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Observation of anticorrelation in incoherent thermal light fields
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We wish to report a recent experimental observation of anticorrelation from first-order and second-order
incoherent thermal fields in the joint photodetection of two independent photodetectors. In the view of classical
theory, the nontrivial second-order correlation of thermal light is caused by the statistical correlation of intensity
fluctuations, which can be observed only from first-order coherent thermal radiations. What is the physical cause
of this observed anticorrelation, then?
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I. INTRODUCTION

In 1956, Hanbury Brown and Twiss (HBT) discovered a
nontrivial temporal intensity correlation

�(2)(τA,τB) = 〈I (τA)〉〈I (τB)〉[1 + |γ (1)(τA,τB)|2]

∼ I 2
0

{
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and a nontrivial spatial intensity correlation

�(2)( �ρA, �ρB) = 〈I (τA)〉〈I (τB)〉[1 + |γ (1)( �ρA, �ρB)|2]

∼ I 2
0

{
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]}
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in the joint measurement of thermal radiation [1,2]. Figure 1
shows a fiber-based modern HBT interferometer which can
measure both temporal and spatial intensity correlations. In
Eqs. (1) and (2),

�(2)(τA,τB) = 〈I (τA)I (τB)〉,
�(2)( �ρA, �ρB) = 〈I ( �ρA)I ( �ρB)〉

are the temporal and spatial intensity correlation, respectively.
γ (1)(τA,τB) and γ (1)( �ρA, �ρB) are the degree of first-order
temporal and spatial coherence of the thermal radiation,
respectively. The sinc function and the sombrero-like function
S are defined as

sinc(x) = sin(x)

x
and S(x) = 2J1(x)

x
,

where J1(x) is the first-order Bessel function, τA = tA −
zA/c and τB = tB − zB/c are the temporal coordinates of
the two photodetection events (tj and zj with j = A,B are
the registration times and longitudinal coordinates of the
photodetection event), �ω is the spectral bandwidth of the
thermal radiation, �ρA and �ρB are the transverse coordinates
of the two photodetectors DA and DB , �θ is the angular size
of the far-field thermal source, and λ is the wavelength of the
radiation.

It is easy to see from Eqs. (1) and (2), in a temporal
HBT interferometer, that the temporally randomly distributed
thermal light has a twice greater chance of triggering a joint
detection within its coherence time, τc = 2π/�ω. In a spatial
HBT interferometer, the spatially randomly distributed thermal
light exhibits a twice greater chance of joint detection within
a coherent length, lc = λ/�θ . This property has been widely
utilized in space and astrophysics applications.

It was recently found that for a large angular sized thermal
source the spatial correlation is effectively within a physical
“point,” indicating a typical nonlocal position-position correla-
tion of a measured photon pair [3]. In the language of Einstein,
Podolsky, and Rosen (EPR) [4], in a joint detection of two
photons, neither photon one nor photon two knows precisely
where to go when they are created at the thermal source;
however, if one of them is observed at a certain space-time
point the other one must have two times the probability to
be found at the same space-time point. The point-to-point
correlation of thermal light has been utilized for reproducing
ghost images in a lensless configuration [5].

In classical theory, thermal light belongs to Gaussian light in
terms of its statistical behavior. Thermal light is produced from
a stochastic process. In a thermal source, such as a thermal star,
the radiations created from a large number of atomic transitions
are all independent. Each atomic transition creates its photon
independently and randomly.

Figure 2 schematically illustrates the propagation of ther-
mal radiation.1 To simplify the picture we assume a one-
dimensional source with a large number of independent point
subsources randomly ranging from −D/2 to D/2. Each point
subsource, such as the j th or the kth atomic transition,
randomly radiates independent spherical waves to the 4π solid
angle. Assuming the j th or the kth subsource each created a
photon at time t0, after a one-year propagation, each spherical
wave front would develop a radius of one light-year. In the
view of quantum mechanics, each photon has an equal chance
to be detected by a pointlike photon counting detector at any
point on the one-light-year sphere, although the theory cannot
predict its precise position. Einstein questioned the physics
behind such an observation in the early days of quantum
mechanics and asked a simple question: How much time does
it takes for the one-light-year wave sphere to collapse into one
photodetection event? Today, although we still ask the same
question, we are not surprised to observe a photodetection
event of a single photon from a light-year distant star in our
everyday life. Since 1956, we have been facing a picture that is

1One should not confuse the propagation of thermal light with the
propagation of a laser beam. A laser beam propagates coherently.
After propagating a distance, a large transverse sized laser beam may
keep a slightly enlarged beam size due to diffraction. Thermal light
propagates incoherently which is very different from a laser beam.
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FIG. 1. (Color online) Schematic of a modern HBT interferome-
ter which measures both temporal and spatial correlation of thermal
light by scanning the optical fiber tips longitudinally or transversely.
The two optical fibers are coupled into photon counting detectors,
DA and DB , and a coincidence counter (C.C.) is employed for HBT
correlation measurement. The spectral bandwidth of the radiation,
�ω, is determined by IF (an interference filter). The opening angle
of the thermal source is �θ .

a bit more complicated than Einstein’s: In Fig. 2, neither the j th
photon nor the kth photon knows precisely where to go when
they are created in the source, and each will repeat the story of
Einstein and appear randomly at any point on their light-year
spherical wave front after a light-year propagation. However, if
one of them is observed at an arbitrary point on the sphere, the
other one must have two times the chance of being observed
at the same point. There is no doubt that the experimental
observations have confirmed the physical truth of the effect.
Naturally, we ask ourselves another simple question: What is
the physical cause that forces a twice greater probability for
the two independent light-year wave spheres to collapse into
one joint-detection event at τA = τB and �ρA = �ρB? Unlike the
entangled photon pair, the jointly measured photons from a
thermal source are just two independent photons that fall into
the coincidence time window by chance only.

It seems that the problems come from the concept of
photons or the quantum picture of light, as Hanbury Brown
pointed out in his book [1]. It would be very important to find
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zz0

D/2

-D/2
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k

FIG. 2. (Color online) A large number of independent point
subsources, such as the j th and kth, are randomly distributed on the
plane of a thermal source. These point subsources randomly radiate
independent spherical waves. Due to the stochastic character of the
source, these independent subintensities are simply added together
and yield a constant intensity distribution on any transverse planes.

out the truth: What is the reason for the concept of a photon to
face difficulties in front of HBT? Nevertheless, historically the
HBT phenomenon was interpreted as the statistical correlation
of intensity fluctuations [6].

In the classical theory of light, the joint detection between
two individual pointlike photodetectors, DA and DB , measures
the statistical correlation of intensities at space-time coordi-
nates (rA,tA) and (rB,tB):

�(2)(rA,tA; rB,tB) = 〈E∗(rA,tA)E(rA,tA)E∗(rB,tB)E(rB,tB)〉
= �

(1)
AA�

(1)
BB + �

(1)
AB�

(1)
BA , (3)

where

�
(1)
AA = 〈E∗(rA,tA)E(rA,tA)〉,

�
(1)
BB = 〈E∗(rB,tB)E(rB,tB)〉,

�
(1)
AB = �

∗(1)
BA = 〈E∗(rA,tA)E(rB,tB)〉.

