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Narrowband-biphoton generation due to long-lived coherent population oscillations

A. V. Sharypov and A. D. Wilson-Gordon
Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel

(Received 22 July 2010; revised manuscript received 7 July 2011; published 21 September 2011)

We study the generation of paired photons due to the effect of four-wave mixing in an ensemble of pumped
two-level systems that decay via an intermediate metastable state. The slow population relaxation of the metastable
state creates long-lived coherent population oscillations, leading to a narrowband nonlinear response of the
medium which determines the narrow spectral width and long coherence time of the biphotons.

DOI: 10.1103/PhysRevA.84.033845 PACS number(s): 42.50.Gy, 42.50.Ar, 34.80.Pa

I. INTRODUCTION

Traditionally, paired photons are produced from sponta-
neous parametric down conversion in nonlinear crystals. The
bandwidth of such biphotons is very broad and typically in
the terahertz range [1], which makes them useless for some
applications in quantum information science that require a
strong interaction between photons and atomic systems. This
problem can be overcome by generating biphotons in cold
atomic systems which have a narrowband nonlinear response.
For example, biphotons can be produced when a double-�
system [2–4] or two-level system (TLS) [5–7] is pumped
by two counterpropagating laser fields. Then, phase-matched
and energy-time entangled photon pairs are produced due
to the effect of four-wave mixing (FWM). Biphotons from
such a source have a bandwidth in the megahertz range and a
coherence time of hundreds of nanoseconds.

In this paper, we demonstrate that narrowband biphotons
can also be produced due to the effect of long-lived coherent
population oscillations (CPOs) in a TLS with an intermediate
metastable state. In such a system, the width of the nonlinear
response is determined by the lifetime of the metastable state,
which can vary significantly depending on the nature of the
quantum system. For example, in semiconductor quantum
wells and dots [8], the CPO lifetime is in the microsecond
range, whereas in a ruby crystal [9,10], color centers in a
diamond [10–12], or organic film [13], it can be more than a
millisecond, leading to a broad range of potential applications
of photon pairs based on the CPO effect.

The theoretical model is based on the Heisenberg equations.
In order to find the emission spectrum and biphoton wave
function, we calculate the first- and second-order correlation
functions. Contributions from the correlation of both the
boundary operators and the Langevin noise operators have
been taken into account, as both of these correlations can
contribute to the final result [14].

II. THE MODEL

We consider the interaction of an ensemble of TLSs that
decay via a single intermediate metastable state with two coun-
terpropagating pump fields with amplitude E0 (see Fig. 1). The
medium is assumed to be optically thin in the direction of pump
propagation and the effect of pump depletion is not taken into
account. Due to pumping of the TLS by two counterpropagat-
ing laser fields, photon pairs are produced [5–7] where photons

from the same pair also counterpropagate [see Fig. 1(a)] so
that the phase-matching condition of FWM is satisfied [15]
(actually, in such a configuration, biphotons are emitted into
the whole 4π space). In order to allow for the spontaneous
initiation process, the generated weak fields are described by
quantum-mechanical operators Ê1,2 = Ev

∑
k â

1,2
k eik·r, where

the subscript 1 denotes the field at frequency ω1 = ω0 + δ

propagating along the positive z axis, the subscript 2 denotes
the field at frequency ω2 = ω0 − δ moving along the negative
z axis [see Fig. 1(a)], Ev = (h̄ω0/2ε0V )1/2 is the vacuum field,
V is the quantization volume, and â is the photon annihilation
operator.

To describe the evolution of the atomic ensemble, we
begin with the Heisenberg equations of motion in the dipole
approximation for the mean values of the atomic operators:

(d/dt + �ba − iωba)〈̃σab〉 = −i
dba

h̄
Ẽ(+)(〈̃σbb〉 − 〈̃σaa〉),

(d/dt + �ba + iωba)〈̃σba〉 = i
dab

h̄
Ẽ(−)(〈̃σbb〉 − 〈̃σaa〉),

d 〈̃σaa〉/dt = γba 〈̃σbb〉 + γca 〈̃σcc〉 (1)

