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Quantum optomechanics in the bistable regime
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We study the simplest optomechanical system with a focus on the bistable regime. The covariance matrix
formalism allows us to study both cooling and entanglement in a unified framework. We identify two key factors
governing entanglement; namely, the bistability parameter (i.e., the distance from the end of a stable branch in
the bistable regime) and the effective detuning, and we describe the optimum regime where entanglement is
greatest. We also show that, in general, entanglement is a nonmonotonic function of optomechanical coupling.
This is especially important in understanding the optomechanical entanglement of the second stable branch.
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I. INTRODUCTION

Observing quantum effects like superposition states or
entanglement at the macroscopic level is a long-standing goal.
It is a widely held view that this should be possible, provided
that environmentally induced decoherence can be sufficiently
suppressed. Note, however, that there are some theoretical
proposals which would rule out the existence of quantum
effects at the macroscopic level (see e.g., Ref. [1]). Proposals
for the experimental observation of macroscopic quantum
effects are often based on the principle of Schrödinger’s
cat; that is, on coupling a microscopic quantum system to
a macroscopic system in a controlled way in order to create a
macroscopic superposition state [2–4].

One particularly promising approach in this context is the
use of optomechanical systems. The most basic optomechani-
cal system consists of a Fabry-Perot cavity with one movable
end mirror. The position of this mirror is determined by
the radiation pressure inside the cavity. Such systems were
first studied in the context of high-precision measurements
and gravitational wave detection [5]. It was suggested in
Ref. [3] that the radiation pressure of a single photon in
a high-finesse optical cavity could in principle create a
macroscopic superposition of two spatially distinct locations
of a movable mirror. A potential implementation of this idea
was proposed in Ref. [4]. It is very challenging experimentally
to achieve sufficiently strong optomechanical coupling at the
single-photon level, requiring a system that combines high
optical and mechanical finesse, a low mechanical resonance
frequency, and ultralow temperature.

One way to enhance the optomechanical interaction is to
pump the cavity with a strong laser. Using this technique
the strong-coupling regime in optomechanical systems has
recently been reached [6]. In the presence of a sufficiently
strong driving laser the field enhancement inside the high-
finesse optical cavity is large enough to trigger nonlinear
behavior of the system. Depending on the input power and
the detuning of the driving laser with respect to the cavity
resonance, optomechanical systems exhibit different types
of nonlinear behavior. For sufficiently strong input power,
in the blue-detuned regime one obtains multistability [7],
instability [8], and chaotic motion [9]. In the red-detuned
regime bistability [10,11] occurs. Here we consider the red-

detuned regime. This is the appropriate regime for cooling the
mechanical oscillator close to the ground state [12,13], which
is usually seen as a prerequisite for observing quantum effects.
We are particularly interested in the relationship between
bistability and entanglement.

Optomechanical bistability can be understood intuitively as
the result of a competition between the mechanical restoring
force, which increases linearly when the mirror is moved
from its equilibrium position, and the radiation pressure force,
which has a maximum at the cavity resonance. For a suitable
set of parameters, as in Fig. 1, there are three intersection
points between the two forces. The leftmost and rightmost
intersection points correspond to stable states, because the
restoring force grows faster than the radiation pressure (for
the rightmost point the radiation pressure even decreases as the
mirror is pushed outwards). In contrast, the middle intersection
point is unstable because the radiation pressure force increases
faster than the restoring force.

It is known that the optomechanical interaction can squeeze
the cavity mode, and this squeezing becomes maximal close
to the bistable regime [14]. It has also been noted [15] that,
under certain conditions, entanglement is maximized at the
bistability threshold. This was interpreted as being due to the
enhanced optomechanical coupling strength in this region.
Here, we analyze in detail entanglement close to and in the
bistable regime. We show that a lot of insight can be gained
by analyzing the situation in terms of two key parameters;
namely, the effective detuning and the bistability parameter,
which quantifies the distance from the end of each bistable
branch. Cooling and entanglement can be studied in the same
theoretical framework based on the covariance matrix. We
identify the optimal regimes for both cooling and entangle-
ment. We also show that, somewhat surprisingly, entanglement
is in general a nonmonotonic function of the optomechanical
coupling strength. (Naively, one might have expected it to
always increase with optomechanical coupling strength.)