Here �
(1)
AA and �

(1)
BB are known as self-coherence functions, and

�
(1)
AB and �

(1)
BA are the mutual coherence functions.

In Eq. (3), we have applied the standard Gaussian statistics
of thermal light [7,8]:2

〈X1 X2 X3 X4〉 = 〈X1X2〉〈X3X4〉 + 〈X1X3〉〈X2X4〉
+ 〈X1X4〉〈X2X3〉.

Comparing with

�(2)(rA,tA; rB,tB) = 〈I (rA,tA)I (rB,tB)〉
= 〈I (rA,tA)〉〈I (rB,tB)〉

+ 〈�I (rA,tA)�I (rB,tB)〉, (4)

the nontrivial HBT correlation comes from the second term
of Eq. (4), which is considered the statistical correlation of
intensity fluctuations〈�I (rA,tA)�I (rB,tB)〉.

To support their intensity fluctuation interpretation, HBT
provided a reasonable physical picture based on the far-field
measurement of distant stars: In the far-field plane, when
two detectors are placed closed enough, they measure the
same optical mode and thus experience the same intensity
fluctuations; however, while they are moved apart from each
other, the two detectors start to measure different modes and
experience random intensity fluctuations.

Quantum mechanics provides a different point of view.
A joint-photodetection event between DA and DB measures
the probability of observing two photons jointly at space-
time coordinates (rA,tA) and (rB,tB), which is proportional
to the second-order coherence function of the radiation
G(2)(rA,tA; rB,tB). If there exist two alternative ways for a
pair of photons, either entangled photons or randomly paired
photons that fall into the coincidence time window by chance,
to produce a joint-photodetection event, the two probability

2In the theory of classical statistics, a standard approach to calculate
an ensemble average that involves four fields is applying Gaussian
statistics to break it into a sum of ensemble averages each involving
two fields only.
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amplitudes must be linearly superposed in the probability
calculation by using Glauber-Scully theory [9,10]:

G(2)(rA,tA; rB,tB)

= 〈〈Ê(−)(rA,tA)Ê(−)(rB,tB)Ê(+)(rB,tB)Ê(+)(rA,tA)〉QM〉Es

�
〈∑

j

Pj |�j (rA,tA; rB,tB)|2
〉

Es

=
〈∑

m,n

Pmn|Amn(rA,tA; rB,tB) + Anm(rA,tA; rB,tB)|2
〉

Es

∝
〈∑

m,n

Pmn|Amn(rA,tA; rB,tB)|2
〉

Es

+
〈 ∑

m,n

PmnAmn(rA,tA; rB,tB)A ∗
nm(rA,tA; rB,tB)

〉
Es

, (5)

where

�j (rA,tA; rB,tB) = 〈0|Ê(+)(rB,tB)Ê(+)(rA,tA)|ψj 〉.
In Eq. (5), the subscript “Es” denotes an ensemble average;
Pmn stands for the probability for the m-nth photons to create
a joint-photodetection event; Ê(+)(rB,tB) and Ê(+)(rA,tA)
are the field operators at space-time coordinates (rB,tB)
and (rA,tA). |ψj 〉 is the state of the j th paired photons.
�j (rA,tA; rB,tB) is defined as the effective two-photon wave
function for the j th measured photon pair which produced the
j th joint-photodetection event.

Amn(rA,tA; rB,tB) = 〈0|E(+)(rB,tB)E(+)(rA,tA)|ψmn〉,
Anm(rA,tA; rB,tB) = 〈0|E(+)(rB,tB)E(+)(rA,tA)|ψnm〉

are the superposed two-photon amplitudes corresponding to
two different yet indistinguishable alternatives that the j th
paired photons m and n are detected at (rA,tA) and (rB,tB),
respectively, or detected at (rB,tB) and (rA,tA), respectively.

In the view of quantum theory of light, the HBT cor-
relation of temporal and spatial “peaks” observed from
Fig. 1 is caused by an interference which involves the
superposition of two different yet indistinguishable two-
photon probability amplitudes of Amn(rA,tA; rB,tB) and
Anm(rA,tA; rB,tB). When the two amplitudes are quantum me-
chanically indistinguishable, or overlapped in space-time, the
cross term 〈 ∑

m,n PmnAmn(rA,tA; rB,tB)A ∗
nm(rA,tA; rB,tB)〉Es

contributes a nonzero value to the joint measurement of
DA and DB , resulting in a “peak” to the correlation. How-
ever, if the two photodetectors are moved far apart causing
Amn(rA,tA; rB,tB) and Anm(rA,tA; rB,tB) to not overlap, the
cross term 〈 ∑

m,n PmnAmn(rA,tA; rB,tB)A ∗
nm(rA,tA; rB,tB)〉Es

becomes zero. The correlation turns into a trivial constant.
Furthermore, the quantum interference picture does not require
a far-field measurement. It works in both the Fraunhofer far
field and Fresnel near field.

It is important to notice that the cross terms of two
probability amplitudes may be nonzero in certain experimental
conditions, such as that of the reported measurement, even
when there are no synchronous intensity fluctuations between
the A and B fields. For instance, �

(1)
AB = 0 as long as the

A and B fields are mutually incoherent. However, when
�

(1)
AB = 0, intensity fluctuation theory only predicts a nontrivial

correlation as we can see in Eq. (3).
Therefore, it is natural to ask: Can we design an experiment

to distinguish the statistical theory of intensity fluctuation
correlation from the quantum theory of two-photon interfer-
ence? We have found a positive answer: If we can find two
intensities IA and IB with 〈�IA�IB〉 = 0, i.e., we are sure
that the two intensities have no intensity fluctuation correlation
at all, or say the radiations of A and B are first-order and
second-order incoherent, can we still observe any nontrivial
correlation from the two? This question can be easily answered
experimentally. First, it is not too difficult to produce two
first-order and second-order incoherent fields A and B. In an
HBT setup, either in the far field or in the near field, if we
move the slits A and B outside the coherent area to force
�

(1)
AB = 〈E∗

AEB〉 = 0 and �
(2)
AB = 〈E∗

AEAE∗
BEB〉 = constant,

we are sure the intensity fluctuations of the A field and B
field have no correlation [11]. Second, it is not too difficult to
bring the incoherent radiations A and B together by a beam
splitter and to measure the second-order correlation again. If
we observe a constant correlation, the intensity fluctuation
correlation picture world be correct, because whatever a beam
splitter does, 〈�I (rA,tA)�I (rB,tB)〉 = 0 cannot be changed.
However, if we observe a nontrivial correlation from the
joint measurement of two photodetectors, and we can identify
the contributions from the self-correlations of the radiation
A and the radiation B, respectively, and exclude the self-
correlations from the measurement, i.e., we are sure the
nontrivial correlation is the correlation between radiations A
and B only, it would be natural to put a question mark to the
theory of statistical intensity fluctuation correlation.