− i
dab

h̄
Ẽ(+)〈̃σba〉 + i

dba

h̄
Ẽ(−)〈̃σab〉,

(d/dt + γb)〈̃σbb〉 = i
dab

h̄
Ẽ(+)〈̃σba〉 − i

dba

h̄
Ẽ(−)〈̃σab〉,

(d/dt + γca)〈̃σcc〉 = γbc 〈̃σbb〉,
where 〈̃σij 〉 = 〈|i〉〈j |〉 is the mean value of the atomic operator,
Ẽ(±) is the total field operator, dij is the transition dipole
matrix element, �ba is the transverse relaxation rate, γij is the
longitudinal decay rate from the state |i〉 to the state |j 〉, and
γb = γbc + γba is the total decay rate from the excited level.
We also assume that the system is closed, so that 〈̃σaa〉 +
〈̃σbb〉 + 〈̃σcc〉 = 1.

We apply the slowly varying envelope approximation
and write the total field operator as Ẽ(+) = (E0 + Ê1e

−iδt +
Ê2e

iδt )eiω0t and Ẽ(−) = (E0 + Ê
†
1e

iδt + Ê
†
2e

−iδt )e−iω0t . To
eliminate the fast oscillating terms in Eqs. (1), we introduce the
transformations 〈̃σab,ba(t)〉 = 〈σab,ba(t)〉e±iω0t and 〈̃σjj (t)〉 =
〈σjj (t)〉|j=a,b,c. As several fields are applied to the same
transition, the Hamiltonian of the system has a periodic
time dependence [7,16–20], and the Floquet theory [21] can
therefore be applied to 〈σ 〉:

〈σ 〉 = 〈σ (0)〉 + 〈σ (+δ)〉e−iδt + 〈σ (−δ)〉eiδt . (2)

033845-11050-2947/2011/84(3)/033845(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.033845


A. V. SHARYPOV AND A. D. WILSON-GORDON PHYSICAL REVIEW A 84, 033845 (2011)

FIG. 1. (Color online) In the presence of the counterpropagat-
ing pump fields, phase-matched counterpropagating biphotons are
generated inside the medium due to FWM.

The zeroth-order solutions of Eqs. (1) give the response of
the medium to the pump field and the population distribution
between the quantum states, whereas the first-order solutions
determine the medium response to the weak generated fields
since they are related to the medium polarizations at frequen-
cies ω1,2 by P1 = Ndba〈σ (+δ)

ab 〉 and P ∗
2 = Ndab〈σ (+δ)

ba 〉 [16].
The pump-probe interaction with a TLS is characterized by

population beating or coherent population oscillations (CPOs)
at δ, which is the frequency difference between pump and
probe fields [16]. In an ordinary TLS, the CPOs decay at the
same rate as the excited state. However, the situation can be
quite different if an intermediate metastable state is included
[see Fig. 1(b)]. In this case, long-lived CPOs of the metastable
and ground states can be created, which lead to the appearance
of a narrow dip in the probe absorption spectrum and a narrow
peak in the FWM spectrum [17–19].

Then, making the appropriate approximations for a TLS
that decays slowly via a metastable state,

γca � γba � γbc and V0 � �ba, (3)

where V0 = dbaE0/h̄ is the pump Rabi frequency which is
assumed to be real, and solving Eqs. (1), we obtain [19,20]〈

σ
(+δ)
ab (δ)

〉 = (α1Ê1 + β1Ê
†
2)dab/h̄, (4a)〈

σ
(+δ)
ba (δ)

〉 = (α2Ê
†
2 + β2Ê1)dba/h̄, (4b)

where α1,2 are proportional to the effective linear suscep-
tibilities, and β1,2 are proportional to the effective third-
order nonlinear susceptibilities and are responsible for the
generation of the paired photons. They are given by

α1,2 ≡ ±i(1 + X1,2)/[�1,2(1 + κ)], (4c)

β1,2 ≡ ±iX2,1/[�1,2(1 + κ)], (4d)

where

X1,2 ≡ −κγca

1 ± δ/��1,2

W − iδ
(5a)

is the coherent field interaction term;

W = (1 + κ)γca (5b)

determines the characteristic width of the window in which
coherent interaction between the fields occurs;

