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Symmetry breaking and manipulation of nonlinear optical modes in an asymmetric
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We study light-beam propagation in a nonlinear coupler with an asymmetric double-channel waveguide and
derive various analytical forms of optical modes. The results show that the symmetry-preserving modes in
a symmetric double-channel waveguide are deformed due to the asymmetry of the two-channel waveguide,
yet such a coupler supports the symmetry-breaking modes. The dispersion relations reveal that the system with
self-focusing nonlinear response supports the degenerate modes, while for self-defocusing medium the degenerate
modes do not exist. Furthermore, nonlinear manipulation is investigated by launching optical modes supported
in double-channel waveguide into a nonlinear uniform medium.
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I. INTRODUCTION

Propagation of optical waves in waveguide arrays has
become an important and effective means to investigate
various optical phenomena which have analogs in many
fields of physics [1]. Special attention has been paid to
nonlinear surface waves and nonlinear guided waves in planar
layered structures [2–13] and nonlinear couplers [14–18],
generation and properties of solitons in nonlinear waveguide
arrays [19–24], and other nonlinear periodic systems, such as
optically induced lattices [25–28]. Light-beam propagation in
waveguide arrays attracts attention because of the potential
applications in all-optical signal processing in fiber optic
networks and devices, passive mode locking using waveguide
arrays [29], and beam steering [30–32].

The behavior of light-beam propagation in a coupler com-
posed of a two-channel nonlinear waveguide gained particular
attention because it can exhibit some universal properties in
nonlinear periodic systems and nonlinear waveguide arrays
[33]. The coupler can support symmetry-preserving solutions,
which have linear counterparts, and symmetry-breaking so-
lutions without any linear counterparts [34–36], in which
the spontaneous symmetry breaking has been experimentally
demonstrated in optically induced lattices with a local double-
well potential [34].

In this paper, we consider light-beam propagation in an
asymmetric double-channel waveguide with Kerr-type nonlin-
ear response and derive various analytical stationary solutions
in detail. It is found that the asymmetric double-channel
waveguide can break the symmetric form of the symmetry-
preserving modes in the otherwise symmetric double-channel
waveguide, and such a coupler supports the symmetry-
breaking modes. We also investigate how the type of nonlinear
response affects the existence and properties of nonlinear
optical modes in the asymmetric double-channel waveguide.
The dispersion relation shows that the degenerate modes exist
in the system with self-focusing nonlinear response, while
for the coupler with self-defocusing response, the degenerate
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modes do not exist. In addition, based on these optical
modes supported in asymmetric double-channel waveguide,
we demonstrate the control and manipulation of optical
modes in different nonlinear media by tuning the waveguide
parameters.

The paper is organized as follows. In Sec. II, the model
equation describing beam propagation in a double-channel
waveguide is derived. In Sec. III, various analytical forms
of optical modes are presented both in self-focusing and
self-defocusing media. Meanwhile, the dispersion relations
between the total energy and the propagation constant are
discussed. In Sec. IV, we study the nonlinear manipulation of
optical modes in a double-channel waveguide. Our findings
are summarized in Sec. V.

II. MODEL EQUATION AND REDUCTIONS

We consider a planar graded-index waveguide with refrac-
tive index

n(z,x) = F (x) + n2I (z,x). (1)

Here, the first term on the right-hand side presents a
two-channel waveguide with the different refractive index,
namely, F (x) = n11 as −L0/2 − D0 < x < −L0/2, F (x) =
n12 as L0/2 < x < L0/2 + D0, and otherwise F (x) = n0

(< n11,n12), where D0 and L0 represent the width of waveg-
uide and the separation between waveguides, respectively.
Variables n0, n11, and n12 denote the refractive index of
cladding and waveguide, respectively. The second term de-
notes Kerr-type nonlinearity, I (z,x) is the optical intensity,
and positive (negative) values of nonlinear coefficient n2 in-
dicate self-focusing (self-defocusing) medium. Under slowly
varying envelope approximation, the nonlinear wave equation
governing beam propagation in such a waveguide with the
refractive index given by Eq. (1) can be written as

i
∂ψ

∂z
+ 1

2k0

∂2ψ

∂x2
+ k0[F (x) − n0]

n0
ψ + k0n2

n0
|ψ |2ψ = 0,

(2)
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where ψ(z,x) is the envelope function and k0 = 2πn0/λ is the
wave number, with λ being the wavelength of the optical source
generating the beam. By introducing the normalized transfor-
mations ψ(z,x) = (k0 |n2| LD/n0)−1/2ϕ(ζ,ξ ), ξ = x/w0, and
ζ = z/LD with LD = 2k0w