The paper is organized as follows: Section II introduces the
optomechanical system and describes the linearization of the
equations of motion around the steady state. We also show how
bistability arises in the red-detuned regime in this framework,
introduce the bistability parameter, and derive the dependence
of the photon and phonon number on this parameter, which
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FIG. 1. (Color online) Mechanical restoring force and radiation
pressure force around a cavity resonance. The leftmost and rightmost
intersection points are stable equilibrium positions, whereas the
middle one is unstable.

leads us to a discussion of cooling. Section III discusses
the optomechanical entanglement and its dependence on the
bistability parameter and the effective detuning. This allows
us to determine the optimum value for the detuning and
the maximum achievable entanglement in our system. We
discuss the role of the optomechanical coupling constant,
show how entanglement varies on both stable branches in the
bistable regime, and discuss its robustness under increasing
temperature. Section IV is a summary and conclusion.

II. THE SYSTEM

We consider a high Q Fabry-Perot cavity with decay rate κ .
The movable mirror can move under the influence of radiation
pressure and thermal noise. The movable mirror is initially
in equilibrium with a thermal bath at temperature T which
results in the mechanical damping rate γm and the noise force
ξ (t). The system is driven by a laser with frequency ωL and
power P . The general Hamiltonian of such a system is derived
in [16]. In the regime of parameters that we are interested in,
the general Hamiltonian simplifies to [16,17]

H = h̄ωca
†a + h̄ωm

2
(p2 + q2) − h̄G0a

†aq

+ ih̄E(a†e−iωLt − aeiωLt ), (1)

where ωc and a are the frequency and the annihilation operator
of the cavity mode, respectively, ωm, q, and p are the frequency
and the dimensionless position and momentum operators of
the mirror, respectively, G0 = ωc

L

√
h̄/(mωm) is the coupling

constant, and E = √
2Pκ/(h̄ωL) where P and ωL are the

input laser power and frequency, respectively. The first two
terms correspond to two free harmonic oscillators, the third
term corresponds to the optomechanical coupling, and the last
term corresponds to the cavity being driven by the laser.

The equations of motion in the presence of damping and
noise are

q̇ = ωmp, (2)

ṗ = −ωmq − γmp + G0a
†a + ξ (t), (3)

ȧ = −(κ + i�0)a + iG0aq + E +
√

2κain, (4)
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FIG. 2. (Color online) Bistability of the intracavity power with
respect to input power. The solid and dotted lines correspond to
the stable and unstable branches, respectively. The inset shows the
bistability parameter η for the two stable branches. The end of each
stable branch corresponds to η = 0.

where �0 = ωc − ωL, ain is the vacuum input noise of the
cavity, and ξ (t) is the noise associated with the damping of
the mechanical oscillator. The nonlinear Eqs. (3) and (4) can
be linearized by expanding the operators around their steady
state values Oi = Oi,s + δOi , where Oi = a,q,p.

From Eqs. (2)–(4), the steady state solutions are αs =
E/[κ + i(�0 − G0qs)], qs = G0|αs |2/ωm, and ps = 0, where
αs , qs , and ps are the stationary values for cavity amplitude,
position, and momentum of the mechanical oscillator, respec-
tively. Note that the last of these relations is a third-order
polynomial equation for αs , which has three roots. The largest
and the smallest roots are stable, and the middle one is
unstable. Figure 2 shows the hysteresis loop for the intracavity
power. Consider Pcav initially on the lower stable branch
(I in Fig. 2, corresponding to the smallest root). As Pin

increases, Pcav approaches the end of that branch. At this
point a little increase in the input power results in a switch
of Pcav to the second stable branch (II in Fig. 2, corresponding
to the largest root). If Pin is increased further, the system
remains on the upper branch. If Pin is decreased, the system
approaches the beginning of the second stable branch. If Pin is
decreased even further, the system switches back to the lower
stable branch. We have used the set of parameters of Ref.
[17], which is close to several optomechanical experiments
[18–21]. We consider a Fabry-Perot cavity with length L = 1
mm and finesse F = 1.07 × 104, driven by a laser with
λ = 810 nm and �0 = 2.62ωm. The mechanical oscillator
frequency, damping rate, and mass are 10 MHz, 100 Hz,
and 5 ng, respectively, with an environment temperature
T = 400 mK.

By introducing uT (t) = (δq(t),δp(t),X(t),Y (t)) and
nT (t) = (0,ξ (t),

√
2κXin(t),

√
2κYin(t)), where X =

(δa + δa†)/
√

2 and Y = (δa − δa†)/(
√

2i), and corres-
ponding noises Xin and Yin, the linearized dynamics of system
can be written in a compact form

u̇(t) = Au(t) + n(t), (5)
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where

A =

⎛
⎜⎝

0 ωm 0 0
−ωm −γm G 0

0 0 −κ �

G 0 −� −κ

⎞
⎟⎠ , (6)

and G = √
2G0αs and � = �0 − G0qs are the enhanced

optomechanical coupling rate and effective detuning, respec-
tively.

