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Theory of wave-front reversal of short pulses in dynamically tuned zero-gap periodic systems
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Recently [Sivan and Pendry, Phys. Rev. Lett. 106, 193902 (2011)], we have shown that the wave front of short
pulses can be accurately and efficiently reversed by use of simple one-dimensional zero-gap photonic crystals. In
this paper, we describe the analytical approach in detail, and discuss specific structures and modulation techniques
as well as the required steps for achieving complete time reversal. We also show that our scheme is only very
weakly sensitive to material losses and dispersion.
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I. INTRODUCTION

Time reversal is one of the most spectacular yet elusive
wave phenomena. A time-reversed pulse evolves as if time runs
backward, thus eliminating any distortions or scattering that
occurred at earlier times. This enables light detection, imaging,
and focusing through complex media (see, e.g., [2–4] in
acoustics and [5,6] in optics) with applications in diverse fields
such as medical ultrasound [2–4], communication systems and
adaptive optics [7–9], superlensing [10], ultrafast plasmonics
[11], biological imaging [12], THz imaging [13], and quantum
information and computing [14].

For low-frequency waves (e.g., in acoustics, spin waves,
elastic waves, etc.), time reversal can be accomplished by
electronic sampling, recording, and playing back [2–4]. This is
possible since in this frequency range, the pulse oscillates on a
scale slower than electronic sampling speed. On the other hand,
for high-frequency waves, specifically, optical electromagnetic
waves, the period of the pulse oscillations (namely, the inverse
of the carrier frequency) is too fast to be sampled properly by
even the fastest electronic detector. Moreover, for sufficiently
short pulses, even the pulse’s envelope is too short to be
sampled electronically.

The standard solution in the optical regime is to use nonlin-
ear processes such as three-wave mixing or (nearly degenerate)
four-wave mixing [7,15]. When these techniques are applied to
monochromatic (cw) beams (i.e., when the electric field of the
pulse is given by E = A(x,y,z)e−iω0t + c.c.), a process known
as phase conjugation, the incident photon interacts with two
cw pump beams of the same frequency such that the output
photon has a negative frequency, namely, the conversion is
ω0 → −ω0. Mathematically, this is equivalent to a conjugation
of the envelope A(x,y,z), hence, the jtitle of the terminology.
The wave is then accurately time reversed.

Application of phase conjugation with cw pump beams
to a pulse [E = A(x,y,z,t)e−iω0t + c.c.] yields the same
frequency conversion, ω0 → −ω0. However, this technique,
which is more appropriately referred to as temporal phase
conjugation (TPC) [16], does not lead to a perfect time reversal.
Indeed, since every frequency component is shifted by the
same amount, the envelope conjugation is accompanied by
an inversion of the spectral envelope with respect to the
carrier frequency [i.e., Â(ω − ω0) → Â∗(−ω + ω0), with Â
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representing the Fourier transform of the pulse envelope]. This
process thus involves nonzero momentum changes, which,
in turn, cause phase-mismatch problems leading to lower
efficiency and accuracy; eventually, the ability to reverse
pulses with a broadband spectrum is limited. More simply
put, the reversal achieved by TPC is imperfect since although
the time envelope [A(x,y,z,t)] is conjugated, it is not time
reversed (t not inverted to −t). As a consequence, while TPC
compensates for effects such as group-velocity dispersion and
self-phase modulation (which are the dominant distortions
experienced by pulses propagating in long-haul optical fibers),
it does not correct for other effects (such as odd-order
dispersion and self-steepening) [16]; those become important
for sufficiently short (usually subpicosecond) pulses or near
a zero group-velocity-dispersion point (e.g., in optical fibers).
Thus, in practice, TPC can accurately reverse only sufficiently
long (and weak) pulses for which the effects that are not
compensated for are anyhow negligible.

As a possible remedy to this problem, Miller [17,18]
suggested to perform a four-wave-mixing process with very
short pump pulses. This suggestion was never tested exper-
imentally. Another possibility is to employ spectral phase
conjugation, which is basically a phase conjugation of the
Fourier transform of the pulse [i.e., Â(ω) → Â∗(ω)]. Spectral
phase conjugation was demonstrated using two cascaded
three-wave mixing processes (see e.g., [19,20], and references
therein). However, the complexity of the scheme [19] makes
it unlikely to evolve into a commercial product. A more
recent implementation of spectral phase conjugation using
two time-lens fiber systems and four-wave mixing in silicon
waveguides has been demonstrated for picosecond pulses
propagating in optical fibers [21].

