6�.

can be excited with period L = λ0 of the surface-relief grating,
the grating period needs to be changed in order to excite the
remaining SPP waves. The plots of Ap vs θ for L = 0.75λ0 are
presented in Fig. 7, again for d1 ∈ {4�,5�,6�}. The figure

shows three Ap peaks at θ 	 32.5◦, 50.9◦, and 64.2◦ that
are present for all three chosen values of d1. The relative
wave numbers of several Floquet harmonics at these values
of θ are given in Table IV. The Ap peak at θ = 32.5◦
represents the excitation of a p-polarized SPP wave as a
Floquet harmonic of order n = 1 because k(1)

x /k0 = 1.8760
is close to Re(1.87437 + 0.00998i) in Table II. The spatial
profile of Px(0.75L,z) given in Fig. 8 also supports this
conclusion. Similarly, the Ap peaks at θ = 50.9◦ and 64.2◦
represent the excitation of two other p-polarized SPP waves
as a Floquet harmonic of the same order (n = 1), as is evident
from the comparison of Tables III and IV and from the spatial
profiles of Px(0.75L,z) provided in Fig. 9.

2. � = 1.5λ0

The relative wave numbers of possible SPP waves that can
be guided by the planar interface of the chosen rugate filter
and the metal are given in Table V for � = 1.5λ0. In this
case, the solution of the canonical boundary-value problem

FIG. 12. (Color online) Same as Fig. 11 except that d1 = 4�.
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FIG. 13. (Color online) Same as Fig. 10 except that As is plotted
instead of Ap , and L = 0.6λ0.

[11,31] indicated that four s-polarized and six p-polarized SPP
waves can be guided by the metal–rugate-filter interface. For
computations, the region d1 < z < d2 was again divided into
1-nm-thick slices; however, the region 0 � z � d1 was divided
into 3-nm-thick slices to reduce the computation time, after
ascertaining that the accuracy of the computed reflectances
and transmittances had not been adversely affected.

In the plots of Ap vs θ for L = 0.8λ0, provided in Fig. 10,
the excitation of p-polarized SPP waves is indicated at seven
values of the incidence angle: θ 	 8.8◦, 16.3◦, 20.8◦, 27.5◦,
37.3◦, 40◦, and 51.8◦. The relative wave numbers k(n)

x /k0 of a
few Floquet harmonics at these values of the incidence angle
are given in Table VI. The Ap peak at θ = 8.8◦ represents
the excitation of a p-polarized SPP wave because k(1)

x /k0 =
1.4030 is close to Re(κ/k0) = 1.40725 (Table V). The spatial
profile of Px(0.75L,z) given in Fig. 11 for θ = 8.8◦ confirms
the excitation of a p-polarized SPP wave; however, the SPP
wave is very loosely bound to the interface z = d1 in the region
0 < z < d1.

The Ap peak at θ = 16.3◦ represents the excitation of
another p-polarized SPP wave, because k(1)

x /k0 = 1.5307
is close to Re(κ/k0) = 1.54121 (Table V). The Ap peak
at θ = 20.8◦ also represents a p-polarized SPP wave be-
cause k(−2)

x /k0 = −2.1416 is close to Re(κ/k0) = −2.11513
(Table V). Similarly, the Ap peak at θ = 27.5◦ is due to
the excitation of another p-polarized SPP wave as a Floquet
harmonic of order n = 1. The spatial profiles of Px(0.75L,z)
given in Fig. 12(a) for three different p-polarized plane waves
incident at θ = 16.3◦, 20.8◦, and 27.5◦ also confirm that SPP
waves are excited as Floquet harmonic of order n = 1, −2,
and 1, respectively.

A comparison of Tables V and VI shows that the Ap peaks
at θ = 37.3◦ and 40◦ represent the excitation of the same
p-polarized SPP wave; however, the SPP wave is excited as a
Floquet harmonic of order n = −2 at θ = 37.3◦ but of order

TABLE VII. Relative wave numbers k(n)
x /k0 of Floquet harmonics

at the θ values of the peaks identified in Fig. 13 by vertical arrows
when � = 1.5λ0 and L = 0.6λ0. Boldface entries signify SPP waves.

n = −2 n = −1 n = 0 n = 1 n = 2

θ = 3.7◦ −3.2688 −1.6021 0.0645 1.7312 3.3979
θ = 6.4◦ −3.2219 −1.5552 0.1115 1.7781 3.4448
θ = 13.5◦ −3.0999 −1.4332 0.2334 1.9001 3.5668
θ = 16.2◦ −3.0543 −1.3877 0.2790 1.9457 3.6123

FIG. 14. (Color online) Variation of the x component of the time-
averaged Poynting vector P(x,z) along the z axis in the regions (left)
0 < z < d1 and (right) d1 < z < d3 at x = 0.75L for two s-polarized
incident plane waves, when the surface-relief grating is defined by
Eq. (2). The grating period L = 0.6λ0, d1 = 4�, and � = 1.5λ0.

n = 1 at θ = 40◦. Similarly, a p-polarized SPP wave is excited
as a Floquet harmonic of order n = 1 at θ = 51.8◦. The spatial
profiles of Px(0.75L,z) given in Fig. 12(b) also support these
conclusions.

