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Tuning quantum correlations with intracavity photonic crystals
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We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove
that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and
enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures,
robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits
for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of
fluctuations by spatial modulation of interest also in other nonlinear systems.
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I. INTRODUCTION

Photonic crystals (PCs) are dielectric media with a periodic
modulation of the refractive index that can lead to gaps in
the allowed frequencies of electromagnetic waves, which are
analogous to electronic band gaps in semiconductor devices
[1,2]. Inside a PC, a radiative transition at some frequency ω

can be suppressed when it falls within the band gap [1]. The
seminal idea about the possibility of controlling spontaneous
emission by PCs [1] has recently been demonstrated exper-
imentally [3], improving the extraction efficiency of light-
emitting devices and redistributing the corresponding energy
where needed [4]. The use of PCs for environment (dissipation)
engineering is also the basis of intense research activity about
the non-Markovian evolution of quantum states [5]. These
engineered media are a versatile tool to control light both at
the level of spontaneous emission and for intense optical fields,
providing an unprecedented control of light confinement,
guiding, and propagation [2,6]. PC frequency band gaps have
been proposed also to inhibit the excitation of high-order
transverse modes in nonlinear cavities [7]. In this case, the
emission of tilted light beams above some threshold (modu-
lation instability) is forbidden if it falls within the band gap
of an intracavity PC, as recently observed in two independent
experiments [8].

The possibility of accessing the information encoded in
different spatial modes in nonlinear devices has been at
the origin of intense research in multimode quantum optics
[9]. This effort has culminated in several applications re-
cently demonstrated, such as optical switching [10], quantum
imaging [11], metrology [12], and quantum information
[13]. In particular, quantum correlated bright beams can be
generated by optical parametric oscillators (OPOs), which
are common nonlinear devices for frequency down-conversion
and for squeezing [14] and entanglement [15] between light
modes with different polarizations, frequencies, or wave
vectors [16–18]. In this context the use of PCs to control
quantum correlations has not been considered, although it
could be a key tool for improving performance in practical
applications.

In this paper we show how to control and improve
multimode squeezing and entanglement by means of an
intracavity PC in a nonlinear device. The fundamental question
we address is whether a spatial modulation in a nonlinear

system allows one to reduce quantum fluctuations and to
improve quantum correlations. As a prototypical system we
consider a multimode degenerate OPO [17,18] considering
quantum fluctuations changes when a PC is introduced in
the cavity. In the proposed photonic-crystal optical parametric
oscillator (PCOPO), the spatial modulation is not changing
the environment’s spectrum of fluctuations or confining light,
but is instead modifying the intracavity process. The PC
modulation takes place in the transverse plane with respect to
the propagation direction of both pump and down-converted
light beams and is modeled by a spatial profile of the otherwise
homogeneous refractive index. We consider a doubly resonant
planar ring cavity in which a quadratic medium and photonic
crystal are placed, as sketched in Fig. 1. For a longitudinally
monomode device and in the mean-field approximation [19],
the relative positions of the quadratic crystal and PC are
not relevant. For down-conversion in the type-I degenerate
configuration, the generated signal has half of the frequency of
the linearly polarized pump, with the orthogonal polarization.
For planar mirrors this device is transversally degenerate
[9,16–19]. Stripe patterns on the order of 10 μm have been
reported in OPOs [20]. We will consider here a refractive
index modulation in the PCOPO with periodicity on the same
order as the spontaneous pattern, which does not represent a
special challenge with respect to the case of standard OPO
devices.

After introducing the mathematical model (Sec. II), we
will show that the PC allows for a large tunability of
the modulation instability and parametric threshold that we
explain by considering the underlying nonlinear wave mixing
(Sec. III). The mean number of photons, related to light
fluctuations in the PCOPO, is connected to the instability
process and it can indeed be lowered or enhanced just
by a change in the PC modulation amplitude. In Sec. IV
quantum correlations are characterized in different regimes
and two major effects are identified above threshold, namely, a
substantial widening of the range of squeezed quadratures and
spatial entanglement by considering either state inseparability
[21] or the Einstein-Podolsky-Rosen [22] criterion of Ref. [23].