κ ≡ 2V 2
0

/[
γca�ba

(
1 + 2/�2

ba

)]
(5c)

is the saturation parameter;

�1,2 ≡ �ba ± i( ∓ δ); (5d)

and  = ω0 − ωba is the detuning of the pump from resonance.
The evolution of the fields generated in the medium is

described by the coupled propagation equations [4](
∂

∂ct
+ ∂

∂z

)
Ê1(z,t) = iε1σ

(+δ)
ab (z,t), (6a)(

∂

∂ct
− ∂

∂z

)
Ê

†
2(z,t) = −iε2σ

(+δ)
ba (z,t), (6b)

where ε1 ≈ ε2 = ε = Ndbaω0/2cε0 are the propagation con-
stants, and

σ
(+δ)
ab,ba(δ) = 〈

σ
(+δ)
ab,ba(δ)

〉 + F
(+δ)
ab,ba(δ) (7)

is the atomic operator that can be split into the sum of its
average value [determined by Eqs. (4a) and (4b)] and the
deviation from the average, which is the Langevin noise [28],
which should be taken into account in order to describe the
spontaneous emission correctly.

In order to solve these coupled equations, we make a Fourier
transformation, neglecting the term iω/c as it does not affect
the final result [4], substitute Eq. (7) into Eqs. (6a) and (6b),
and write the system of differential equations in the matrix
form

∂E/∂z̃ = ME + F, (8)

where we introduce the field vectors E ≡ (Ê1,Ê
†
2)T , the noise

term vector F ≡ (F (+δ)
ab ,F

(+δ)
ba )T , z̃ = zdbaε/h̄, and

M ≡ i

(
α1 β1

β2 α2

)
. (9)

The formal solution of Eq. (8) can be written in the form

E(L̃) = eML̃E(0) +
∫ L̃

0
dz̃eM(L̃−̃z)F (̃z), (10)

where L̃ = Ldbaε/h̄. The generated biphotons counterpropa-
gate so that photon “1” leaves the medium at the point z = L

and photon “2” leaves at z = 0. The boundary conditions
derive from the vacuum field fluctuations at z = 0 for photon
1 and at z = L for photon 2 [see Fig. 1(a)], so that Eq. (10)
can be rewritten as(

Ê1(L̃)

Ê
†
2(0)

)
=

(
A1 B1

B2 A2

) (
Ê1(0)

Ê
†
2(L̃)

)

+
∫ L̃

0
dz̃

(
P11 P12

P21 P22

)
F (̃z), (11)

033845-2



NARROWBAND-BIPHOTON GENERATION DUE TO LONG- . . . PHYSICAL REVIEW A 84, 033845 (2011)

where the connection between coefficients A1,2,B1,2,Pij , and

matrix (
Ã1 B̃1

B̃2 Ã2
) = eML̃ is as follows:

(
A1 B1

B2 A2

)
=

(
Ã1 − B̃1B̃2

Ã2

B̃1

Ã2

− B̃2

Ã2

1
Ã2

)
, (12)

(
P11 P12

P21 P22

)
=

(
1 − B̃1

Ã2

0 − 1
Ã2

)
eM(L̃−̃z). (13)

III. THE CORRELATION PROPERTIES OF
THE EMITTED PHOTONS

The spectrum of the emitted photons is described by the
Fourier transform of the first-order correlation function G

(1)
1,2(τ )

[22,23]:

R1,2(δ) =
∫

eiδτG
(1)
1,2(τ )dτ

= c

LEv

∫
eiδτ 〈Ê†

1,2(t − τ )Ê1,2(t)〉dτ. (14)

By taking into account that the commutation relation for the
input field operators can be written as [Ê(ω),Ê†(−ω′)]/E2

v =
δ(ω + ω′) [23], and using the solution of Eq. (11), we obtain

R1,2(δ) = |B1,2|2 + D11,22, (15)

where the functions Dij are the corresponding moments of the
noise operators derived in the Appendix [see Eqs. (A1)–(A3)].