In the plots of As vs θ for L = 0.6λ0, provided in Fig. 13,
four peaks at θ 	 3.7◦, 6.4◦, 13.5◦, and 16.2◦ are present for all
values of d1. The As peak at θ = 3.7◦ represents the excitation
of an s-polarized SPP wave as a Floquet harmonic of order
n = −1 because k(1)

x /k0 = −1.6021 is close to Re(κ/k0) =
−1.61507 (Table V), which is a solution of the canonical
boundary-value problem for an s-polarized SPP wave, whereas
the As peak at θ = 6.4◦ represents the excitation of another
s-polarized SPP wave because k(1)

x /k0 = 1.7781 is close to
Re(κ/k0) = 1.78735 (Table V). Similarly, two s-polarized
SPP waves are excited as a Floquet harmonic of order n = 1 at
θ = 13.5◦ and of order n = −1 at θ = 16.2◦, respectively, as is
evident from the comparison of Tables VI and VII. The spatial
profiles of Px(0.75L,z) given in Figs. 14 and 15 confirm these
conclusions.

C. General conclusions

In the last two subsections, we have deciphered a host
of numerical results and identified those absorptance peaks
that indicate the excitation of SPP waves in the grating-
coupled configuration, when the dielectric partnering material
is periodically nonhomogeneous normal to the mean plane of
the surface-relief grating. We found that

(i) the periodic nonhomogeneity of the dielectric partner-
ing material enables the excitation of multiple SPP waves of
both p- and s-polarization states;

(ii) fewer s-polarized SPP waves are excited than
p-polarized SPP waves;

FIG. 15. (Color online) Same as Fig. 14 except that d1 = 6�.
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(iii) for a given period of the surface-relief grating, it is
possible for two plane waves with different angles of incidence
to excite the same SPP wave [Figs. 4(b) and 10];

(iv) not all SPP waves predicted by the solution of the
canonical problem may be excited in the grating-coupled
configuration for a given period of the surface-relief grating;

(v) the absorptance peaks representing the excitation of
p-polarized SPP waves are generally wider than those rep-
resenting s-polarized SPP waves;

(vi) the absorptance peak is narrower for an SPP wave of
higher phase speed [i.e., smaller Re(κ)]; and
(vii) an SPP wave that is excited as a Floquet harmonic of

order n = +1 for θ ∈ [0,π/2)—or n = −1 for θ ∈ (−π/2,0],
by virtue of symmetry—is the most efficient (Fig. 6).

Let us note that some other combination of the periodic
functions εd (z) and g(x) may allow all solutions of the
canonical boundary-value problem to be excited in the grating-
coupled configuration with a specific {d1,d2,d3}.

The solution of the canonical boundary-value problem [11]
indicates that the period 2� of the rugate filter needs to be
greater than a certain value in order for more than one SPP
wave to be excited, and the excitation of s-polarized SPP waves
may require an even larger period. However, the number of
possible SPP waves increases as the period increases up to a
certain value.

IV. CONCLUDING REMARKS

The excitation of multiple surface plasmon-polariton (SPP)
waves by a surface-relief grating formed by a metal and
a dielectric material, both of finite thickness, was studied
theoretically using the rigorous coupled-wave analysis for
a practically implementable setup. The presence of an SPP

wave was inferred by a peak in the plot of absorptance vs
the angle of incidence θ , provided that the θ location of the
peak turned out to be independent of the thickness of the
dielectric partnering material. If that material is homogeneous,
only one p-polarized SPP wave, that too of a p-polarization
state, is excited. However, the periodic nonhomogeneity of
the partnering dielectric material normal to the mean metal-
dielectric interface results in the excitation of multiple SPP
waves of different polarization states and phase speeds. In
general, the absorptance peak is narrower for an s-polarized
SPP wave than for of a p-polarized SPP wave, and the
absorptance peak is narrower for an SPP wave of higher phase
speed.

Since the electromagnetic field radiated by a line source can
be considered as a spectrum of plane waves propagating at all
angles [ [33], Sec. 2.2], the grating-coupled configuration dis-
cussed in this paper can be used to excite multiple SPP waves
simultaneously by a line source. The excitation of multiple
SPP waves may be significant for practical applications—for
example, to increase the absorption of light in solar cells due to
the increased possibility of excitation of SPP waves [34]. This
application is currently under investigation by the authors.
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