2
0, which represents the diffrac-

tion length, we get the dimensionless form of Eq. (2) as
follows:

i
∂ϕ

∂ζ
+ ∂2ϕ

∂ξ 2
+ V (ξ )ϕ + η |ϕ|2 ϕ = 0, (3)

where η = n2/ |n2| = ±1 corresponds to self-focusing (+)
and self-defocusing (−) nonlinearity of the waveguides,
respectively, and V (ξ ) = 2k2

0w
2
0 [F (w0ξ ) − n0] /n0 is of the

form

V (ξ ) =
⎧⎨
⎩

V1, −L/2 − D < ξ < −L/2,

V2, L/2 < ξ < L/2 + D,

0, otherwise,
(4)

which describes the dimensionless two-channel waveguide
structure with different refractive indices, where V1 =
2k2

0w
2
0(n11 − n0)/n0 and V2 = 2k2

0w
2
0(n12 − n0)/n0 are the

modulation depths of the refractive indices of the left and right
waveguides and L = L0/w0 and D = D0/w0 correspond to
scaled separation and width of the waveguides, respectively.
Here, we use the typical waveguide parameters D = 3.5, L =
5, V2 = 2.525, and vary V1. Figure 1 shows the profile of the
two-channel waveguide structure given by Eq. (4). It should be
pointed out that such a structure can be realized experimentally
[37]. Equation (3) conserves the total energy flow P (ζ ) =∫ +∞
−∞ |ϕ(ζ,ξ )|2 dξ = P0, where P0 is the dimensionless initial

total energy.
Assuming that the stationary solution of Eq. (3) is of the

form ϕ(ζ,ξ ) = u(ξ ) exp(iβζ ), where u(ξ ) is a real function and
β is the propagation constant, by substituting it into Eq. (3)
we find that the function u(ξ ) obeys the following nonlinear
equation:

d2u

dξ 2
+ [V (ξ ) − β] u + ηu3 = 0, (5)

where η = ±1 corresponds to self-focusing (+) and self-
defocusing (−) nonlinearity of the waveguides, respectively.
It should be pointed out that Eq. (5) not only can describe
the optical modes in the double-channel waveguide structure
with the different refractive index but also can describe

FIG. 1. The profile of a two-channel waveguide with different
refractive indices.

one-dimensional Bose-Einstein condensate trapped in a finite
asymmetrical double-square-well potential −V (ξ ). In par-
ticular, when V1 = V2, the corresponding optical modes in
the symmetric double-channel waveguide structure have been
studied, and the results have shown that the coupler supports
not only symmetry-preserving modes but also symmetry-
breaking modes [36].

III. OPTICAL MODES

In this section, we present the analytical solutions of Eq. (5)
with the potential (4) for η = ±1. Generally, the solutions
of Eq. (5) can be constructed in terms of the Jacobi elliptic
functions depending on the values of the variable ξ and have
the same propagation constants in different regions. Within the
double-channel waveguides of −L/2 − D < ξ < −L/2 and
L/2 < ξ < L/2 + D, the solution of Eq. (5) is the oscillatory
function, so it can be selected in the form [38]

u1(ξ ; A,K,δ) = A sn

(
Kξ + δ, − ηA2

2K2

)
, (6)

with β = V1 − K2 + ηA2/2 in the region of −L/2 − D <

ξ < −L/2 and β = V2 − K2 + ηA2/2 in the region of L/2 <

ξ < L/2 + D. In the region of |ξ | < L/2, the solution of
Eq. (5) has two different Jacobi elliptical functions for the
symmetric and the antisymmetric case, respectively. For the
symmetric case, the solution is [38]

u2(ξ ; B,Q,σ ) = B nc

(
Qξ + σ,1 + ηB2

2Q2

)
, (7)

with β = Q2 + ηB2; and for the antisymmetric case, the
solution is [38]

u2(ξ ; B,Q,σ ) = B sc

(
Qξ + σ,1 + ηB2

2Q2

)
, (8)

with β = Q2 − ηB2/2. It should be noted that those two
solutions are precise solutions of Eq. (5) for one node and
no node within the region of |ξ | < L/2. In other regions, the
solution of Eq. (5) is required to tend to zero as ξ → ±∞, so
it is taken as [36]

u3(ξ ; b) = 1

be−√
βξ + ce

√
βξ

, (9)

with β > 0. Substituting (9) into Eq. (5), one obtains c =
η/(8βb).