Since the initial state of the system is Gaussian and the
dynamical equations are linear in the creation and annihilation
operators both for the cavity and mechanical mode, the state
of the system remains Gaussian at all times. A Gaussian state
is fully characterized by its covariance matrix which is defined
at any given time t by Vij (t) = 1

2 〈ui(t)uj (t) + uj (t)ui(t)〉.
The mechanical and optical input-noise operators are fully
characterized by their correlation function, which in the
Markovian approximation are given by

〈ain(t)a†
in(t ′)〉 = δ(t − t ′), (7)

〈ξ (t)ξ (t ′) + ξ (t ′)ξ (t)〉
2

= γm(2n̄ + 1)δ(t − t ′), (8)

where n = [exp( h̄ωm

kBT
) − 1]−1 is the mean thermal phonon

number and kB is Boltzmann’s constant. From Eqs. (5), (7),
and (8), one obtains the equation of motion for the covariance
matrix, which is given by [22]

V̇ = AV + V AT + D. (9)

The steady state solution for the covariance matrix (V̇ = 0) is
reached if all the eigenvalues of the matrix A have negative
real parts. In the red-detuned regime of operation (� > 0),
the Routh-Hurwitz criterion [23] gives the following stability
condition:

ωm(κ2 + �2) − G2� > 0. (10)

In the following we use the dimensionless “bistability param-
eter” defined as [24]

η = 1 − G2�

ωm(κ2 + �2)
, (11)

which is a positive number between zero and one, according to
Eq. (10), in the red-detuned regime (� > 0). We have shown
the bistability parameter in the inset of Fig. 2. As can be seen
from Fig. 2, η decreases when approaching the bistable regime
and becomes equal to zero at the end of each stable branch.

Equation (10) can be intuitively understood by ignoring
retardation effects for the radiation pressure. Assuming that
the optical field adiabatically follows the mechanical oscillator
(i.e., setting δ̇a = 0), one has δa = ( 1√

2
iGδq + √

2κain)/(κ +
i�). The equation of motion for the mirror becomes

δ̇p = −
(

ωm − G2�

κ2 + �2

)
δq − γmδp + ξT , (12)

where ξT = ξ + G
√

2κ[ain/(κ + i�) + a
†
in/(κ − i�)]. From

Eq. (11), we see that the mechanical oscillator is stable if
the first coefficient is positive. In this case the first term in
Eq. (12) corresponds to a harmonic restoring force; see also
Fig. 1 and the associated discussion. This implies the stability

condition (10). The adiabatic approximation is equivalent to
treating the response of the cavity field to the moving mirror
as instantaneous. It is well known that the delayed nature of
this response gives rise to cooling [25], which is, however, not
essential for the above argument. We feel that this argument
helps the physical understanding of the stability condition.
However, let us emphasize that we do not make the adiabatic
approximation in what follows.

In the bistable regime, the fluctuations around the steady
state solution diverge as one approaches the end of each
stable branch. To show this explicitly we solve Eq. (9) for
the steady state, from which we can obtain the phonon
and photon numbers by using n̄m = 1

2 (V11 + V22 − 1) and
n̄o = 1

2 (V33 + V44 − 1). The general solution is complicated
and not very illuminating. Simple relations that show the
dependence of the fluctuations on the stability parameter can
be obtained by assuming a high mechanical quality factor
and a low-temperature environment [i.e., ωm/γm � 1 and
κ/(n̄γm) � 1]. We find

n̄m = (�2 + κ2)(1 + η) − 2ηωm(2� − ωm)

8�ηωm

, (13)

n̄o = (1 − η)(κ2 + �2)

8η�2
. (14)

From Eqs. (13) and (14) it is clear that the phonon and photon
numbers diverge as η approaches zero. In order to stay within
the range of validity of the linearization approximation, we
have made sure that n̄o � |αs |2 in all the results shown below.

For η ∼ 1 from Eq. (13) the optimum value for the detuning
which minimizes the phonon number is given by

�opt =
√

κ2 + ω2
m. (15)

Using the optimum value for detuning in Eq. (13), one finds

n̄m = 1

2

(√
κ2 + ω2

m

ωm

− 1

)
, (16)

which is identical to Eq. (7) in [26]. In the resolved sideband
regime (ωm � κ) one sees from Eq. (15) that ground-state
cooling can be achieved [n̄m = κ2/(4ω2

m)] [26,27].

