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Energy spectra for a photonic analog of multilayer graphene
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We present a multiple-scattering method to study the dispersion of multilayer honeycomb arrays of metallic
nanoparticles. Three types of stacking are considered. It is shown that the energy spectra for these multilayer
photonic structures strongly depend on the distances between the layers, stacking number of layers, and the
type of stacking, which are closely analogous to the electronic ones in multilayer graphene. The effects of
interlayer coupling on the energy spectra have been demonstrated by exact numerical simulations. Thus, extensive
applications of such a phenomenon to design optical devices are anticipated.
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I. INTRODUCTION

In recent years, there has been a great deal of interest
in studying the physical properties of graphene due to
the successful fabrication experiments of Novoselov et al.
[1]. At the beginning, the investigations mainly focused
on monocrystalline graphene consisting of carbon atoms
densely packed in a honeycomb lattice, which can be viewed
as either an individual atomic plane pulled out of bulk
graphite or unrolled single-wall carbon nanotubes. Owing
to its unique band structure, the electronic property of the
monolayer graphene was found to be significantly different
from the conventional two-dimensional (2D) structures [2,3].
Recently, the multilayer systems containing a few layers of
graphene have also been fabricated as well [4–6]. There the
interlayer coupling drastically changes the band structure,
giving characteristic features depending on the number of
layers [7–18]. Some unusual physical properties have been
observed in these multilayer graphenes [4–18].

Analogous to these electron systems, the optical transmis-
sion near the Dirac point in 2D photonic crystals (PCs) has
also been discussed [19,20]. In some 2D PCs with triangular
or honeycomb lattices, the band gap may become vanishingly
small at corners of the Brillouin zone, where two bands
touch as a pair of cones. Such a conical singularity is also
referred to as the Dirac point similar to the case of electron
graphene. Many interesting phenomena in optics relevant to
the photonic Dirac cone have been demonstrated [21–23].
Recently, another photonic analog of graphene, namely, a
honeycomb array of metallic nanoparticles, has been proposed
and analyzed theoretically [24]. Particle plasmon resonances
in the nanoparticles act as localized orbitals in carbon atom.
The tight-binding picture is thus reasonably adapted to this
system, and nearly flat bands are found in the zigzag edge.
However, all these investigations are for the photonic analog
of monolayer graphene. The problem is whether or not the
photonic analog of multilayer graphene can also be realized.

Motivated by such a problem, in this work we present
a multiple-scattering method to study the dispersion of a
multilayer honeycomb array of metallic nanoparticles. The
energy spectra for three stacking types of structures are
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obtained. The numerical simulations are also performed. The
rest of this paper is arranged as follows. In Sec. II, we introduce
theory and method. The results and discussion are described
in Sec. III. A conclusion is given in Sec. IV.

II. THEORY AND METHOD

We consider three stacking types of multilayer photonic
structures as shown in Figs. 1(a)–1(c), respectively, in which
each dot in the figures represents a metal sphere embedded
in a homogeneous medium with the permittivity ε and the
magnetic permeability μ. The metal spheres in each monolayer
are arranged in a honeycomb lattice. The red (gray) dots
represent the spheres in one unit cell. The number of the
sphere in the unit cell (n) is twice as big as the number of
the layer (N ), namely n = 2N . The distance between adjacent
spheres in every monolayer is a0 = a/

√
3, where a is the lattice

constant. The distance between adjacent layers is marked by
d. We assume that the multilayer sample is infinite in x and y
directions and of finite thickness in the z direction.