The correlation between the photons emitted to the left
and right is described by the second-order Glauber correlation
function G

(2)
21 [22],

G
(2)
21 (τ ) = 〈Ê†

1(L,t)Ê†
2(0,t + τ )Ê2(0,t + τ )Ê1(L,t)〉. (16)

As the field emitted by many statistically independent atoms
behaves as a Gaussian random variable, we can use the
Gaussian moment theorem [4,22] and rewrite Eq. (16) in the
form

G
(2)
21 = G

(1)
1 (t)G(1)

2 (t + τ ) + |�21(τ )|2, (17a)

where the first term describe the appearance of uncorrelated
photons and can be found from Eq. (15), and the second term

�21(τ ) = 〈Ê2(0,t + τ )Ê1(L,t)〉 (17b)

describes the appearance of entangled photon pairs and
corresponds to the biphoton wave function [4,22,24]. Using
the solution of Eq. (11), we find that

�21(τ ) =
∫

e−iδτ (A∗
2B1 + D21)dδ, (18)

where D21 is proportional to the Langevin noise terms and is
given by Eq. (A3).

Harris and coworkers [2] have pointed out that a long
coherence time for the biphotons can be obtained due to the
slow light effect [25] experienced by one of the photons of the
entangled pair but not by the other. Here we demonstrate that a
long coherence time can be obtained even in an optically thin
medium, where

α1,2L̃,β1,2L̃ � 1. (19)

Under these conditions, Eqs. (12) and (13) simplify to

A1,2 = 1, B1,2 = ±iβ1,2L̃, (20a)

P11 = −P22 = 1, P12 = −iβ1̃z, P21 = −iβ2(L̃ − z̃),

(20b)

and it becomes possible to obtain analytical solutions for
the spectrum and second-order correlation function of the
biphotons.

The spectrum of the emitted photons is determined by the
functions R1,2(δ) [Eq. (15)], which consist of two terms, |B1,2|2
and D11,22. The first term takes into account the correlation of
the boundary operators due to the effect of FWM and, under
the conditions of Eq. (19), can be written as

|B1,2|2 =
(

L̃γcaκ

�ba(1 + κ)

)2 1

1 + 2/�2
ba

×
∣∣∣∣ 1

W − iδ
− 1

2

(
1 − i/�ba

�1
+ 1 + i/�ba

�2

)∣∣∣∣2

.

(21)

The second term is associated with the Langevin force and,
under the conditions given by Eqs. (3) and (19), can be
approximated as

D11,22 ≈ L̃γcaκ
2

2�ba(1 + κ)2
Re

{
1

W − iδ
− γca/�ba

2
(
1 + 2/�2

ba

)
×

[
(1 − i/�ba)2

�1
+ (1 + i/�ba)2

�2

]}
. (22)

The spectra of the functions |B1,2|2 and D11,22 have similar
shapes: a narrow CPO peak of width W centered at δ = 0,
imposed on a weak naturally broadened pedestal, in the case
of zero pump detuning. If the detuning is nonzero, this pedestal
splits into two sidebands with the same width, located at the
points δ = ±. However, as a result of Eqs. (3) and (19),
the functions D11,22 are much more intense than the functions
|B1,2|2. Thus, the main contribution to the total spectrum under
these conditions derives from the Langevin noise term.

It should be noted that similar results for the emission
spectrum of the system with a shelving state were obtained
in Refs. [26,27], in the context of quantum jumps.

We now turn to the calculation of the biphoton wave
function [Eq. (17b)]. For an optically thin medium [Eq. (19)],
Eq. (A3) simplifies to

D21 ≈ L̃γca

2�ba

κ

1 + κ

{
�ba − i

�ba + i

×
(

κ

1 + κ

1

W + iδ
− 1

�ba + i( + δ)

)}
. (23)

Then, substituting Eqs. (20a) and (23) into Eq. (18), and
integrating over δ, we obtain

�21(τ ) = η
κ

1 + κ
(B + N ), (24)

where

B ≡ i
e−W |τ | − e−�ba |τ |(cos |τ | − 

�ba
sin |τ |)