III. OPTOMECHANICAL ENTANGLEMENT

As shown in [28], for bipartite Gaussian states the Peres-
Horodecki criterion [29,30] (positivity of the density matrix
under partial transposition) is necessary and sufficient for
separability. In terms of the covariance matrix formalism this
criterion is called logarithmic negativity, which is defined
as [31]

EN = max{0, − ln(2νmin)}, (17)

where νmin is the smallest symplectic eigenvalue of the
partially transposed covariance matrix given by νmin =
[ 1

2 (� − √
�2 − 4detV )]1/2, where � = detA+ detB − 2detC

and we represent the covariance matrix in terms of

V =
(

A C

CT B

)
. (18)
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FIG. 3. (Color online) Optomechanical entanglement (a) and
optomechanical coupling constant (b) as a function of bistability
parameter η and normalized effective detuning �/ωm for a cavity
decay rate κ = 1.4ωm.

Equipped with this measure we go on to study optomechani-
cal entanglement. Figure 3(a) shows the logarithmic negativity
as a function of bistability parameter η and effective detuning
�. We note that, for η ∼ 1, which is required for ground-
state cooling, there is no optomechanical entanglement. From
Fig. 3(a) one can identify three different regimes depending
on the effective detuning. In the first regime, for the smallest
detuning, there is no optomechanical entanglement. In the
second regime, for intermediate values of the detuning, there is
some optomechanical entanglement, but the maximum value
for entanglement is attained for values of the bistability param-
eter η somewhere between zero and one. This means that, for
these values of the detuning, the maximum entanglement does
not occur at the end of the bistable branch (cf. [15]). Finally,
in the third regime, for the largest values of detuning, there is
strong optomechanical entanglement and, for each fixed value
of detuning, the maximum entanglement is in fact reached at
the end of the branch (i.e., for η = 0).

Figure 3(b) shows the corresponding optomechanical cou-
pling in the different regimes. From Fig. 3(b) it is clear that
optomechanical coupling is a monotonically decreasing func-
tion of effective detuning (i.e., G1 > G2 > G3 where Gi is the
optomechanical coupling constant in the ith regime). So we see
that, in general, entanglement is not a monotonically increasing
function of the coupling constant. These observations suggest
that the key variables that determine the entanglement behavior
are the effective detuning and the bistability parameter, not the
optomechanical coupling constant.

A more quantitative understanding of the different regimes
for entanglement is possible by looking at the entanglement
behavior in the vicinity of η = 0. Assuming that ωm/γm � 1
and κ/(n̄γm) � 1, one finds � = a + b/η and detV = c +
d/η, where

a = �2 − 3κ2 + ω2
m

16�2
, (19)

b = (�2 + κ2)
(
�2 + κ2 + 5ω2

m

)
16�2ω2

m

, (20)

c = 2�2(�2 + κ2) + (�2 − κ2)ω2
m

128�4
, (21)

d = (�2 + κ2)
(
4�4 + 4�2κ2 + 4�2ω2

m + ω4
m

)
256�4ω2

m

. (22)

From these equations it is possible to derive a simple form for
the logarithmic negativity. Close to the bistability region (η �
1) we have EN = max{0,α + βη}, where α = − ln(2

√
d/b)

and β = (abd − b2c − d2)/(2db2).
It is worth noting that, in contrast to the phonon and photon

numbers, which diverge for η = 0, the logarithmic negativity
has a finite limiting value given by α. While our linearization
approximation is not justified for the point η = 0 itself, it
does apply in its close vicinity, as the photon number drops
precipitously as one moves away from the endpoint of the
stable branch [cf. Eq. (14)].

Using our expression for entanglement close to bistability
one can easily identify the three regimes shown in Fig. 3.
Figure 4 shows the plot for α and β. From Fig. 4 one
can identify the boundaries between the different regimes
discussed above. The first regime corresponds to α < 0 or,
equivalently, � < 0.25ωm. The second regime corresponds to

β

α
0.2 0.4 0.6 0.8 1.0 ωm

3

2

1

1

2

3

FIG. 4. (Color online) Plot of α and β as a function of normalized
detuning. The parameters are the same as in Fig. 3.
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α > 0 and β > 0 or 0.25ωm < � < 0.4ωm. Finally, the third
regime corresponds to α > 0 and β < 0 or � > 0.4ωm.