Since the system is periodic in the x and y directions, the
problem can be reduced to a supercell calculation. The key
point of the supercell method is to design an appropriate
auxiliary infinite periodic superstructure in order to apply
the Bloch theorem. The auxiliary superstructure is formed
by the infinite periodic translation of the supercell along
both x and y axes. If we assume that the relative location
of the j th sphere in the supercell is �δj (�δj is the vector in
three-dimensional space) and consider a plane electromagnetic
wave of angular frequency ω with the electric field component
�E(r,t) = Re[ �E(r) exp(−iωt)] incident on the system, the total

scattered field can be given by using the Bloch theorem [25,26]:

�Esc(�r) =
n∑

j=1

∞∑
l=1

l∑
m=−l

[
i

q
b+E

jlm

−→∇

×
∑

�Rn

exp(i�k · �Rn)h+
l (qrnj ) �Xlm(r̂nj )

+ b+H
jlm

∑
�Rn

exp(i�k · �Rn)h+
l (qrnj ) �Xlm(r̂nj )

]
, (1)
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FIG. 1. (Color online) Three stacking structures of the multilayer photonic analog of graphene with (a) AAA stacking, (b) ABA (Bernal)
stacking and (c) ABC (rhombohedral) stacking. The monolayer is the honeycomb lattice consisted of metal spheres. The red (gray) dots
represent the metal spheres in one unit cell.

with a corresponding expression for �Hsc(�r) obtained according
to the transformation E → H , H → E, and ε → −μ, and
where q = √

εω/c and �rnj = �r − ( �Rn + �δj ), c is the velocity
of light in vacuum, �k is the Bloch vector, and �Rn represents
a two-dimensional (Bravais) lattice vector. h+

l are the spher-
ical Hankel functions, �Xlm are vector spherical harmonics;
b+P

jlm(P = E,H ) are the scattered coefficients of the j th sphere
in the supercell, which are determined by the incident plane
wave and the scattered wave from all the other spheres in the
system. The wave scattered from all the other spheres can
be expanded into a series of incident vector spherical waves
around the j ′th sphere as [25,26]

�E′
j ′sc(�r) =

∞∑
l=1

l∑
m=−l

(
i

q
b′E

j ′lm
−→∇ × jl(qrnj ′) �Xlm(r̂nj ′)

+ b′H
j ′lmjl(qrnj ′ ) �Xlm(r̂nj ′)

)
, (2)

and a corresponding expression for the magnetic field can
also be obtained similarly. The b′P

jlm coefficients in these
expressions are to be determined by the following equation:

b′P
jlm =

n∑
j ′=1

∑
P ′=E,H

∑
l′m′

�PP ′
j lm,j ′l′m′ b

+P ′
j ′l′m′ , (3)

where �PP ′
j lm,j ′l′m′ is the free-space propagator, for which the

explicit expression is given in the Appendix. The key to
calculate the propagator of the system is the problem of lattice
sum, namely “structure constants,” also given in the Appendix.
If the external incident field is expanded in vector spherical
waves and the expansion coefficients are characterized by
a0P

jlm [25,26], we have the Rayleigh identities

b+P
jlm = T P

jlm

(
n∑

j ′=1

∑
P ′=E,H

∑
l′m′

�PP ′
j lm,j ′l′m′b

+P ′
j ′l′m′ + a0P

jlm

)
, (4)

where T P
jlm are the elements of the scattering matrix by the

single isotropic sphere, which can be obtained analytically.
This is the basic equation for the present multiple-scattering
system. The normal modes of the system may be obtained by
solving the following secular equation in the absence of an

external incident wave:

det

∣∣∣∣δPP ′δjj ′δll′δmm′ −
∑

l′′m′′P ′′
�PP ′

j lm,j ′′l′′m′′T
P
jlm,j ′l′m′

∣∣∣∣ = 0. (5)

Here T P
jlm,j l′m′ = T P

jlmδll′δmm′ for an isotropic sphere. Based
on such an equation, the energy spectra for the photonic analog
of multilayer graphene can be obtained through the numerical
calculations. In our method, we do not take a supercell in
which slabs of multilayer alternate with slabs of vacuum as in
Ref. [27]. Thus, some spurious unphysical solutions due to an
unphysical assumption of periodical supercell can be avoided.