II. PHOTONIC-CRYSTAL OPO EQUATIONS

Quantum fluctuations in a PCOPO can be modeled with
nonlinear stochastic equations by phase-space methods. The
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FIG. 1. (Color online) Optical parametric oscillator with a pho-
tonic crystal modulated in the transverse direction x. We consider a
ring planar cavity, with one input mirror with a small transmission
coefficient T , while the other mirrors have 100% reflectivity R at the
field’s frequencies. The doubly resonant cavity contains a slice of a
nonlinear medium, a χ (2) crystal, and an intracavity photonic crystal
with a refractive index n = n(x). A coherent, stationary, plane-wave
laser beam E is injected into the cavity in the z direction.

master equation for multimode type-I degenerate OPOs [17]
can be mapped into the Q representation as discussed in
Ref. [18]. This leads to nonlinear Langevin equations for the
pump α0(x,t) and (down-converted) signal α1(x,t) light fields,
which are valid both below and above threshold (if |α0| < 2):

∂tα0(x,t) = −{[1 + i�0(x)] − i∇2}α0(x,t)

+E − 1
2α2

1(x,t) + ξ0(x,t), (1)

∂tα1(x,t) = −{[1 + i�1(x)] − 2i∇2}α1(x,t)

+α0(x,t)α∗
1 (x,t) + ξ1(x,t). (2)

As usual, these equations describe the slowly varying field
envelopes in the mean-field approximation [17,19] with x

the transverse direction (in one dimension) and ∇2 the
Laplacian modeling diffraction. In the thin (nonlinear and
photonic) crystal limit, deviations from free-space diffraction
can be neglected [9,16–19]. Here E is the homogeneous
input field at the pump frequency and ξ0(x,t) and ξ1(x,t)
are, respectively, additive and phase-sensitive multiplicative
white noises [18,24]. The derivation of these stochastic
nonlinear partial derivative equations for the OPO is given in
Ref. [18] together with the scalings used and the expression of
noises ξ0,1.

The PC refractive index modulation leads to spatial-
dependent detunings �0(x) and �1(x), which can have
different amplitudes and, in the simplest case, have the same
periodicity with wave number kPC. In particular, the OPO
homogeneous detunings δ0,1 become, in a PCOPO,

�0(x) = δ0 + M0 sin(kPCx) (3)

in the pump field equation and

�1(x) = δ1 + M1 sin(kPCx) (4)

in the signal field equation. We stress that the PC is modulated
only in the transverse direction x as we aim to explore
the effects on the field spatial instability. In other words,
the model we consider does not differ from an OPO in
the propagation direction [17,18] because the medium is
actually homogeneous in this direction and the field does not
experience any band gap. The main mechanism we explore
is the effect of the transverse band gap on the spatially
multimode down-conversion process. We then consider a
negative δ1 = −1 (homogeneous part of the detuning) that in
an OPO would lead to a modulation instability at wave number
kc = √−δ1/2 = √

0.5 [25]. Therefore, the most interesting
configuration is for a PC (sinusoidal) modulation with kPC =
2kc since in this case the OPO emission would be in the
photonic band gap [7].

The results in the following sections are obtained by
numerical simulation of the stochastic equations (2) and
(3), as described in detail in Ref. [24]. We consider several
configurations and present results for the OPO in the absence
of PCs (M0 = M1 = 0), for a PCOPO with PCs affecting the
signal field (M0 = 0 and M1 = 0.5), and for a PCOPO with
PCs affecting the pump field (M0 = 0.5 and M1 = 0). The
possibility of having different refractive index modulations
for the pump and signal fields is physically allowed by the
difference between their frequencies.

III. TUNING SIGNAL FLUORESCENCE
AND INSTABILITY THRESHOLD

We start by considering the effects on the quantum
fluctuations in the PCOPO below threshold. On average the
signal field vanishes everywhere 〈Â1(x)〉 = 0 (or, equivalently,
〈Â1(k)〉 = 0 in the far field) but, due to the nonlinearity of the
medium, it is not in a coherent vacuum state either with or
without the PC. As shown in Fig. 2(b), the mean number
of photons in the far field is maximal at the critical wave
number [17]. These large fluctuations (below threshold) in the