Note here that although the modulus in the usual Jacobi
elliptic function is restricted from 0 to 1, this problem can be
solved by the modular transformation such that the modulus
in the Jacobi elliptic functions given by Eqs. (6) to (8) can
take any positive or negative values in our investigations, as
shown in Refs. [38,39], so those solutions do not depend on a
nonlinearity sign.

In the following, we show the analytical global solutions
of Eq. (5). With the help of Eqs. (6), (7) [or (8)], and (9), the
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FIG. 2. (Color online) Various different optical modes existing in self-defocusing medium (η = −1), where the dash-dotted red line is
the optical mode for V1 = 2.500, the solid green line is the optical mode for V1 = 2.525, and the dashed blue line is the optical mode for
V1 = 2.550. Here β = 2.00 in (a) and (b) and β = 0.85 in (c) and (d).

solutions of Eq. (5) can be written as

u(ξ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u3(ξ ; b1), ξ < −L/2 − D,

u1(ξ ; A1,K1,δ1), − L/2 − D < ξ < −L/2,

u2(ξ ; B,Q,σ ), |ξ | < L/2,

u1(ξ ; A2,K2,δ2), L/2 < ξ < L/2 + D,

u3(ξ ; b2), ξ > L/2 + D.

(10)

The continuity conditions for u and ∂u/∂ξ at the boundaries
of ξ = ±L/2 and ξ = ±(L/2 + D) require

u3(−L/2 − D; b1) = u1(−L/2 − D; A1,K1,δ1),
du3

dξ
(−L/2 − D; b1) = du1

dξ
(−L/2 − D; A1,K1,δ1),

u1(−L/2; A1,K1,δ1) = u2(−L/2; B,Q,σ ),
du1

dξ
(−L/2; A1,K1,δ1) = du2

dξ
(−L/2; B,Q,σ ),

(11)
u2(L/2; B,Q,σ ) = u1(L/2; A2,K2,δ2),

du2

dξ
(L/2; B,Q,σ ) = du1

dξ
(L/2; A2,K2,δ2),

u1(L/2 + D; A2,K2,δ2) = u3(L/2 + D; b2),
du1

dξ
(L/2 + D; A2,K2,δ2) = du3

dξ
(L/2 + D; b2),

with β = V1 − K2
1 + ηA2

1/2 = V2 − K2
2 + ηA2

2/2 and β =
Q2 + ηB2 for the symmetric case given by Eq. (7) or β =
Q2 − ηB2/2 for the antisymmetric case given by Eq. (8). In

Eq. (10), there are eleven parameters A1, K1, δ1, A2, K2,
δ2, B, Q, σ , b1, and b2, which can be calculated by solving
numerically Eqs. (11) with the conditions that the propagation
constants in different regions should be same. Once those
parameters are determined numerically, we can obtain the
exact optical modes for asymmetric double-channel nonlinear
waveguides.

Figures 2 and 3 show several different optical modes
in a nonlinear asymmetric double-channel waveguide in
the self-defocusing medium and the self-focusing medium,
respectively. These optical modes are induced from the
symmetry-preserving optical modes in the symmetric double-
channel waveguide, where for comparison we also plotted
the corresponding symmetry-preserving optical modes in the
symmetric double-channel waveguides in the same figure.
From Figs. 2 and 3, we found that the symmetry of the modes
is broken due to asymmetry of the two-channel waveguide
and the amplitude of the modes in the lower refractive index
waveguide is smaller than that in the higher refractive index
waveguide for the self-defocusing medium, while for the
self-focusing medium, the amplitude of the modes in the lower
refractive index waveguide is larger than that in the higher
refractive index waveguide.