III. NUMERICAL RESULTS AND DISCUSSION

In this part we present the numerical results on the energy
spectra for photonic analog of multilayer graphene. The
permittivity of the metal sphere is described by the Drude
type ε(ω) = 1 − ω2

p/ω2 with ωp = 6.18 eV [24]. The radius
of the sphere is 10 nm, and the lattice constant a = 60 nm. The
calculated energy spectrum for the monolayer structure with
these parameters is plotted in Fig. 2(a). The existence of a Dirac
point at 3.9023 eV in such a monolayer energy spectrum has
been demonstrated in Ref. [24]. However, with the introduction
of another layer, the situation becomes different due to the
coupling effect. The calculated results of the energy spectra of
double layers for AAA stacking with interlayer distances d =
2.0a, 1.0a, and 0.5a are plotted in Figs. 2(b)–2(d), respectively.
When the distance between two layers is large, for example d =
2.0a, the coupling between two layers is weak and the energy
spectra are basically in agreement with that of a monolayer
[see Figs. 2(a) and 2(b)]. With the decrease of the interlayer
distance, the coupling effect between two layers becomes
strong and new phenomena appear. For example, as d = 1.0a,
two cross points around the frequency of the Dirac point for the
monolayer are observed [Fig. 2(c)], while the linear dispersion
disappears completely and the feature of the conductance band
appears as d = 0.5a [see Fig. 2(d)].

In order to demonstrate this interlayer coupling effect, we
perform a numerical simulation of the wave transport in the
finite sample by using the multiple-scattering method with
the incidence of a fundamental Gaussian beam. To simulate
the transport of the fundamental Gaussian beam in nanoparticle
structures by such a method has been described in Ref. [28].
Here, we take two-layer systems (N = 2) corresponding to the
cases in Fig. 2, which have 20a length (y direction), 21a width
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FIG. 2. (a) The dispersion relation of monolayer plasmonic
spheres. There exists a Dirac point at 3.9023 eV; (b)–(d) the dispersion
relations of bilayer plasmonic spheres (N = 2) with AAA stacking.
The distance between the two monolayers is (b) d = 2.0a, (c) d =
1a, (d) d = 0.5a. The dashed lines in the figures indicate the light
lines. The lattice constant is 60 nm, the sphere radius is 10 nm, and
ωp = 6.18 eV.

(x direction) in each monolayer. We set the first monolayer
at z = 0 plane and the second monolayer at z = –d plane.
The Gaussian beam propagating in the z direction with its
electric field polarized along the y axis is focused at (0, –7.5a,
0), namely, at the edge of the first monolayer. The numerical
aperture (NA) of the Gaussian beam is taken as NA = 0.3, and

the electric intensity |E| at the center of the beam is normalized
as 1. The frequency of the Gaussian beam is taken as 3.9023 eV
corresponding to the Dirac point for the monolayer and the
other parameters of the sample are also identical with those
used in Fig. 2. Although the Gaussian beam propagates along
the z direction, the propagating behavior of the wave can also
be observed due to the coupling effect when the guide modes
exist in the monolayer [28]. In contrast, the diffusion behavior
should exhibit when the frequency locates at the Dirac point.

For comparison, in Fig. 3(a) we first plot the distribution of
the electric field intensity for the monolayer structure (there
is no second layer at z = –d plane) when the center of the
incident Gaussian beam with 3.9023 eV locates at the position
marked by the red (gray) X in the figure. We find that the
propagation of light inside the sample exhibits the resembling
diffusion behavior. The calculated results of electric field
intensity patterns inside the first monolayer (z = 0 plane)
for the two-layer systems corresponding to Figs. 2(b)–2(d)
are shown in Figs. 3(b)–3(d), respectively. It can be seen
clearly that the distributions of field intensities strongly depend
on the distance between two layers. When the distance between
two layers is taken as d = 2.0a or 1.0a [Fig. 3(b) or 3(c)],
the field distributions change slightly. This is because the
dispersion features of the structures are almost unchanged at
such a frequency except for some shifts. However, for the case
with d = 0.5a, the distribution of the field intensity as shown
in Fig. 3(d) is quite different from those in Figs. 3(a)–3(c)
due to the strong coupling effect between two layers. The
propagating mode of the wave inside the layer is observed
clearly in such a case, which also corresponds to the energy
spectrum in Fig. 2(d).