Several years ago, two additional time-reversal schemes
have been suggested which rely on dynamically tuned coupled
resonators optical waveguide (CROW) structures. The first, by
Yanik and Fan (see [22]), involves an adiabatic modulation
of the index of refraction of two antisymmetric CROWs.
The second scheme, suggested by Longhi [23], is based on
a time-gated spatial modulation of the index of refraction
of the resonators. Both schemes can be implemented with
linear modulators, e.g., using the electro-optical effect or
carrier injection or depletion. They can be applied to pulses
which are spectrally narrower than the bandwidth of the
CROW. This, typically, corresponds to pulses not shorter than
several picoseconds. To date, both schemes were not tested
experimentally.
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Importantly, we note that both schemes [22,23] per-
form envelope (or wave-front) reversal [i.e., A(t)e−iω0t →
A(−t)e−iω0t ] rather than complete time reversal, which also
requires the conjugation of the temporal envelope and polar-
ization vector [15]. Following the discussion above, one can
understand that a hybrid scheme, based on a combination of
envelope reversal and TPC (which conjugates the temporal
envelope) will yield perfect reversal, in a similar manner
to [9]. However, as noted, the CROW-based envelope reversal
schemes are spectrally limited, so the associated hybrid
scheme can still reverse only relatively long pulses.

In a recent study [1], we have introduced an alternative
wave-front reversal scheme that requires a conceptually simple
structure, namely, a dynamically tuned zero-gap photonic
crystal (PhC). When applied to optical pulses which are not
shorter than several picoseconds, a 100% reversal efficiency
can be easily reached using linear modulators. Implementation
of the scheme for shorter pulses is also possible, however, it
requires a nonlinear mechanism such as cross-phase modula-
tion and has a reduced efficiency. In our approach, there are no
special phase-matching considerations that have to be taken
into account; it can be implemented on chip, and the required
energies are significantly lower than with techniques which
are based on a series of nonlinear wave-mixing processes.
Furthermore, the scheme is, in principle, not limited to
one-dimensional (i.e., optical fiber) systems, and can be
implemented essentially in any wave system where the wave
velocity varies periodically and can be modulated in time.

While in [1] the scheme was described intuitively and
demonstrated numerically, the analysis was described only
briefly. This paper is dedicated to the detailed description of
the theoretical approach and the implementation details such
as choice of materials, modulation techniques, and the roles of
dispersion and absorption. In Sec. II we recall the principles of
broadband wave-front reversal in zero-gap periodic systems. In
Secs. III and IV we derive the envelope equations and in Sec. V
we show how to solve them analytically in the weak-coupling
limit. Section VI provides a discussion on implementation
considerations and Sec. VII describes the numerical results.
Explicit formulas for coefficients appearing in the envelope
equations are derived in the appendixes.

II. PRINCIPLES OF WAVE-FRONT REVERSAL
IN ZERO-GAP SYSTEMS

Wave propagation in periodic systems has been the focal
point of countless studies in several branches of physics.
The most prominent of these systems are crystalline solids.
However, a variety of artificial analogs are also extremely well
studied. Among those are PhCs [24] in the context of electro-
magnetics, phononic crystals [25] in the context of acoustics,
and magnonic crystals [26,27] in the context of spin waves.
The study of such systems was almost exclusively associated
with the forbidden gaps, which are energy (frequency) regimes
where waves cannot propagate. In particular, these gaps are
the key to understanding the electronic and optical properties
of solid-state systems; their artificial analogs have a variety
of possible applications, ranging from low-threshold lasers,
waveguiding, storing, filtering, and switching [24] to medical
ultrasound and nondestructive testing [25].

Although the occurrence of band gaps is generic to periodic
systems, in some special cases, the gaps can have a zero
width. Somewhat similarly, some materials and structures
support two bands that cross symmetrically without forming
a gap (see, e.g., Fig. 2). One of the most notable of such
structures is graphene [28] or its photonic crystal analog [24]
which is a two-dimensional periodic system with hexagonal
symmetry. Other examples are chiral metamaterials [29],
transmission-line systems [30], biaxial crystals [31], and spin
systems [32]. We refer to such systems with a perfectly
symmetric crossing as self-complementary systems, since they
support wave propagation in opposite directions with the same
momentum. Earlier studies of self-complementary systems
have already shown some unusual properties [28,29,31,33].
However, these systems are still relatively unexplored.

In this paper, we show how to exploit the unusual band
structure of a periodic self-complementary system, namely,
a PhC with a zero-width gap, for the purpose of wave-front
reversal of broadband pulses. As described above, since the
main challenge is to reverse pulses of optical frequencies, in
this paper, we focus on time reversal of electromagnetic pulses.