Following the above philosophy, we have measured the
second-order correlation of incoherent radiations of A and
B and observed a surprising nontrivial anticorrelation. Inter-
estingly, the anticorrelation turns more significant after we
subtract the contributions of possible self-correlations of the
radiation A and the possible self-correlations of the radiation
B from the joint measurement.

II. ANTICORRELATION FROM FIRST- AND
SECOND-ORDER INCOHERENT THERMAL LIGHT

The anticorrelation experiment is schematically illustrated
in Fig. 3. As we have mentioned in the Introduction, we
bring the first- and second-order incoherent radiations A and
B together by a 50%-50% beam splitter BS2. It is easy
to see that if the two input fiber tips A and B are placed
within the longitudinal coherence time and the transverse
coherence area of the thermal field, i.e., �

(1)
AB 	= 0, this setup

is equivalent to a Mach-Zehnder interferometer. D1 and D2

will each observe first-order interference as a function of
the optical delay δ when scanning the fiber tip A along its
longitudinal axis. Consequently, the joint-detection of D1 and
D2 produces an interference that is factorizable into two first-
order interferences.3 However, in this experiment we decided

3It has been commonly accepted to consider a second-order
interference trivial, if it is the product of two first-order interferences.
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FIG. 3. (Color online) Schematic setup of the experiment. The
pseudothermal light source consists of a λ = 780 nm pulsed laser
radiation (∼150 fs) and a fast rotating diffusing ground glass. IF is
an interference filter with 1 nm bandwidth. Pseudothermal light is
split by a nonpolarizing beam-splitter cube BS1 and coupled into two
fibers A and B. At the ends of the fibers, two fiber collimators (FCs)
collimate two output beams into another nonpolarizing beam splitter
BS2.

to move the fiber tip A outside the transverse coherence area to
force �

(1)
AB = 0 and �

(2)
AB = 〈E∗

AEAE∗
BEB〉 = constant. Under

this condition, radiation A and B are first-order and second-
order incoherent, there would be no first-order interference for
any instantaneous “single-exposure” observation [12], and no
intensity fluctuation correlation at all. The two radiations A and
B are completely independent with random relative intensity
fluctuations.

The measurement produced quite a surprise. An “un-
expected” anticorrelation “dip” was observed in the joint-
detection counting rate of D1 and D2 as functions of the optical
delay δ while the single-detector counting rate of D1 and D2

both remained constants. The width of the dip is determined
by the bandwidth of the spectral filters IF. Figure 4 reports
two typical measured anticorrelation functions with different
spectrum bandwidths of the chaotic-thermal field.

The experimental detail is described as follows:
(1) The source: The light source is a standard pseudothermal

source that was developed in the 1960s and used widely in
HBT correlation measurements [13]. The source consists of
a λ = 780 nm laser radiation and a fast rotating diffusing
ground glass. The laser is a CW mode-locked Ti:sapphire laser
beam with ∼150 femtosecond pulses at a 78 MHz repetition
rate. The linearly polarized laser beam is enlarged transversely
onto the ground glass with a diameter of 4.5 mm. The
enlarged laser radiation is scattered and diffused by the rotating
ground glass to simulate a near-field, chaotic-thermal radiation
source: a large number of independent point subsources with
independent, stochastic, relative phases.

(2) The interferometer: A 50-50 nonpolarizing beam splitter
(BS1) is used to split the chaotic-thermal light into transmitted

In fact, any second-order effect would be trivial if it can be factorized
into a product of two first-order effects.
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FIG. 4. (Color online) (Typical observed anticorrelation func-
tions with different special bandwidth: τc ∼ 345 fs for (I), τc ∼ 541 fs
for (II). The temporal width of the “dip” is determined by the
bandwidth of the spectral filters (IF). The counting rates of D1 and
D2 are both kept constant during the scanning of δ.

and reflected radiations which are then coupled into two
identical polarization-controlled single-mode fibers A and B
respectively. The fiber tips are located ∼200 mm from the
ground glass; i.e., dA = dB ∼ 200 mm. At this distance, the
angular size �θ is ∼22.5 milliradians (1.29◦) with respect
to each input fiber tip, which satisfies the Fresnel near-field
condition. The transverse coherence length of the radiation
at the fiber tips is lc ∼ 35 μm. A narrow-band spectral filter
(IF) is employed. The transverse and longitudinal coordinates
of the input fiber tips are both scannable by step motors.
The output ends of the two fibers can be directly coupled
into two single-photon avalanche detectors for near-field HBT
correlation measurements or coupled into the two input ports
of another 50-50 nonpolarizing beam splitter(BS2) for the
anticorrelation measurement.

(3) The measurement: Two steps of measurements were
made. The purpose of step one is to confirm that the light
source produces chaotic-thermal field. We measured the HBT
temporal and spatial correlation by scanning the input fiber
tips longitudinally and transversely. In this measurement the
output ends of the fibers are coupled into DA and DB directly
as shown in Fig. 1. Chaotic-thermal radiation can easily
be distinguished from coherent radiation by examining its
second-order coherence function G(2)(rA,tA; rB,tB), which is
characterized experimentally by the coincidence counting rate
that counts the joint-photodetection events at space-time points
(rA,tA) and (rB,tB).
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FIG. 5. (Color online) Measurement of G(2)(xA − xB ) at no
rotation (0 rpm) and at 1000 rpm (the linear velocity is around
0.8 m/s). Here, xA and xB are the x components of �ρA and �ρB ,
and correspondingly the y components are kept yA = yB .

Figure 5 reports two measured second-order spatial cor-
relations at zero and at 1000 revolutions per minute (rpm)
of the rotating ground glass by scanning the fiber tips
transversely. This measurement guarantees a typical HBT
spatial correlation of chaotic-thermal light at rotation speeds
greater than 1000 rpm of the ground glass, indicating the
chaotic-thermal nature of the light source. In this measurement,
we have also experimentally located the longitudinal and
transverse coordinates of the fiber tips A and B for achieving
the maximum coincidence counting rate, corresponding to the
maximum second-order correlation.

The second-order temporal correlation peak is reported in
Fig. 6. In this measurement, the joint-photodetection counting
rate of DA and DB is measured as a function of tA − tB , where
tA and tB are the registration times of DA and DB . The width
of the temporal correlation peak is mainly determined by the
response time of the photodetectors, which is around 1 ns,
at least two orders greater than the width of the thermalized
pulses. In fact, if the scanning range of tA − tB is within a few

−2 −1 0 1 2
0

1000

2000

3000

t1− t2 (ns)

C
o

in
ci

d
en

t
C

o
u

n
ts

FIG. 6. (Color online) Measurement of G(2)(tA − tB ) in an HBT
type setup that is shown in Fig. 1 (by removing BS2 from Fig. 3),
where tA and tB are the registration times of DA and DB , respectively.
The correlation width is approximately 1 ns, which is mainly
determined by the response time of the detectors, although the
temporal width of the pulsed pseudothermal light is around 1 ps.

picoseconds at the top of the peak (equivalent to scanning δ in
Fig. 3), we can only observe a trivial flat correlation.