In fact, the energy spectra not only depend on the distance
between two layers, they are also related to the stacking num-
ber of layers. Figures 4(a) and 4(b) show the dispersion relation

FIG. 3. (Color online) Distributions of the
electric field intensity inside the first monolayer
under the incidence of a fundamental Gaussian
beam propagating along the z direction with
numerical aperture NA = 0.3 at 3.9023 eV.
The length (y direction) and width (x direction)
of the sample are taken as 20a and 21a, re-
spectively. (a) Without the second monolayer;
(b) the distance between the two monolayer is
d = 2.0a; (c) d = 1.0a; (d) d = 0.5a. The other
parameters are identical with those in Fig. 2.
The red X is the center of the Gaussian beam.
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FIG. 4. The dispersion relations of the multilayer systems with
AAA stacking. (a) N = 3, (b) N = 4. The dashed lines indicate the
light lines. The distances between the adjacent monolayers are taken
as d = 1.0a. The other parameters are identical with those in Fig. 2.

of three-layer and four-layer systems under the AAA stacking,
respectively. Here the distances between adjacent layers are
taken as d = 1.0a. The energy spectra with three and four cross
points are observed clearly. Some cross points deviate from the
K point because of the coupling effect among the layers.

The above results are only for the case of the AAA stacking.
If we change the type of stacking, the energy spectra exhibit
different features. For example, Figs. 5 and 6 display the
calculated results of the energy spectra for the ABA and the
ABC stacking with various layers, respectively. Figure 5(a)
corresponds to the dispersion relation of the two-layer system
with AB stacking, and Fig. 5(b) is its partial enlargement in
the red square frame. Figures 5(c)–5(e) are the corresponding
partial enlargement figures with N = 3, 4, and 5, respectively,
while Fig. 6 represents partial enlargement figure for the cases
under the ABC stacking. Comparing them, we find that some
interesting phenomena for the electron multilayer graphene
can also be observed in the present photonic structures.
For example, the parabolic dispersion relations appear for
the Bernal stacking, which are different from those in the
AAA stacking structures. And linear dispersions only appear
for the odd-layer system of the Bernal stacking [red (gray)
lines in Figs. 5(c) and 5(e)]. A spontaneous gap at the K
point can open for the ABC stacked trilayer [Fig. 6(a)], it
disappears with the increase of the stacked number of layers.
These features are closely analogous to the electronic ones in
the multilayer graphenes. This means that we can construct
photonic structures to control the transport of light similar to
the multilayer graphene for electrons.

IV. CONCLUSION

In summary, three types of photonic graphene structures
with AAA, bernal, and rhombohedral stacking have been
designed by using metallic nanoparticles. The dispersion
relations of these structures have been investigated by using a
rigorous multiple-scattering method. The effects of distances
between the layers, stacking numbers, and types of stacking on
the energy spectra of the structures have been discussed. Some
unusual phenomena in the energy spectra for the electron in
multilayer graphenes have been observed for the photon in
the present photonic graphene structures. This means that the
transport properties of light similar to the case of electrons in
multilayer graphene can be realized by constructing photonic
nanostructures. That is to say, our findings provide a way to
control the transport of light similar to the multilayer graphene
for electrons and thereby open up the possibility for developing
new nanophotonic devices.
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APPENDIX

In this Appendix, we provide the explicit expressions for the
free-space propagator (�PP ′

j lm,j ′l′m′) and “structure constants” by
Ewald’s treatment of lattice sums for the present slab system.
The free-space propagator is expressed as [26]

�EE
jlm;j ′l′m′ = �HH

jlm;j ′l′m′

= (ψlψl′)
−1

[
2α−m

l α−m′
l′ Zj ′l′m′−1;j lm−1

+mm′Zj ′l′m′;j lm + 2αm
l αm′

l′ Zj ′l′m′+1;j lm+1
]
,

(A1)

�HE
jlm;j ′l′m′ = −�EH

jlm;j ′l′m′ ,

= (2l + 1)(ψlψl′ )
−1 · [−2α−m′

l′ γ m
l Zj ′l′m′−1;j l−1m−1

+m′ζm
l Zj ′l′m′;j l−1m+ 2αm′

l′ γ −m
l Zj ′l′m′+1;j l−1m+1

]
(A2)