Moreover, as can be seen from Fig. 3, the maximum
optomechanical entanglement is reached in the bistability
region (for η approaching 0) in the third regime. So the
maximum achievable optomechanical entanglement is given
by α. From Eqs. (19)–(22) the optimum value for effective
detuning where entanglement takes its maximum value is

�opt = ωm

4

√√√√
1 +

√
16

(
κ

ωm

)2

+ 81. (23)

For κ = 1.4ωm, we obtain from Eq. (23) �opt = 0.85ωm.
Comparing this to Eq. (15) one sees that the optimum effective
detuning values for cooling and entanglement are not the same.
Even more importantly, the cooling performance is optimized
for η = 1, whereas entanglement becomes maximal for η = 0.
Using the optimum value for detuning we obtain the following
expression for the maximum achievable entanglement in our
system:

EN,max = − ln

[
1

5

√
9 + 128κ2

8κ2 + 45ω2
m

]
. (24)

Note that this takes its greatest possible value for κ � ωm,
giving EN,max = − ln(3/5) = 0.51.

It is also interesting to look at the optomechanical entan-
glement for the two stable branches and their behavior in the
bistable regime. Figure 5 shows the logarithmic negativity as
a function of input power for both stable branches. Varying
the input power corresponds to varying η (cf. Fig. 2). We
note the persistence of entanglement in the second stable
state in a very narrow window of parameter space. As can
be seen in Fig. 5, the entanglement is maximum at the end
of each branch, corresponding to the third regime. The fast
decreasing entanglement for the second branch is in agreement
with the bistability parameter behavior in Fig. 2. The inset
to Fig. 5 shows the optomechanical coupling for different
stable branches. One sees clearly that the coupling constant
is not the decisive parameter for the amount of entanglement
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FIG. 5. (Color online) Plot of optomechanical entanglement as
a function of input power for both stable branches. The dot dashed
(dashed) line corresponds to the end of the first (second) stable branch.
The parameters are the same as in Fig. 2.
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FIG. 6. (Color online) Contour plot for bistability parameter (a)
and entanglement (b) versus bare detuning �0 and input power Pin in
mW. The parameters are the same as in Fig. 2.

in our system and, in particular, that the entanglement is a
nonmonotonic function of the coupling constant.

Until now we studied the entanglement in terms of parame-
ters that are natural to use from a theoretical point of view. It is
also interesting to look at entanglement in terms of parameters
that can be directly controlled experimentally. Figure 6 shows
the bistability parameter and entanglement as a function of
bare detuning �0 and laser power P . Note that, as we come
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FIG. 7. (Color online) Plot of logarithmic negativity versus input
power (mW) for different environment temperatures: T = 0.4 K
(solid line), T = 5 K (dot dashed), and T = 10 K (dashed). The
other parameters are the same as in Fig. 2.

close to the end of the branch for suitable detuning and for
sufficiently large input power, the entanglement increases.

We have also studied the robustness of entanglement with
respect to the temperature. The result is shown in Fig. 7. One
sees that, for higher temperatures, the entanglement survives
only in the vicinity of the bistable region.

Finally, we note that, in the recent experiment [32], the ratio
of the input power to the critical power (i.e., the input power
for which the bistability happens) is about 0.5. So the bistable
regime should definitely be accessible experimentally.

IV. CONCLUSION

We have studied the simplest optomechanical system using
the covariance matrix formalism with a special emphasis

upon bistability. We recovered the standard results upon
optomechanical cooling as a special case of our general
expression for the phonon number. However, our focus was
on entanglement. We identified two key parameters; namely,
the effective detuning and the bistability parameter (i.e., the
distance from the end of each stable branch in the bistable
regime), and we showed that there are different regimes for
entanglement as a function of these parameters. In particular,
we showed that maximum entanglement is achieved when
the system is simultaneously close to the red sideband (in
terms of effective detuning) and close to the end of each stable
branch (bistability parameter close to zero). We also showed
that the dependence of entanglement on the optomechanical
coupling is counter intuitive and that, in the bistable regime, the
entanglement is particularly robust with respect to temperature
increases.

It would be very interesting to see experimental explo-
rations of the phenomena described in the present paper.
However, it should be noted that measuring the covariance
matrix, which lies at the heart of our analysis, requires direct
access to the position and momentum variables of the mirror,
not just the quadratures of the light. It seems that this would
require either an auxiliary measurement cavity, as proposed
in Ref. [17], or at least an additional laser beam. A detailed
analysis of the resulting more complex dynamics is work for
the future. In the present paper we focused on the entanglement
characteristics of the basic system, which are already quite rich
and intriguing.
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