In step two, we couple the 50-50 fiber beam splitter (BS2)
into the setup as shown in Fig. 3. This measurement was done
in two steps. We first measured the first-order interference at
�ρA = �ρB by scanning the input fiber tip A longitudinally in
the neighborhood of dA ∼ 200 mm. It is no surprise to have
first-order interference in the counting rates of D1 and D2.
When choosing �ρA = �ρB , the two input fiber tips are coupled
within the spatial coherence area of the radiation field; we
have effectively built a Mach-Zehnder interferometer. We then
move the input fiber tip A transversely from �ρA = �ρB to | �ρA −
�ρB | � lc. (In most of the measurements, | �ρA − �ρB | was chosen
to be | �ρA − �ρB | � 40lc.) Then we scan the input fiber tip A
again longitudinally in the neighborhood of dA ∼ 200 mm.
The optical delay between the plane z = dA ∼ 200 mm and
the scanning input fiber tip A is labeled as δ in Fig. 3. We
have thus achieved the expected experimental condition of
�

(1)
AB(rA,tA; rB,tB) = 0. It is no surprise that we lose any first-

order interference in this experimental condition. However,
it is indeed a surprise that an anticorrelation is observed in
terms of the joint detection of D1 and D2 as a function of the
optical delay δ that is reported in Fig. 4. In these measurements,
| �ρA − �ρB | ∼ 40lc.

Where does the anticorrelation dip come from? One
suspicion is that the beam splitter may split the intensity A
and the intensity B into two, respectively, and the observed
correlation from the joint photodetection of D1 and D2 could
be the intensity fluctuation correlation of the A field itself
and the B field itself. In fact, the self-intensity correlation of
the A field and B field are easy to be identified, respectively,
by blocking the other beam. We have measured (1) the self-
intensity correlation of the A field by blocking the radiation B,
and (2) the self-intensity correlation of the B field by blocking
the radiation A. These self-intensity correlation contributions
can be easily subtracted from the correlation measurement
of D1 and D2. If the correlation turns out to be a constant
after the subtraction, the above suspicion is true. However,
the measurement showed us, again, another surprise. The
anticorrelation becomes more significant after the subtraction.
Figure 7 reports the second-order correlation measurement
of D1 and D2 after the subtraction of the self-intensity
correlations of the A field and B field. The contrast of the
anticorrelation becomes ∼100%, which is very similar to
the historical Hong-Ou-Mandel and Alley-Shih measurements
(in the Alley-Shih experiment, a correlation “peak” is also
observable) [14,15] on an entangled photon pair.

III. A SIMPLE QUANTUM MODEL OF
TWO-PHOTON INTERFERENCE

In this section we give a simple quantum model to explain
the experimental result as two-photon interference. In the
experiment, the light source is a pseudothermal source, which
has been studied experimentally and theoretically, and can
be treated as a thermal source in general [13,16,17].4 The

4A recent experimental and theoretical study of pulsed pseudother-
mal light will be submitted for publication soon.
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FIG. 7. (Color online) A typical measured temporal anticorrela-
tion between D1 and D2 as function of the optical delay δ, after the
subtraction of the self-intensity correlation of the A field and B field,
which were measured by blocking the B field or A field, respectively.
The visibility increased to (92.9 ± 3.7)%.

fast rotating ground glass contains a large number randomly
distributed and shaped “scattering points” that scatter the laser
beam into a large number of randomly distributed subfields in
space-time with random phases. To simplify the discussion,
we assume the light is weak enough to be at the single-photon
level. It is reasonable to model fields A and B as two pointlike
independent subradiations; each is produced by a large number
of independent and randomly radiated wave packets:∣∣ψA

m

〉 =
∫

dω h(ω) eiωtA0m â†(ω) |0〉,
(6)∣∣ψB

n

〉 =
∫

dω h(ω) eiωtB0n b̂†(ω) |0〉,

where A and B label the independent A field and B field,
and m and n label the mth and the nth scattered wave packet.
We have assumed an identical amplitude distribution h(ω) for
all wave packets, which is consistent with the nature of the
pseudothermal source, and randomly distributed tA0m and tB0n,
which determine the phases of the wave packets at points A and
B, respectively. From the source, each wave packet propagates
to all possible directions. The subfields are superposed at the
pointlike fiber tips.

The joint-photodetection counting rate is proportional to
the second-order coherence function G(2)(r1,t1; r2,t2) that is
calculated from

G
(2)
12 = 〈〈Ê(−)

1 Ê
(−)
2 Ê

(+)
2 Ê

(+)
1 〉QM〉Es

=
〈 ∑

m<n

〈
ψA

m

∣∣〈ψA
m′

∣∣Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1

∣∣ψA
m

〉∣∣ψA
m′

〉〉
Es

+
〈 ∑

m<n

〈
ψB

n

∣∣〈ψB
n′
∣∣Ê(−)

1 Ê
(−)
2 Ê

(+)
2 Ê

(+)
1

∣∣ψB
n

〉∣∣ψB
n′
〉〉

Es

+
〈 ∑

n,m

〈
ψA

m

∣∣〈ψB
n

∣∣Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1

∣∣ψA
m

〉∣∣ψB
n

〉〉
Es

≡ G
(2)
AA + G

(2)
BB + G

(2)
AB. (7)

Here we have applied the Glauber-Scully theorem in which
we take the quantum expectation (denoted by 〈...〉QM ) first and
then take the statistical ensemble average (denoted by 〈...〉Es)
[9,10]. Since the A and B fields are mutually incoherent,

the second-order correlation can be separated into three
distinguishable terms, G

(2)
AA, G

(2)
BB , and G

(2)
AB , which represent

three kinds of joint-detection events: (1) both “clicks” on the
detectors come from the A field; (2) both come the from B
field; (3) one “click” comes from the A field, while another is
from the B field. Explicitly,

G
(2)
AA =

〈 ∑
m<n

∣∣〈0|Ê(+)
2 Ê

(+)
1

∣∣ψA
m

〉∣∣ψA
n

〉∣∣2

〉
Es

G
(2)
BB =

〈 ∑
m<n

∣∣〈0|Ê(+)
2 Ê

(+)
1

∣∣ψB
m

〉∣∣ψB
n

〉∣∣2

〉
Es

G
(2)
AB =

〈 ∑
n,m

∣∣〈0|Ê(+)
2 Ê

(+)
1

∣∣ψA
m

〉∣∣ψB
n

〉∣∣2

〉
Es

=
〈 ∑

n,m

∣∣�AB
mn (z1,t1; z,t2)

∣∣2

〉
Es

, (8)

where we have assumed equal probability for the excitation of
the mth and nth wave packets, and �AB

mn (z1,t1; z2,t2) represents
an effective wave function.