FIG. 5. (Color online) The band structures
of the multilayer systems with the ABA (Bernal)
stacking. (a) The dispersion for N = 2; (b) the
partial enlargement of the dispersion in the red
square frame shown in (a); (c) N = 3, (d) N = 4,
(e) N = 5. The distances between the adjacent
monolayers are taken as d = 1.0a. The other
parameters are identical with those in Fig. 2.
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FIG. 6. The band structure (partial enlargement) of the multilayer
systems with the ABC (rhombohedral) stacking. (a) N = 3, (b) N =
4, (c) N = 5, (d) N = 6. The other parameters are identical with those
in Fig. 2.

with

ψl =
√

l (l + 1), (A3)

αm
l = 1

2

√
(l − m) (l + m + 1), (A4)

γ m
l = 1

2
[(l + m) (l+m−1)]1/2/[(2l−1) (2l + 1)]1/2, (A5)

ζm
l = [(l + m)(l − m)]1/2/[(2l − 1)(2l + 1)]1/2, (A6)

Zjlm,j ′l′m′ =
∑

�Rn

†glm,l′m′(�δj − �δj ′ − �Rn)ei�k· �Rn, (A7)

glm,l′m′ (�r) =
∞∑

l′′=0

l′′∑
m′′=−l′′

4π (−1)(l−l′−l′′)/2(−1)m
′+m′′

h
(1)
l′′ (qr)

×Yl′′−m′′ (�̂(�r)) ·
∫

Ylm(�̂)Yl′′m′′ (�̂)Yl′−m′ (�̂)d�̂.

(A8)

In Eqs. (A7) and (A8), there is a problem of lattice sum,
namely “structure constants,”

Dlm =
∑

�Rn

†
ei�k· �Rnhl(q|�δ − �Rn|)Ylm(�̂(�δ − �Rn)). (A9)

The † means that �Rn = �0 should be omitted in the series
when �δ = �0. Here we use Ewald’s methods to calculate
the lattice sums. Ewald’s methods are fairly standard in
the solid state physics where they are used to evaluate
structure constants in electron scattering theory [29,30]. The
case of the 2D periodicity in a three-dimensional system
has been treated by Kambe [31]. For the present system,
the “structure constants” can be given by using Ewald’s
methods [31]:

Dlm = D
(1)
lm + D

(2)
lm + D

(3)
lm . (A10)

Here

D
(1)
lm = 1

iq (−1)l−m

1

Aql

im+1

2l
[(2l + 1) (l − |m|)! (l + |m|)!]

1
2

·
∑

�Kn

ei(�k+ �Kn)·�δxy−imϕ�k+ �Kn ·
l−|m|∑
n=0

1

n!
(�K )2n−1 n

K

×
min(2n,l−|m|)∑

s=n

(
n

2n − s

)
δ2n−s
z (|�k + �Kn|)l−s(
l−|m|−s

2

)
!
(

l+|m|−s

2

)
!
, (A11)

D
(2)
lm = − i

q

1√
2π

∑
�Rn

†
ei�k· �Rj Ylm(�̂(�δ − �Rn))

|�δ − �Rn|l
ql

×
∫ ∞

1
η

ξ
l− 1

2 e
− 1

2 (|�δ− �Rn|2ξ− q2

ξ
)
dξ, (A12)

D
(3)
lm =

[
− 1√

4π
− i

qπ

∞∑
j=0

(
1

2η

) 1
2

(
q2η

2

)j

j !(2j − 1)

]
δl,0δm,0δ�δ,0,

(A13)

where A represents the area of the supercell in the x-y plane;
�K =√

q2−|�k+ �Kn|2 and �δ = �δxy + δz�z is the relative position of
the sphere in the supercell.

n
K =

∫ ∞

e−πi
�2

K

2 η

ξ
− 1

2 −n
e
−ξ+ �2

K
δ2
z

4ξ dξ . (A14)

From the expressions of Eqs. (A11) and (A12), we find that
the value of Dlm seems to be dependent of the parameter η. In
fact, the calculated results show that Dlm is independent of the
value of η.
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