FIG. 2. (Color online) (a) Steady mean number of photons
〈Â†

1(kc)Â1(kc)〉 increasing with the pump field E. The symbols
are the results of numerical simulations of Eqs. (2) and (3) and
the lines are obtained analytically within a linear approximation
[28]. (b) 〈Â†

1(k)Â1(k)〉 from numerical simulations for E = 0.9,
δ1 = −1 (kc = √

1/2), and δ0 = 0. Black solid lines are for the
OPO (M0 = M1 = 0), green dashed lines are for the PCOPO with
M0 = 0 and M1 = 0.5 and the red dot-dashed lines are for the PCOPO
with M0 = 0.5 and M1 = 0. All the represented quantities E, k, and
〈Â†

1(kc)Â1(kc)〉 are dimensionless and scaled as in Ref. [18].
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spatial modes of the pattern arising above threshold are known
as noisy precursors and have been observed experimentally
in different optical systems [26]. One motivation behind
proposing PCOPOs is the intuition that this noise is expected
to be inhibited by the PC band gap [1,3] as actually found:
The OPO (M0 = M1 = 0) exhibits a larger mean number of
photons [Fig. 2(b), solid line] than the PCOPO with modulated
�1(x), M0 = 0 and M1 = 0.5 [Fig. 2(b), green dashed line].
In contrast, it is rather surprising to find that the mean number
of photons in the PCOPO can also be increased by the
PC, as shown in Fig. 2 (red dot-dashed line, M0 = 0.5 and
M1 = 0). In other words, the mean number of photons can
either decrease or increase, with the same input energy, just by
changing the amplitude modulation of the PC (i.e., M0,1).

To understand why fluctuation emission can increase in
spite of being in the PC band gap we need to take into account
the presence of wave mixing between different frequencies in
the parametric oscillator (which was not considered in Ref. [7])
and that the fluctuation strength is inherently related to the
proximity to the instability threshold. In Fig. 2(a) fluctuations
increase with the input E approaching the instability point (ver-
tical asymptotes, where the linear approximation used for ana-
lytical calculations breaks down). Consistently with the lower
fluctuations in Fig. 2(b), we find that for the modulated signal
detuning the threshold increases with respect to the OPO (as in
the phenomenon of pattern inhibition with PCs [7,27]). How-
ever, modulation of the pump detuning leads to a lower instabil-
ity threshold, so the PC actually favors the instability process.

We interpret these results by noticing that a signal detuning
modulation kPC = 2kc is chosen to forbid the signal emission
at kc, which is in the PC band gap, and we actually find the
expected result (dashed green lines in Fig. 2). However, when
modulating the pump detuning with this periodicity, the PC
actually changes the average pump profile too. In this case,
due to the PC modulation of �0, the pump field (homogenous
in an OPO below threshold) is no longer homogeneous, but
spatially modulated. Moreover, the pump develops (below
threshold) a pattern with the same periodicity 2kc of the
OPO above threshold [25], favoring the pattern formation
process in the signal at kc. Therefore, for signal detuning
modulation kPC = 2kc the signal emission at kc is in the
band gap and the instability is inhibited, while if the pump
detuning is modulated this actually excites the pump field
at 2kc, favoring the instability. In general, depending on the
modulation strength of the signal and pump fields, the PC
provides two competing mechanisms, inhibiting the signal
spatial instability as in Refs. [7,27], but also imprinting in the
pump the nonlinear structure favoring the instability process.
A correspondent decrease or increase of the mean number of
photons in the below-threshold signal is then found. Notably, if
the PC modulates the pump detuning, the parametric threshold
can be crossed for values even lower than in the case of a
perfectly resonant OPO, here E = 1.

IV. SQUEEZING AND ENTANGLEMENT BELOW
AND ABOVE THRESHOLD

Apart from the strength of spatial fluctuations, an important
aspect is the quantumness of the correlations. Nonclassical
effects in multimode OPOs are known to exist between

opposite far-field modes +k and −k due to the emission of
photons pairs in the parametric down-conversion process [17].
In particular, two-mode squeezing is studied by considering
the generic joint quadrature θ ,


θφ(k,−k) = [Â1(k) + λÂ1(−k)eiφ]eiθ + H.c., (5)

with φ the relative phase between the superposed spatial
modes. Here we take λ = 1.