We also demonstrate the profiles of optical modes with
dependence on the propagation constant β. Figures 4 and 5
present several corresponding modes shown in Figs. 2 and 3
for different propagation constants β. From them, one can see
that for self-defocusing media the profile of nonlinear modes
shrinks and the corresponding amplitude becomes smaller
with an increase of the propagation constant β, while for
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FIG. 3. (Color online) Various different optical modes existing in self-focusing medium (η = 1), where the dash-dotted red line is the optical
mode for V1 = 2.500, the solid green line is the optical mode for V1 = 2.525, and the dashed blue line is the optical mode for V1 = 2.550.
Here β = 2.30 in (a) and (b) and β = 1.10 in (c) and (d).

self-focusing case it is opposite, namely, the profile of non-
linear modes becomes more prominent and the corresponding
amplitude becomes larger. This feature can be depicted by

the dispersion relations between the total energy P0 and the
propagation constant β. As shown in Figs. 6 and 7, one
can see that the total energy decreases with the increase of

FIG. 4. (Color online) Several optical modes with different β values in a nonlinear asymmetrical double-channel waveguide for the
self-defocusing medium (η = −1). Here the parameters are V1 = 2.500 and V2 = 2.525.

033850-4



SYMMETRY BREAKING AND MANIPULATION OF . . . PHYSICAL REVIEW A 84, 033850 (2011)

FIG. 5. (Color online) Several optical modes with different β values in a nonlinear asymmetrical double-channel waveguide for the
self-focusing medium (η = 1). Here the parameters are the same as in Fig. 4.

the propagation constant for self-defocusing media (Fig. 6),
whereas it is an increasing function of the propagation constant
for the self-focusing case (Fig. 7).

FIG. 6. (Color online) The dependence of the total energy P0 on
the propagation constant β for the modes existing in self-defocusing
medium (η = −1). Here the parameters are V1 = 2.500 and V2 =
2.525. The shaded areas are enlarged in insets (a) and (b). The labels
2a and 2b, and so forth correspond to modes shown in Figs. 2(a) and
2(b), and so forth, respectively.

As discussed in Ref. [36], besides the symmetry-preserving
optical modes, a double-channel waveguide also supports
the symmetry-breaking optical modes, and the corresponding
optical modes in a nonlinear asymmetric double-channel
waveguide are presented in Fig. 8, in which we also plotted
the corresponding symmetry-breaking optical modes in a
symmetric double-channel waveguide for comparison. One
finds that the optical modes in a nonlinear asymmetric double-
channel waveguide are almost the same as the modes in a
symmetric one for the given β.

Similarly, the corresponding modes shown in Fig. 8 for
different propagation constants β are presented in Fig. 9. It
is shown that the profile of nonlinear modes shrinks with the
increase of the propagation constant β for the self-defocusing
case, while for the self-focusing case the profile of nonlinear
modes becomes more pronounced. This feature is depicted by
the dispersion relations between the total energy P0 and the
propagation constant β. It should be pointed out that the modes
shown in Fig. 8 exist only in a small region, as shown in Figs. 6
and 7.

From the dispersion relations shown in Figs. 6 and 7,
one can see that for the self-defocusing medium there is no
intersection between dispersion curves (see Fig. 6 and the
enlarged areas), which indicates that no degenerate modes
exist, and the total energy of the mode shown in Fig. 2(a) is
the highest for a given propagation constant β. While for the
self-focusing medium the dispersion curves can intersect [see
Figs. 7(c) and 7(d)], which implies that there exist two different
modes with the same total energy at the intersection point,
namely, that the degeneracy occurs at the intersection point.
Note that for our choices of parameters, the intersection points
of the dispersion curves for the modes shown in Figs. 3(a)
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FIG. 7. (Color online) The dependence of the total energy P0 on
the propagation constant β for the modes existing in self-focusing
medium (η = 1). Here the parameters are V1 = 2.500 and V2 =
2.525. The shaded areas are enlarged in (a)–(d). The labels 3a, 3b,
and so forth correspond to modes shown in Figs. 3(a) and 3(b), and
so forth, respectively.

and 3(b) and in Figs. 3(c) and 3(d) are about 2.5485 and
1.3595, respectively, and the corresponding degenerate modes
are shown by the green solid curves in Fig. 5. Here, to
distinguish the intersections, we rotate the dispersion curve
for the modes shown in Fig. 3(a) [Fig. 3(c)] by an angle
of π/6 counterclockwise, as the center of intersection point
and the same angle for dispersion curve of the mode shown
in Fig. 3(b) [Fig. 3(d)] are rotated clockwise, as shown in
Figs. 7(c) and 7(d).