Following Eq. (8) and applying the wave packets of Eq. (6),
it is not difficult to find that each G

(2)
AA and G

(2)
BB contribute to

the joint-photodetection an HBT type correlation when D1

and D2 are placed with equal distances from the beam splitter
BS2 to satisfy within τ1 = τ2. The quantum model gives the
same result as that of Eq. (1). In this experiment, G

(2)
AA and

G
(2)
BB both keep their normalized value of g

(2)
AA = g

(2)
BB = 2

during the scanning of the optical delay δ. We will not repeat
the calculation for G

(2)
AA and G

(2)
BB as they are typical HBT

correlations. Regarding G
(2)
AA and G

(2)
BB , the most important

observation in this experiment is that the contribution of G
(2)
AA

and G
(2)
BB , respectively, can be easily measured by blocking the

B source or the A source, and can be legally subtracted from
the direct measurement of G

(2)
AA + G

(2)
BB + G

(2)
AB .

Assuming the measurements of D1 and D2 are both in the
far field, the field operators are approximated in the following
form:

Ê(+)(z1,t1) = 1√
2

[Ê(+)(τA1) + Ê(+)(τB1)]

= 1√
2

∫
f (ω)[â1(ω) eiωτA1 + b̂1(ω) eiωτB1 ]dω,

Ê(+)(z2,t2) = 1√
2

[Ê(+)(τA2) − Ê(+)(τB2)]

= 1√
2

∫
f (ω)[â2(ω) eiωτA2 − b̂2(ω) eiωτB2 ]dω,

(9)

where τAj ≡ tj − n(zj − zA)/c, τBj ≡ tj − n(zj − zB)/c,
j = 1,2, is the optical delay from the detector Dj to the
input planes A and B, respectively, and n is the index of
refraction of the fiber. f (ω) specifies the spectral distribution
of the field that is determined by the spectral function of
the interference filter (IF). The “−” sign in Ê(+)(z2,t2) is
introduced by the beam splitter BS2. Then, the effective

033835-6



OBSERVATION OF ANTICORRELATION IN INCOHERENT . . . PHYSICAL REVIEW A 84, 033835 (2011)

wave function �AB
mn (z1,t1; z2,t2) has two amplitudes that are

superposed destructively:

�AB
mn (z1,t1; z2,t2) = Amn

(
τR
A1,τ

R
B2

) − Anm

(
τT
B1,τ

T
A2

)
. (10)

Therefore,

G
(2)
AB =

〈∑
n,m

∣∣Amn

(
τR
A1,τ

R
B2

)∣∣2

〉
Es

+
〈∑

n,m

∣∣Anm

(
τT
B1,τ

T
A2

)∣∣2

〉
Es

−
⎡
⎣

〈 ∑
n,m

Amn

(
τR
A1,τ

R
B2

)
A ∗

nm

(
τT
B1,τ

T
A2

) + c.c.

〉
Es

⎤
⎦.

(11)

It is easy to see from Eqs. (10) and (11) that an anticor-
relation function of G

(2)
AB is expected, if Amn(τA1,τB2) and

Anm(τB1,τA2) “overlap” completely (quantum mechanically
indistinguishable) from one joint-photodetection event to
another joint-photodetection event, for all m and n, in the
ensemble average. Different from entangled states, a joint-
photodetection event of thermal light is produced by two
independent and randomly distributed photons that fall into
the coincidence time window by chance only. Obtaining
observable two-photon interference, we need (1) to achieve
overlap of the two wave packets in a joint-photodetection
event and (2) to achieve overlap of the two wave packets in all
joint-photodetection events of an ensemble.5

The first critical issue we are facing is then how to overlap
the two-photon amplitudes A (τA1,τB2) and A (τB1,τA2).
Examining wave packets Amn(τA1,τB2) and Anm(τB1,τA2) by
assuming a Gaussian spectrum of f (ω) with coherence time
of tc and central frequency at ω0, it is straightforward to find

Amn(τA1,τB2) = e−(τA1−tA0m)2/t2
c e−(τB2−tB0n)2/t2

c

× e−iω0[(τA1−t0m)+(τB2−t0n)]

Anm(τB1,τA2) = e−(τB1−tB0n)2/t2
c e−(τA2−tA0m)2/t2

c

× e−iω0[(τB1−t0n)+(τA2−t0m)].

To examine the overlapping-nonoverlapping of the two wave
packets, we examine the envelopes of the two wave packets
along the axis of t1 + t2 and t1 − t2:

e−(τA1−tA0m)2/t2
c e−(τB2−tB0n)2/t2

c

= e−{[(t1+t2)−(tA0m+tB0n)]−(z1+z2−zA−zB )/c}2/2t2
c

× e−{(t1−t2)−[(tA0m−tB0n)−δ]}2/2t2
c ,

× e−(τB1−tB0n)2/t2
c e−(τA2−tA0m)2/t2

c

= e−{[(t1+t2)−(tB0n+tA0m)]−(z1+z2−zA−zB )/c}2/2t2
c

× e−{(t1−t2)−[(tA0n−tB0m)−δ]}2/2t2
c , (12)

where δ = (zA − zB)/c (note that z1 = z2 in the experiment).
It is not too difficult to find that the two wave packets overlap
completely along the axis of t1 + t2; however, even if taking

5Entangled states achieve these two conditions in nature. For
instance, (1) the signal-idler photon pair of SPDC is generated
simultaneously; (2) the biphoton state is a pure state; i.e., all signal-
idler pairs are in the same state yielding a homogenous ensemble.

t0B-t0A t0A-t0B

t1-t2

t0B-t0A t0A-t0B

t1-t2

FIG. 8. Naturally, Amn(rA,tA; rB,tB ) and Anm(rA,tA; rB,tB ) can
never be completely overlapped except when having tA

0m = tB
0n by

chance, which is almost zero. However, if we can force |tA
0m − tB

0n| < tc
by applying a short pulse to excite the randomly paired mth and
the nth atomic transition, we can make Amn(rA,tA; rB,tB ) and
Anm(rA,tA; rB,tB ) partially overlap. The shorter |tA

0m − tB
0n| we choose

the more overlapping we may observe. The overlapping may achieve
to ∼100% if we can make |tA

0m − tB
0n| � tc.

δ = 0, the two wave packets can never overlap completely
along the axis of t1 − t2, except when tA0m = tB0n. It is easy
to achieve δ = 0, while it is definitely nontrivial to achieve
tA0m = tB0n for thermal light. This situation is similar to what
we have shown in Fig. 8. However, if we can make all the
atomic transitions occur within a short time window to achieve
|tA0m − tB0n| < tc, Amn(rA,tA; rB,tB) and Anm(rA,tA; rB,tB) can
partially overlap. Figure 8 illustrates a situation in which |tA0m −
tB0n| � tc by applying a short pulse to excite the wave packets
at points A and B. It is easy to see that shorter values of
|tA0m − tB0n| lead to a higher degree of overlapping between
Amn(τA1,τB2) and Anm(τB1,τA2), and thus we may observe a
higher degree of second-order coherence. In Dirac’s language,
we have achieved the condition for randomly paired photons
to interfere with the pair itself.