Squeezing achieved below threshold increases with the
pump intensity being maximum at the parametric threshold
[17,18]. Due to the discussed PC effect on the parametric
threshold, the squeezing attained in OPOs and PCOPOs will be
compared at the same distance from the respective thresholds.
Even if the PC significantly changes the intermode correlations
leading to new nonvanishing terms with respect to the case of
the OPO [in the PCOPO, for instance, 〈Â2

1(k)〉 �= 0], we find
[Fig. 3(a)] that squeezing achieves similar values in the OPO
and in the PCOPO, the major difference being the dependence
on the angles θ and φ.

Important effects are found above threshold by consid-
ering squeezing between intense modes [〈Â1(±kc)〉 �= 0].
In Fig. 3(b) the variance of 
θφ [Eq. (5)] for the OPO
(black solid line) is compared with that for the PCOPO
(dashed and dot-dashed lines). Even if the attained squeezing
(minimum value of the plotted variance) is similar in all cases,
there are important differences in the noise present in the
unsqueezed quadrature (maximum value). Far from being in a
minimum-uncertainty state, the OPO displays extremely large
fluctuations in the unsqueezed quadrature [black solid line
in Fig. 3(b)] due to the well-known phase diffusion between
down-converted modes and to excess noise in their relative
phases [23]. In spatially multimode devices, the visible effect
is a diffusive motion of the pattern that has been related to
translational symmetry breaking and noise excitation of the
corresponding neutral Goldstone mode [29]. A major effect of
the refractive index modulation of the PCOPO is that it is no
longer translationally invariant: The formed pattern is locked
in the position of the PC. This leads to a strong reduction of the
unsqueezed quadrature variance in the PCOPO: A difference
of two orders of magnitude is highlighted by the horizontal

FIG. 3. (Color online) Variance of 
θφ̄ [from Eq. (5) with λ = 1]
as a function of the quadrature angle and for the superposition angle φ̄

giving the largest squeezing for each OPO and PCOPO configuration.
The pump field is (a) 5% below threshold and (b) 2% above threshold.
The horizontal dashed line is the shot noise and other lines are defined
as in Fig. 2. Here and in the following figures, all correlations are
dimensionless due to the scaling of the fields [18].
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gray stripe in Fig. 3(b). An important consequence in view of
applications is that the reduction of fluctuations in unsqueezed
quadratures leads to a significant increase of the range of
quadratures with sub-shot-noise fluctuations, as highlighted
by the two vertical stripes in Fig. 3(b). A PCOPO is indeed
more robust to changes in the choice of the local oscillator
phase θ as more quadratures are actually squeezed.

Multimode OPOs allow one to generate not only squeezed
but also spatially entangled states [17,30]. A series of key
experiments recently reported spatial entanglement between
light beams (a continuous variable regime) in different optical
nonlinear devices [11]. Here we show how entanglement
in parametric oscillators is changed by the presence of
a PC, considering two well-known criteria [21,23]. One
distinguishes states exhibiting the Einstein-Podolsky-Rosen
(EPR) paradox [22] for conditional variances of position and
momentum such that

E = �2
θ0,φ0�
2
θ0+π/2,φ0+π � 1 (6)

for some choice of superposition and interference angles θ0

and φ0 [23]. Here the parameter λ minimizes each variance of
the joint quadrature Eq. (5). A second measure we consider is
the inseparability condition

I = �2
̃θ0,φ0 + �2
̃θ0+π/2,φ0+π � 2

(
a2 + 1

a2

)
, (7)

with 
̃θ,φ = [aÂ1(k) + a−1Â1(−k)eiφ]eiθ + H.c. and the pos-
itive parameter a [21]. Below threshold, OPOs and PCOPOs,
both reach similar values of entanglement (for minima of E
and I) as well as squeezing. The most significant differences
between OPOs and PCOPOs are found again above threshold
(Figs. 4 and 5). The presence of the PC enhances quantum
effects leading to a spatially entangled state. In this regime,

(a) (b)

(c) (d)

FIG. 4. (Color online) Variances of the (a) and (b) product E and
(c) and (d) sum I, as defined in Eqs. (6) and (7), for the output
fields [31] of (a) and (c) OPOs and (b) and (d) PCOPOs when
varying the superposition and interference angles θ0 and φ0. In (b) and
(d) M0 = 0.5 and M1 = 0 (like for the red dot-dashed line in Figs. 2
and 3) and all results are for a pump 2% above threshold. Blue dotted
lines limit regions for which Einstein-Podolsky-Rosen entanglement
and inseparability are respectively predicted.