The zero-gap system has two major advantages over a
“standard” finite-gap system. First, while a pulse incident on a
finite-gap system will mostly be reflected, a pulse incident on
a zero-gap system would be almost perfectly admitted, with
only frequencies overlapping distant gaps being repelled. The
second advantage of the zero-gap system is that in contrast to
the standard approach of time reversal, which, as described in
Sec. I, is usually realized with a frequency conversion process
based on three- or four-wave mixing, the self-complementary
system allows for a different approach, namely, via dynamic
tuning of the refractive index. Indeed, dynamic tuning of
PhCs has been one of the recent hot topics in PhC research,
with various applications such as frequency shifting, light
switching, slowing, and stopping, as well as many others,
studied theoretically and demonstrated experimentally (see,
e.g., [34–40]).1 In the current context, the dynamic tuning en-
ables the vertical transitions between the positive and negative
group-velocity bands. The proximity of the crossing bands
allows for efficient transfer of energy between the bands using
weak and slow modulations of the wave velocity. In particular,
the modulation can now be much slower than the period of the
pulse oscillations so that the wave-front reversal can be realized
electronically, e.g., using the electro-optic effect or carrier
injection and depletion. However, the modulation should still
fulfill several conditions. First, it should be much faster
than the pulse duration or equivalently, the spectral content
of the modulation should be much wider than that of the
pulse. In such a case, the spectral content of the pulse
is effectively constant, so that all the frequencies in the
pulse are converted with the same efficiency. Only such
nonadiabatic modulation ensures a frequency-independent
frequency conversion resulting in a reversed pulse which is
an accurate replica of the forward-propagating pulse. In that
regard, we note that although the modulation can have fast
spectral components, the possibility of transitions to higher

1Time modulations of materials have also been studied in more
general contexts (see e.g., [65–67] for some recent studies).
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bands in a zero-gap system is small, thus enabling nonadiabatic
modulation without a deterioration in performance. A second
requirement is that the modulation be periodic in order to
avoid any wave-vector mixing, resulting in a vertical frequency
conversion [see Fig. 2(b)].

Following [1], here we analyze a simple one-dimensional
zero-gap system and confirm the intuitive arguments above.
However, we emphasize that the ideas and techniques we
use here can also be employed in other zero-gap systems,
in one, two, or three dimensions, as well as in other self-
complementary systems [28–32].

III. DERIVATION OF THE UNIDIRECTIONAL
WAVE EQUATIONS

Consider an electromagnetic plane-wave pulse normally
incident on a one-dimensional (1D) PhC (see Fig. 1) which is
time modulated in the following manner:

n(x,t) = nPhC(x) + M0p(x)m(t), (1)

with max [m(t)] = 1 and max [p(x)] = 1. Here, both the static
part of the refractive index, nPhC(x), and the spatial profile
of the modulation p(x) have period d. Such a periodic
modulation does not introduce any wave-vector mixing, hence,
allowing for an accurate reversal (see, e.g., [22]). The Maxwell
equations in this case can be written as

�∇ × �E(x,t) = −μ0∂t
�H,

�∇ × �H (x,t) = ε0∂t [n
2(x,t) �E(x,t)].

For a linear polarization at normal incidence,

�E = E(x,t)ẑ, �H = H (x,t)ŷ,

then, the Maxwell equations reduce to

∂xE(x,t) = −μ0∂tH (x,t), (2a)

∂xH (x,t) = −ε0∂t [n
2(x,t)E(x,t)], (2b)

and eventually to

∂xxE(x,t) − 1

c2
∂tt [n

2(x,t)E(x,t)], (3)

which is a one-dimensional wave equation with a time-
dependent velocity.

We proceed with an analysis similar to that first performed
in [41,42] in the context of pulse propagation in PhCs with a

FIG. 1. (Color online) Geometry of the pulse propagation through
a layered PhC.

Kerr response.2 We adopt the unidirectional field formulation
by defining

E(x,t) = n−1/2(x,t)[F (x,t) + B(x,t)], (4a)

Z0H (x,t) = n1/2(x,t)[F (x,t) − B(x,t)], (4b)

where F and B are scalar functions representing the forward
and backward fluxes in the PhC [43].3 Substituting in Eqs. (III)
gives

Fx(x,t) + n(x,t)

c
Ft + nt

c
F = −1

2

(
nt

c
− nx

n

)
B, (5a)

Bx(x,t) − n(x,t)

c
Bt − nt

c
B = 1

2

(
nt

c
+ nx

n

)
F. (5b)

Note that the definition of the fluxes F and B is valid
regardless of the specific form of the refractive index distribu-
tion n(x,t) and without assuming any specific modal (spatial)
basis. Also note that since the wave is assumed to be normally
incident on the PhC, the fields are essentially scalar and
the Maxwell divergence equations are automatically satisfied.
For oblique incidence, or for higher-dimensional PhCs, the
problem requires a generalized treatment (see [42]).