We now consider the second critical issue: the statistical
ensemble average. In general, the inhomogeneous ensemble
average of thermal fields would average out the two-photon
interference when the G(2) measurement includes all possible
randomly paired atomic transitions occurring at time from −∞
to +∞. What we can do is to force all the possible atomic
transitions to occur within a restricted time interval. Assuming
random temporal distributions of tA0m and tB0n in a limited time
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window of |tA0m − tB0n| < p, the ensemble average of the cross
term in Eq. (11) can be approximated as〈 ∑

m<n

Amn(τA1,τB2)A ∗
nm(τB1,τA2)

〉
Es

�
∫

p

dt0mdt0nAmn(τA1,τB2)A ∗
nm(τB1,τA2)

= 1

2

∫
dt0+dt0−Sp(t0−)Amn(τA1,τB2)A ∗

nm(τB1,τA2)

= N
tc

2p

[
erf

(
p − 2δ

2tc

)
+ erf

(
p + 2δ

2tc

)]
e−t2

−/t2
c , (13)

where we introduce a step function Sp(t0−), Sp(t0−) = 1/p

when |t0−| < p/2, otherwise Sp(t0−) = 0. p represents a
pulse width. In Eq. (13), t− ≡ t1 − t2, t+ ≡ t1 + t2, t0− ≡
t0m − t0n, and t0+ ≡ t0m + t0n; erf stands for an error func-
tion; N ≡ √

π
∫

dt0+e−(t+−t0+−τ+)/t2
c , with τ+ = [(z1 + z2) −

(zA + zB)]/c.
Similarly, the two-photon self-coherence functions are

calculated in the following:〈 ∑
m<n

|Amn(τA1,τB2)|2
〉

Es

�
∫

dt0mdt0n|Amn(τA1,τB2)|2

= N
tc

2p

[
erf

(
p − 2δ + 2t−

2tc

)
+ erf

(
p + 2δ − 2t−

2tc

)]

〈 ∑
m<n

|Ann(τB1,τA2)|2
〉

Es

�
∫

dt0mdt0n|Anm(τB1,τA2)|2

= N
tc

2p

[
erf

(
p + 2δ + 2t−

2tc

)
+ erf

(
p − 2δ − 2t−

2tc

)]
.

From the above analysis, it is clear that when taking p ∼ 0,
the coincident counting rate becomes

RAB =
∫

dt1dt2S(t1 − t2)G(2)
AB ∝ 2 − 2e−δ2/t2

c , (14)

where S(t1 − t2) is a step function that simulates the coinci-
dence time window.

The coincident counting rates of G
(2)
AA and G

(2)
BB simply give

RAA = RBB = 2. Therefore, the total coincident counting rate
is R ∝ 3 − e−δ2/t2

c .
Figure 9 illustrates the typical measured contributions of

G
(2)
AA and G

(2)
BB as well as the total contribution of G

(2)
AA +

G
(2)
BB + G

(2)
AB . It is interesting to find that after subtracting

G
(2)
AA + G

(2)
BB from G

(2)
AA + G

(2)
BB + G

(2)
AB , the net contribution

of G
(2)
AB + G

(2)
BA gives an anticorrelation dip with almost

100% visibility. Figure 7 reports another typical measured
anticorrelation dip in which G

(2)
AA + G

(2)
BB is subtracted dur-

ing the scanning of the input fiber tip. The visibility
is (92.9 ± 3.7)%.

The above thermalized wave packet model of two-photon
interference has given a reasonable quantitative and qualitative
explanation to the experimentally observed anticorrelation.

In the following, we give another simple model that is
closer to a true thermal light source, such as the sunlight,
which leads to the same result as that of the above model. This
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FIG. 9. (Color online) A typical measured G
(2)
AB + G

(2)
AA + G

(2)
BB ,

as well as G
(2)
AA and G

(2)
BB during the scanning of the optical delay δ.

G
(2)
AA and G

(2)
BB were measured, respectively, by blocking the B source

or the A source.

model assumes a collection of a large number of atoms that are
ready for two-level atomic transitions at any time t. From the
source, each atomic transition excites a subfield in the form of
a symmetrical spherical wave propagating to all 4π directions.
Although the chance to have a spontaneous emission is very
small, there is indeed a small probability for an atom to create
a photon whenever the atom decays from its higher energy
level E2 (�E2 	= 0) down to its ground energy level of E1.
It is reasonable to assume the mth atomic transition excites a
subfield in the following state:

|ψm〉 = c0|0〉 + c1

∑
s

∫
dkhm(k,s)â†

m(k,s)|0〉

� |0〉 + ε
∑

s

∫
dkhm(k,s)â†

m(k,s)|0〉, (15)

where |c0| ∼ 1 is the probability amplitude for no field
excitation and |c1| = |ε| � 1 is the probability amplitude for
the creation of a photon; hm(k,s) = 〈ψk,s |ψm〉 is the complex
probability amplitude for the radiation field to be in the Fock
state of |ψk,s〉 = |1k,s〉 = â†(k,s)|0〉 with polarization s and
|k| = ω/c = (E2 − E1)/h̄c. The complex function hm(k,s)
has a real and positive amplitude, which is mainly determined
by the distribution of E2 of the mth atom within �E2, and a
phase that is mainly determined by the transition time of the
atom. In the following, we will focus on one polarization and
drop the index s accordingly. The region of the integral on
|k| is determined by �E2 with �|k| = (�E2 − E1)/h̄c. The
generalized state of the radiation field that is excited by the light
source, which contains a large number atomic transitions, is
formally written as

|�〉 =
∏
m

{
|0〉 + εcm

∫
dωhm(ω)â†

m(ω)|0〉
}

� |0〉

+ ε

[ ∑
m

cm|ψm〉
]

+ ε2

[ ∑
m<n

cmcn|ψm〉|ψn〉
]

+ · · · ,

(16)

where

|ψm〉 ≡
∫

dω hm(ω) â†
m(ω) |0〉
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is the single-photon wave packet produced by the mth atomic
transition at time t0m, which determines the phase of the
complex amplitude hm(ω). Since |ε| � 1, in Eq. (16) we listed
the first-order and the second-order approximations on ε only.

The G
(2)
AB can be calculated as

G
(2)
AB = 〈|〈0|Ê(+)

2 Ê
(+)
1 |�〉|2〉Es, (17)

which is essentially the same as Eq. (8). Substituting the field
operators and the states into Eq. (17), it is straightforward to
obtain the same anticorrelation as that of Eq. (8).

Therefore, the above model of true thermal source as a
collection of a large number of independent and randomly
radiated atomic transitions will lead to the same result as that
of thermalized wave packets.