FIG. 5. (Color online) Product E and sum I of OPOs for the same
parameters and normalization as in Figs. 4(a) and 4(c) (black solid
lines) and of PCOPOs for the same parameters and normalization as
in Figs. 4(b) and 4(d) (red dot-dashed lines), both 2% above threshold,
plotted versus the quadrature angle for the superposition angle φ̄0 that
minimizes, respectively, E or I. Entanglement is predicted below the
blue dotted horizontal lines, as in Fig. 4.

the mentioned phase diffusion leads to spikes at low frequency
in noise spectra [23,29], preventing entanglement in the
OPO, as we show in Figs. 4(a) and 4(c). In contrast, for a
nontranslationally invariant system such as the PCOPO, we
find significant regions in which both the EPR paradox Eq.
(6) and state inseparability Eq. (7) are predicted. It is worth
noting that in Fig. 4 the OPO and PCOPO are compared at
the same distance from the instability threshold and that, even
if the best performance is obtained when pump detuning is
modulated (in Figs. 4(b), 4(d) and in Fig. 5 we considered
M0 = 0.5 and M1 = 0) we find that all configurations of the
PCOPO show some entanglement, which degrades when the
PC is removed. We notice that for this parameter choice the
PC improves the OPO performance, giving both a lower input
energy threshold (Fig. 2) and entanglement (Fig. 5).

V. CONCLUSIONS AND OUTLOOK

As reported in the Introduction, several experiments have
demonstrated the possibility of controlling both spontaneous
emission and optical pattern formation by PCs. The latter is
a complex phenomenon whose quantum aspects have been
considered in several devices over the past two decades. In
this work we have investigated the interplay between the
nonlinear wave mixing and pattern formation taking place
in OPOs and the periodic modulation imprinted by a PC,
showing that it allows one to tune quantum fluctuations in
different and unsuspected ways. We have considered as a
prototypical transversally multimode device an OPO with
an intracavity PC and we have shown that light emission for
unstable modes in the band gap is not always prevented, as
might be expected [1,3,4]. Competing mechanisms lead to
either reduction or enhancement of quantum fluctuations for
a fixed pump energy by changing the PC modulation strength.
The possibility of controlling the mean number of photons
just by modulating the refractive index is related to the
increase [7,8] and decrease of the instability threshold. This
light emission is characterized by a vanishing average field and
is known in the (nonlinear classical optics) literature as a noisy
precursor of a spatial modulation instability [26]. Looking
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at quantum effects such as squeezing and entanglement, the
most important results are found above threshold where the
breaking of the translational invariance due to the PC provides
a strong mechanism to reduce (up to two orders of magnitude)
the quadrature quantum fluctuations associated with spatial
diffusion. This leads to squeezing over a significantly larger
range of quadrature angles, thereby reducing the sensitivity
of the choice of the phase of the local oscillator in squeezing
measurements. Moreover, we show that the strong spatial
locking due to the presence of the PC in the OPO allows
one to generate inseparable as well as EPR entangled spatial
beams.

Here we have shown results for PC modulations in
an otherwise (transversally) translationally invariant system.
Our conclusions remained unchanged when considering an
injected beam that was not uniform but had a super Gaussian
transverse profile. Further, numerical simulations of the
stochastic equations (2) and (3) have been performed consider-
ing one transverse dimension, but similar results are expected

when extending this analysis to two transverse dimensions
for PCs modulated only in one direction (stripes) [28]. Open
questions are the result of different transverse PC geometries
(squares, hexagons, etc.) as well as different kinds of nonlinear
cavities [16] when a PC is inserted. Another interesting
possibility would be to induce near-field quantum correlations
for strong modulations of the PC in the tight-binding limit. Our
analysis of the interplay between nonlinearity and PC spatial
modulation also might be relevant beyond light correlations
in the context of polaritons and matter waves in periodic
potentials [32].
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