IV. THE NONLINEAR MANIPULATION OF OPTICAL
MODES IN A DOUBLE-CHANNEL WAVEGUIDE

In this section, we demonstrate the control and manipulation
of optical modes in reconfigurable nonlinear media. Our inter-
est is to investigate the evolutionary dynamics of optical beams
in a double-channel waveguide propagating into a uniform
nonlinear medium. In this case, the governing equation can be
generally written as

i
∂ψ

∂z
+ 1

2k0

∂2ψ

∂x2
+ k0n(z,x)

n0
ψ = 0, (12)

where the refractive index change n(z,x) is a function
of z and x and n(z,x) = n(z,x) − n0. Here we assume
that when 0 � z � Z0, n(z,x) is in the form of Eq. (1)
and n(z,x) = F (x) + n2I (z,x) − n0; while for z > Z0,
n(z,x) = n′

2I (z,x) − n0. Here, n2 and n′
2 are the Kerr

nonlinear coefficients of different media in the regions of
0 � z � Z0 and z > Z0, respectively. Thus, when 0 � z �
Z0, namely in the region of 0 � ζ � ζ0, Eq. (12) can be

FIG. 8. (Color online) Several symmetry-breaking optical modes, where the dash-dotted red lines are optical modes for V1 = 2.500, the
solid green lines are optical modes for V1 = 2.525, and the dashed blue lines are optical modes for V1 = 2.550. Here η = −1 in (a) and (c),
η = 1 in (b) and (d), β = 1.78 in (a), β = 2.39 in (b), β = 0.66 in (c), and β = 1.15 in (d).
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FIG. 9. (Color online) Several symmetry-breaking optical modes with different β values in a nonlinear asymmetrical double-channel
waveguide. Here the parameters are the same as in Fig. 8.

normalized to Eq. (3), where ζ = z/LD and ζ0 = Z0/LD

with LD = 2k0w
2
0. At the same time, in the region of z > Z0,

FIG. 10. The evolution of optical modes shown in Fig. 2 into the
self-focusing Kerr medium without channels, where η′ = 10 in (a)
and (b) and η′ = 20 in (c) and (d). Here the parameters are V1 = V2 =
2.525 and ζ0 = 10. The labels (a)–(d) correspond to modes shown in
Figs. 2(a)–2(d), respectively.

namely ζ > ζ0, Eq. (12) is reduced to the dimensionless form
as follows:

i
∂ϕ

∂ζ
+ ∂2ϕ

∂ξ 2
+ η′ |ϕ|2 ϕ = 0, (13)

FIG. 11. The evolution of optical modes shown in Fig. 3 into the
self-focusing Kerr medium without channels, where η′ = 5 in (a) and
(b) and η′ = 10 in (c) and (d). Here the parameters are V1 = V2 =
2.525 and ζ0 = 10. The labels (a)–(d) correspond to modes shown in
Figs. 3(a)–3(d), respectively.
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FIG. 12. The evolution of optical modes shown in Fig. 8 into the
self-focusing Kerr medium without channels, where η′ = 10. Here
the parameters are V1 = V2 = 2.525 and ζ0 = 10. The labels (a)–(d)
correspond to modes shown in Figs. 8(a)–8(d), respectively.

where η′ = n′
2/ |n2|. Note that Eq. (13) is different from

Eq. (3), in which Eq. (3) includes a potential function V (ξ )
given by Eq. (4), while Eq. (13) does not include and can
describe the dynamics of beams in Kerr media without any
refractive index modulation.

In the following analysis, optical beams of different modes
existing in double-channel waveguides are injected into the
uniform nonlinear medium after propagating diffraction length
of ζ0 in double-channel waveguide.

First, we consider the situation that optical beams are
injected from symmetrical double-channel waveguide. For
the optical modes shown in Fig. 2, which exist in a self-
defocusing medium (η = −1), the numerical simulations show
that when η′ < 0, these optical modes are diffracted quickly
after entering a uniform Kerr medium. However, when η′ > 0
and is large enough, the evolution of optical beams exhibits
different scenarios in the Kerr medium without any channels,
as shown in Fig. 10. Similarly, for the optical modes shown
in Fig. 3, which exist in self-focusing media (η = 1) with
double-channel waveguide, as shown in Fig. 11, our numerical
simulations show that the evolution of optical modes exhibit
properties similar to those in Fig. 10.