IV. AN ANALYSIS BASED ON THE STANDARD GAUSSIAN
STATISTICS OF THERMAL LIGHT

Quantum mechanics provides us a clear picture and reason-
able model. Can a classical model lead us to the correct result?
In this section we analyze the anticorrelation experiment by
applying the standard Gaussian statistics of thermal light. In
the standard Gaussian model, the second-order correlation
function can be expressed in terms of the first-order correlation
functions:

〈E∗
1E1E

∗
2E2〉 = 〈E∗

1E1〉〈E∗
2E2〉 + 〈E∗

1E2〉〈E1E
∗
2 〉. (18)

Complete information on the Gaussian field, such as chaotic-
thermal, is provided by the first-order correlation functions
[7,8].

The discussion will be divided into two steps: (1) a
simplified discussion based on two sets of HBT measurements;
(2) a more detailed calculation involving the propagation of
radiation fields EA and EB .

Analysis 1. Examine the simplified schematic of the
experimental setup of Fig. 10; since 〈E∗

AEB〉 = 0, there is
no intensity fluctuation correlation between radiation fields A
and B. Therefore, the first-order incoherent radiations A and B
would not produce any interference (the detail is shown on the
second step). So, we may treat the experimental setup as two
sets of HBT interferometers with first-order and second-order

A

B

d

δ D1

D2

FIG. 10. (Color online) Simplified experimental setup. The radi-
ation fields EA and EB are incoherent with 〈E∗

AEB〉 = 0.

δ D1

D2

D1

D2

A

B

FIG. 11. (Color online) The anticorrelation setup combines two
sets of independent HBT interferometers.

incoherent thermal sources A and B, respectively (Fig. 11).
The HBT correlation is calculated from classical theory:

�
(2)
j (r1,t1; r2,t2) = 〈Ij1(r1,t1)Ij2(r2,t2)〉 = 〈E∗

j1Ej1E
∗
j2Ej2〉

= 〈E∗
j1Ej1〉〈E∗

j2Ej2〉 + 〈E∗
j1Ej2〉〈Ej1E

∗
j2〉

= �
(1)
j11�

(1)
j22 + �

(1)
j12�

(1)
j21 , (19)

where j = A,B, Ej1, and Ej2 label the radiation fields Ej

at D1 and D2 to produce photodetection events of (r1,t1) and
(r2,t2). Similar to Eq. (3), in Eq. (19) we have applied the
statistical property of Gaussian light. It is easy to see that the
first term in Eq. (19) is the product of two mean intensities of
radiation j at (r1,t1) and (r2,t2). The second-term yields the
nontrivial HBT correlation |�(1)

j12|2. If D1 and D2 are placed
symmetrically with respect to slit A and slit B in which light
takes equal optical paths, zA1 − zA2 = 0 and zB1 − zB2 = 0,
to reach D1 and D2, the two independent HBT interferometers
respectively thus give two independent sets of temporal HBT
correlations:

�(2)(τ1,τ2) ∼ I 2
0

{
1 + sinc2

[
�ω(τ1 − τ2)

2

]}
. (20)

It is clear that neither correlation is a function of the optical
delay δ and there is no way to obtain an anticorrelation when
scanning the optical delay δ. The above simple model failed
to explain the experimental observations of Fig. 4.

Analysis 2. We consider a detailed calculation starting from

�(2)(r1,t1; r2,t2) = 〈I (r1,t1)I (r2,t2)〉 = 〈(E∗
A1 + E∗

B1)

× (EA1 + EB1)(E∗
A2 − E∗

B2)(EA2 − EB2)〉,
(21)

where EA1 and EB1 label the radiation fields at slit A and B in
earlier times t1 − zA1/c and t1 − zB1/c, respectively. We have
sixteen expectations to evaluate:

〈I (r1,t1)I (r2,t2)〉
= 〈E∗

A1EA1E
∗
A2EA2〉 + 〈E∗

A1EA1E
∗
B2EB2〉

− 〈E∗
A1EA1E

∗
A2EB2〉 − 〈E∗

A1EA1E
∗
B2EA2〉

+ 〈E∗
B1EB1E

∗
A2EA2〉 + 〈E∗

B1EB1E
∗
B2EB2〉

− 〈E∗
B1EB1E

∗
A2EB2〉 − 〈E∗

B1EB1E
∗
B2EA2〉

+ 〈E∗
A1EB1E

∗
A2EA2〉 + 〈E∗

A1EB1E
∗
B2EB2〉

− 〈E∗
A1EB1E

∗
A2EB2〉 − 〈E∗

A1EB1E
∗
B2EA2〉

+ 〈E∗
B1EA1E

∗
A2EA2〉 + 〈E∗

B1EA1E
∗
B2EB2〉

− 〈E∗
B1EA1E

∗
A2EB2〉 − 〈E∗

B1EA1E
∗
B2EA2〉. (22)

Applying the property of Gaussian field and taking the result
of 〈E∗

AEB〉 = 0, it is not too difficult to find that ten terms in
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Eq. (22) take zero value, and leave six terms that may have
nonzero contribution to 〈I1I2〉:
〈I (r1,t1)I (r2,t2)〉 = 〈E∗

A1EA1E
∗
A2EA2〉 + 〈E∗

B1EB1E
∗
B2EB2〉

+〈E∗
A1EA1E

∗
B2EB2〉+〈E∗

B1EB1E
∗
A2EA2〉

−〈E∗
A1EB1E

∗
B2EA2〉−〈E∗

B1EA1E
∗
A2EB2〉.

(23)

The first two terms in Eq. (23) correspond to the two sets of
HBT correlations, similar to that in analysis 1:

〈E∗
A1EA1E

∗
A2EA2〉 = 〈E∗

A1EA1〉〈E∗
A2EA2〉

+ 〈E∗
A1EA2〉〈E∗

A2EA1〉
= �

(1)
A11�

(1)
A22 + �

(1)
A12�

(1)
A21, (24)

〈E∗
B1EB1E

∗
B2EB2〉 = 〈E∗

B1EB1〉〈E∗
B2EB2〉

+ 〈E∗
B1EB2〉〈E∗

B2EB1〉
= �

(1)
B11�

(1)
B22 + �

(1)
B12�

(1)
B21. (25)

It is clear that these two terms cannot produce the anticorrela-
tion as a function of δ.

The next two terms in Eq. (23) are the products of mean
intensities, which cannot produce the anticorrelation function
of δ either:

〈E∗
A1EA1E

∗
B2EB2〉 = 〈E∗

A1EA1〉〈E∗
B2EB2〉 = �

(1)
A11�

(1)
B22, (26)

〈E∗
B1EB1E

∗
A2EA2〉 = 〈E∗

B1EB1〉〈E∗
A2EA2〉 = �

(1)
B11�

(1)
A22. (27)

The last two terms deal with the self-correlation of the
A field and the B field, respectively. These two terms may
contribute nonzero values to produce the nontrivial correlation;
however, none of them is a function of the optical delay δ.