1 + i 
�ba

(25)
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FIG. 2. (Color online) Biphoton wave function for V0/�ba =
0.01 and γca/�ba = 10−4 with (a) zero pump detuning (κ = 2) and
(b) /�ba = −2 (κ = 0.4); total wave function (red solid line),
contribution from B (black upper dashed line), and contribution from
N (cyan lower dashed line).

takes into account the correlation between the boundary
operators;

N ≡ 1

2

(
1 − i 

�ba

)2

1 + (


�ba

)2

(
e−W |τ | κ

1 + κ
− e−i|τ |e−�ba |τ |

)
(26)

is due to Langevin noise; and η = 2πL̃γca . The general
dynamics of the B and N terms are the same (see Fig. 2):
they are characterized by a long coherence time due to the
term e−W |τ |, and an antibunching dip at τ = 0 (in the case
κ 
 1), which arises from destructive interference between
the terms e−W |τ | and e−�ba |τ |. In addition, during the initial
period 1/�ba , both terms display beating at a frequency
proportional to the pump detuning . However, there are also
some differences between B and N : the amplitudes of these
two terms can be different, depending on the values of the
pump detuning and saturation parameter κ . In addition, the
term N does not go exactly to zero at the point τ = 0, and
the precise form of the beating for each of these terms will be
different.In Fig. 2, we present a numerical calculation of
Eq. (24), and also compare the contributions from the terms B

and N . It can be seen that for the specific parameters used in
the calculation, the Langevin noise term has little influence on
the total spectrum, but for another set of parameters, it could
play a considerable role, especially beyond the optically thin
medium approximation of Eq. (19).

One of the possible ways of realizing the narrowband
biphotons experimentally is to use a ruby crystal which fits
our theoretical model. Pumping the crystal with an Ar+ laser,
at the wavelength λ = 514 nm and intensity I ≈ 1kW/cm2,
would generate biphotons with approximate coherence time
1.5 ms and bandwidth 600 Hz.

IV. CONCLUSION

In summary, we have demonstrated that the combined
effects of FWM and long-lived CPOs in a TLS with an
intermediate metastable state are able to produce narrowband
biphotons with a long coherence time whose maximum value
is equal to the lifetime of the metastable state. The biphotons’
wave form and bandwidth can be controlled by the pump
intensity and detuning. During the time 1/�ba , the biphoton
wave function shows antibunching behavior. If the pump
field is detuned, damped oscillations are observed during this
period.

The theoretical model presented here takes into account the
contributions from the correlation of the boundary operators
and the Langevin noise operators. For an optically thin
medium, it was shown that the emission spectrum is deter-
mined only by the Langevin noise term, as the contribution
from the boundary operators is negligible, but the contributions
to the biphoton wave function from both of these terms are
comparable.
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APPENDIX: NOISE CORRELATION

The substitution of Eq. (11) into Eqs. (14) and (17b) gives
the noise-correlation terms

D11 =
∫ L̃

0
dz̃

[
K11

11

〈
F

(+δ)
ba F

(0)
ab

〉 + K11
22

〈
F

(+δ)
ab F

(0)
ba

〉
+K11

12

〈
F

(+δ)
ba F

(0)
ba

〉 + (
K11

12

)∗〈
F

(+δ)
ab F

(0)
ab

〉]
, (A1)

D22 =
∫ L̃

0
dz̃

[
K22

11

〈
F

(−δ)
ab F

(0)
ba

〉 + K22
22

〈
F

(−δ)
ba F

(0)
ab

〉
+K22

12

〈
F

(−δ)
ab F

(0)
ab

〉 + (
K22

12

)∗ 〈
F

(−δ)
ba F

(0)
ba

〉]
, (A2)

D21 =
∫ L̃

0
dz̃

[
K21

11

〈
F

(−δ)
ba F

(0)
ab

〉 + K21
22

〈
F

(−δ)
ab F

(0)
ba

〉
+K21

12

〈
F

(−δ)
ba F

(0)
ba

〉 + K21
21

〈
F

(−δ)
ab F

(0)
ab

〉]
, (A3)

where we took into account that (F (±δ)
ab,ba)† = F

(∓δ)
ba,ab, and

introduced the following functions:

K11
11 = |P11|2, K11

22 = |P12|2, K11
12 = P ∗

11P12, (A4)