From Figs. 10 and 11, one can see that when the optical
modes existing both in self-defocusing and self-focusing
media with a double-channel waveguide are injected into
the self-defocusing medium without any channels, the beams
should be diffracted quickly. However, when the optical

FIG. 13. (Color online) Energy sharing (row 1) and escape angles (row 2) of optical beams as a function of parameter V1. In all cases, the
solid-blue and the dashed-red curves correspond to the left and right beams, respectively. Here the parameters are V2 = 2.525, η′ = 10 in (a)
and (c), which correspond to the modes shown in Fig. 2(b) [namely Fig. 11(b)], and η′ = 5 in (b) and (d), which correspond to the modes
shown in Fig. 3(b) [namely Fig. 12(b)].
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modes are injected into the self-focusing medium without
any channels and the corresponding nonlinear coefficient η′
is larger, the beams could be manipulated effectively. In
this situation, when the optical modes shown in Figs. 2(a)
and 3(a) are injected into self-focusing medium without any
channels, the beams appear to attract and repel each other
periodically, as shown in Figs. 10(a) and 11(a). When the
modes shown in Figs. 2(b)–2(d) and Figs. 3(b)–3(d) are
injected into self-focusing medium without any channels, the
beams repel each other, as shown in Figs. 10(b)–10(d) and
Figs. 11(b)–11(d). Note that the escape angles are the same
for the beams in Fig. 2(b) [Fig. 3(b)] due to the symmetry of
the double-channel waveguide.

The evolution of optical modes shown in Fig. 8 is presented
in Fig. 12, in which Figs. 12(a) and 12(c) [Figs. 12(b)
and 12(d)] demonstrate the evolution of optical modes in the
self-focusing medium without any channels with initial input
beams injected from self-defocusing (self-focusing) medium
with double-channel waveguide. As shown in Figs. 12(a)
and 12(b), one can see that optical beams with a single hump
can be compressed effectively. and as shown in Figs. 12(c)
and 12(d) the optical modes with two peaks are separated
during the evolution due to the repulsive interaction force
resulting from the phase difference between the two peaks.

It should be pointed out that these results take into
account only the optical modes existing in the sym-
metrical double-channel waveguide. Then, we are cu-
rious about the influence of the asymmetrical double-
channel on the evolution of optical modes. In order
to understand this question, we launch optical beams
from an asymmetrical double-channel waveguide into the
self-focusing medium to observe their evolution by tuning
the depth of left channel of the waveguide for a fixed depth of
the right channel; namely, the value of V1 varies from 2.500
to 2.550 for V2 = 2.525. As an example, we demonstrated the
evolution dynamics for the modes shown in Figs. 2(b) and 3(b).
In Fig. 13, we present the dependence of the energy sharing

(the ratio of the energy carried by each component in the mode
over the total energy) and the escape angle (the angle of the
each peak in the mode and the propagation direction ζ ) on the
value of V1. As shown in Fig. 13, one can see that the energy
carried by each beam is different due to the asymmetry of the
double-channel waveguide [shown in Figs. 13(a) and 13(b)].
Also, one can see clearly that the escape angles of the two
beams take different values with the change of the value V1,
which means that the beams can be controlled by tuning the
depth of the left channel of the waveguide.

V. CONCLUSION

We have studied light-beam propagation in an asymmetric
double-channel waveguide in the form of a nonlinear coupler.
A family of analytical solutions with symmetric and antisym-
metric forms has been obtained for both self-focusing and
self-defocusing nonlinear media, and the dispersion relations
between the total energy and the propagation constant has
been discussed in detail. Our results reveal that the system
with self-focusing nonlinear response supports the degenerate
modes, while for self-defocusing medium the degenerate
modes do not exist. In addition, we explored new ways to steer
optical modes propagating from double-channel waveguide
into a uniform self-focusing medium. The compression of
beam with single hump and split of beams with two humps
have been demonstrated by tuning the depth of the channel of
the waveguide. These properties may be applied in practical
optical devices and may be useful for optical processing,
optical switching, or optical routing.
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