〈E∗
A1EB1E

∗
B2EA2〉 = 〈E∗

A1EA2〉〈E∗
B2EB1〉 = �

(1)
A12�

(1)
B21, (28)

〈E∗
B1EA1E

∗
A2EB2〉 = 〈E∗

B1EB2〉〈E∗
A2EA1〉 = �

(1)
B12�

(1)
A21. (29)

Physically, it is not difficult to see that �(1)
A12 (�(1)

A21) is associated
with the A field only, and �

(1)
B21 (�(1)

B12) is associated with the
B field only. None of these first-order correlations give the
information about the relative optical delay δ between the A
field and the B field. Mathematically, it is not too difficult to
find the following:

(1) The ensemble averages of �
(1)
A12 and �

(1)
B21,

〈E∗
A1EA2〉 ∼

∫
d(ϕ0A − ϕ′

0A)E∗
A1EA2,

〈E∗
B1EB2〉 ∼

∫
d(ϕ0B − ϕ′

0B)E∗
B1EB2,

are both independent of the optical delay δ, where ϕ0A and ϕ0B

are the initial phases of the A field and B field. Consequently,
the product of the two first-order correlation functions is also
independent of the optical delay δ.

(2) The time averages of �
(1)
A12 and �

(1)
B21,

〈E∗
A1EA2〉 ∼

∫
d(t1 − t2)S(t1 − t2)E∗

A1EA2,

〈E∗
B1EB2〉 ∼

∫
d(t1 − t2)S(t1 − t2)E∗

B1EB2,

are both independent of the optical delay δ, where S(t1 − t2)
is a step function to simulate the function of coincidence time
window. Consequently, the product of the two integrals is also
independent of the optical delay δ. In this experiment the time
window is a few nanoseconds; any possible time delay δ of
picoseconds will be submerged in the relatively long time
integrals. The results are all clearly independent of δ. Note that
in this experiment z1 − zA = z2 − zA and z1 − zB = z2 − zB

were chosen.
Therefore, the last two terms only contribute “noise” to

the intensity-intensity correlation in terms of the optical delay
δ. In classical theory, �

(1)
A12 and �

(1)
B21 (equivalently �

(1)
A21 and

�
(1)
B12) may contribute to the joint-photodetection measurement

of D1 and D2, respectively, whenever t1 − t2 falls into the
coincidence time window.6 However, in the experiment, the
coincidence time window was set, to a few nanoseconds;
the response time of the detectors is around a nanosecond,
too, about 103 times greater than a picosecond, which is the
range of δ. Even if there is a time delay between 〈E∗

A1EA2〉
and 〈E∗

B1EB2〉, the nanosecond measurement devices and
their associated electronic circuits are definitely unable to
distinguish any time delay in picosecond. To be able to
distinguish a picosecond time delay by using a nanosecond
measurement device, it is likely interference is involved.
The physics is similar to that of the historical experiments,
in which nanosecond measurement devices measured sub-
picosecond time delay by using entangled photon pairs [14].
The interference involved in these experiments is well known
as “two-photon interference” [17].

It is no surprise that the quantum theory of multiphoton
interference and the classical theory of statistical intensity
fluctuation correlation lead to different results. In terms of
the ensemble average, the classical ensemble average is based
on statistics of the first-order coherence functions �(1), such as

〈E∗
A1EA2〉Es〈E∗

B1EB2〉Es, (30)

that are all second order of the field, while in the quantum
model the ensemble average is based on the second-order
correlation function〈∑

n,m

Amn(τA1,τB2)A ∗
nm(τB1,τA2)

〉
Es

=
〈∑

n,m

〈
ψAB

mn

∣∣Ê(−)(τB1)Ê(−)(τA2)

× Ê(+)(τA1)Ê(+)(τB2)
∣∣ψAB

mn

〉〉
Es

, (31)

which is fourth order in the field. Equations (30) and (31) are
different in general, even if we may write Eq. (31) in a similar

6Different from quantum theory of light, classical theory does
not prevent any weak light to contribute to an intensity-intensity
correlation measurement. There is no lower energy limit for the
measurement of intensity.
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FIG. 12. (Color online) There are four alternative ways for a
measured pair of independent photons to trigger a joint-detection
event of D1 and D2.

form to the Gaussian model,〈 ∑
n,m

Amn

(
τR
A1,τ

R
B2

)
A ∗

nm

(
τT
B1,τ

T
A2

)〉
Es

=
〈 ∑

n,m

〈
ψB

n

∣∣Ê(−)(τB1)Ê(+)(τB2)
∣∣ψB

n

〉
× 〈

ψA
m

∣∣Ê(−)(τA2)Ê(+)(τA1)
∣∣ψA

m

〉〉
Es. (32)

The ensemble average of a product of two functions is
in general different from the product of the two ensemble
averages. In a spectral measurement, such as the historical
HBT observation of distant stars, the two cases lead to the
same result; however, it is never true in general, especially in
this experiment, that the results are very different.

V. SUMMARY

Based on the theory of Gaussian statistics of intensity fluc-
tuations, we may never be able to understand the experimental
observation of anticorrelation. For first-order and second-
order incoherent radiations with �(1)(rA,tA; rB,tB) = 0 and
�(2)(rA,tA; rB,tB) = constant, there should be no intensity
fluctuation correlation between the A field and B field. The
two intensity fluctuations are completely independent. How
could the A field and B field produce an anticorrelation

G
(2)
AB(r1,t1; r2,t2) ∝ 1 − e−δ2/t2

c

in a later time after passing through a simple optical beam
splitter? As we know, there is no nonlinear interaction between
the two fields at such a simple beam splitter. Each field
propagates freely according to the linear Maxwell wave
equation, except for a phase delay.

In the view of quantum mechanics, the observed anticor-
relation is the result of two-photon interference. Analogous
to Dirac’s statement that a photon interferes with itself,
this interference is a jointly measured pair of independent
photons interfering with the pair itself. Figure 12 schematically
illustrates four alternatives for two independent photons to
trigger a joint-detection event of D1 and D2. In panels (a)
and (b) the measured pair comes from the same fiber tip, A
or B. In panels (c) and (d) the measured pair comes from
different fiber tips, one from A and the other from B. It
is the superposition between amplitudes in panels (c) and
(d) that produces the anticorrelation. We should note that
we introduced a short pulse to make the two probability
amplitudes almost completely overlap in order to observe a
maximum anticorrelation.

In conclusion, we have observed the nonclassical anti-
correlation of chaotic-thermal light under the experimental
condition of �

(1)
AB(rA,tA; rB,tB) = 0 and �

(2)
AB(rA,tA; rB,tB) =

constant. This observation is different from all historical
measurements of the “dip,” either observed from entangled
two-photon sources or from synchronized coherent sources:
(1) It is observed from chaotic-thermal light; (2) it is observed
from first-order and second-order incoherent chaotic-thermal
light. The classical statistical correlation theory seems unable
to explain this experimental result. In the view of quantum
mechanics, either the anticorrelation “dip” or the correlation
“peak” of thermal light is a straightforward two-photon inter-
ference phenomenon, involving the constructive or destructive
superposition of two-photon amplitudes.
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