K22
11 = |P21|2, K22

22 = |P22|2, K22
12 = P21P

∗
22, (A5)

K21
11 = P ∗

21P11, K21
22 = P ∗

22P12,
(A6)

K21
12 = P ∗

21P12, K21
21 = P ∗

22P11.
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The expression for the atomic operator σ can be split into the
sum of its average value and the deviation from the average
[see Eq. (7)]. By taking into account that 〈F 〉 = 0, we are
able to express the noise-correlation terms in the following
way: 〈Fi(τ )Fj 〉 = 〈σi(τ )σj 〉 − 〈σi(τ )〉〈σj 〉. According to the
quantum regression theorem, the function 〈σi(τ )σj 〉 can be
determined from the same equation of motion as the function
〈σi(τ )〉 [28,29]. By using the Laplace transform, we can write
correlation functions in terms of the steady-state solution 〈σj 〉
of Eq. (1) and the U matrix [26,27,30–32], where〈

σ (0)
〉 = (〈

σ
(0)
ab

〉
,
〈
σ

(0)
ba

〉
,
〈
σ (0)

aa

〉
,
〈
σ

(0)
bb

〉)T
, (A7)

B = (0,0,γca,0)T , (A8)

M =

⎛⎜⎜⎜⎝
− (�ba + i) 0 iV −iV

0 − (�ba − i) −iV iV

iV −iV −γca γba − γca

−iV iV 0 −γb

⎞⎟⎟⎟⎠ ,

(A9)

U (±δ) = 1
∓iδI−M

, 〈σ (0)〉 = −M−1B, and I is the identity
matrix.

The correlation functions, after some algebra, take the
following form:

〈
F

(±δ)
ab F

(0)
ab

〉 = Re
4∑

j=1

U
(±δ)
1j �1j , (A10)

〈
F

(±δ)
ab F

(0)
ba

〉 = Re
4∑

j=1

U
(±δ)
1j �2j , (A11)

〈
F

(±δ)
ba F

(0)
ab

〉 = Re
4∑

j=1

U
(±δ)
2j �1j , (A12)

〈
F

(±δ)
ba F

(0)
ba

〉 = Re
4∑

j=1

U
(±δ)
2j �2j , (A13)

where

�1j =

⎛⎜⎜⎜⎜⎜⎝
−〈

σ
(0)
ab

〉2〈
σ

(0)
bb

〉 − ∣∣〈σ (0)
ab

〉∣∣2〈
σ

(0)
ab

〉(
1 − 〈

σ (0)
aa

〉)
−〈

σ
(0)
ab

〉〈
σ

(0)
bb

〉

⎞⎟⎟⎟⎟⎟⎠ , (A14)

�2j =

⎛⎜⎜⎜⎜⎜⎝

〈
σ (0)

aa

〉 − ∣∣〈σ (0)
ba

〉∣∣2

−〈
σ

(0)
ba

〉2
−〈

σ
(0)
ba

〉〈
σ (0)

aa

〉〈
σ

(0)
ba

〉(
1 − 〈

σ
(0)
bb

〉)

⎞⎟⎟⎟⎟⎟⎠ . (A15)

Under the conditions of Eq. (3), functions 〈σ (0)
ij 〉 and

U1j,2j can be approximated as follows: 〈σ (0)
ab,ba〉 ≈

±i V
(�ba±i)(1+κ) , 〈σ (0)

aa 〉 ≈ 1
1+κ

(1 + κγca/γb), 〈σ (0)
bb 〉 ≈

κ
1+κ

γca/γb,

U
(±δ)
1j = 1

D(±δ)

⎛⎜⎜⎜⎜⎜⎝
�

(±δ)
2 �(±δ)
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(
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⎞⎟⎟⎟⎟⎟⎠ , (A16)

U
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V 2�
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�
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(±δ)
T

−iV �
(±δ)
1 �

(±δ)
b

iV �
(±δ)
1

(
�(±δ)

ca + γca − γba

)

⎞⎟⎟⎟⎟⎟⎠ , (A17)

where �(±δ)
ca = γca ∓ iδ, �
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T = �b +
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