IV. DERIVATION OF THE ENVELOPE EQUATIONS

We now define the vector

W =
(

F

B

)
, (6)

so that the system (III) can be written in matrix form as

n Wt = M W, (7)

where

n = n
PhC

+ M0m(t)n
m

≡
(

nPhC(x) 0

0 nPhC(x)

)
+ M0m(t)

(
p(x) 0

0 p(x)

)
, (8a)

M =
( −c∂x − nt − c

2

(
nt

c
− nx

n

)
− c

2

(
nt

c
+ nx

n

)
c∂x − nt

)
. (8b)

The static index variations, nPhC, and the dynamical
variations, p, vary spatially on a scale comparable to λ;
correspondingly, the fluxes vary in space on a similar scale.
In addition, they vary in time on the scale of the period T .
On the other hand, the pulse’s envelope and the modulation
m(t) vary on slower scales, Tp and Tmod, respectively. Thus,
the solution (6) varies on more than one temporal and spatial
scale. Accordingly, we adopt a multiple-scales approach [44]
by assuming that the variations on the fastest scale, defined as
x0,t0, correspond to variables independent from the variables
describing the variations on the slower scales. However, in
contrast to the standard multiple-scales approach, where there

2We use the deep grating formulation [41] because, the simpler
weak grating formulation can never describe a zero gap, even for a
vanishing index contrast.

3For an elaborate discussion of the accuracy of this separation for
general dispersive nonlinear materials, see [64].
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are only two time scales (e.g., the period T and the pulse
duration Tp; see [44] or more specifically, [41]), the external
modulation introduces a third independent time scale, Tmod. In
order to avoid this complication to the analysis, let us lump
all the slow changes into one spatial and one temporal scale,
defined as x1 and t1, respectively. Then, Eq. (1) becomes

n = n
PhC

(x0) + M0n
m

(x0)m(t1), (9)

and we can make the substitution

∂t → ∂t0 + ∂t1 , ∂x → ∂x0 + ∂x1 , (10)

so that the matrix M becomes

M =
(

−c
(
∂x0 + ∂x1

) − ∂t1n − 1
2∂t1n + c

2n
∂x0n

− 1
2∂t1n − c

2n
∂x0n c

(
∂x0 + ∂x1

) − ∂t1n

)
. (11)

In order to complete the scale separation, let us rewrite the
terms involving the spatial derivatives in M of Eq. (11) as a
sum of a static and dynamic parts. Using Eq. (9), it can be
shown that

1

n
∂x0n = n′

PhC(x0)

nPhC(x0)
+ M0m(t1)[nPhCp′(x0) − n′

PhCp(x0)]

nPhC(x0)[nPhC(x0) + M0p(x0)m(t1)]
,

(12)

where the sign ′ stands for a derivative with respect to the
argument, a notation used only when it is unambiguous.

We can now separate M into the different order contribu-
tions as

M ≡ M (0) + M (1), (13)

where

M (0)(x0) = c

(
−∂x0

1
2

n′
PhC

nPhC

− 1
2

n′
PhC

nPhC
∂x0

)
, (14a)

M (1)(x1,t1; x0) = cM0

2

(
0 β(x0,t1)

−β(x0,t1) 0

)

−V ∂x1 − M0C
T m′(t1)p(x0), (14b)

and where we have defined the space and time-dependent
function

β(x0,t1) = m(t1)
nPhC(x0)p′(x0) − n′

PhCp(x0)

nPhC(x0)[nPhC(x0) + M0p(x0)m(t1)]
, (15)

and the constant matrices

V =
(

c 0

0 −c

)

and

C
T

=
(

1 1
2

1
2 1

)
.

The matrix M (0) is the operator of the unperturbed system
(i.e., in the absence of time modulation) while the matrix
M (1), together with the modulation term on the left-hand
side of Eq. (7) [or equivalently, the second term in Eq. (1)],
describe the slower dynamics, i.e., the evolution of the pulse
envelope (wave front) and the effects of the modulation;
the dependence of M (1) on the fast scale x0 is removed by
integration (see below).

FIG. 2. (Color online) (a) Dispersion relations of a QWS.
(b) Schematic diagram of the reversal in the frequency domain. Only
the part of the dispersion curve close to the crossing point Kc = 0 is
shown.

The formulation presented so far is valid for any 1D
periodic optical systems (or PhCs). In what follows, we limit
the discussion to periodic systems in which two bands have
minimal interaction, leading to a gap with effective zero width,
or effectively, a crossing of the two bands. Such crossing points
typically appear between the higher bands of PhC structures.
In most cases, they are not perfectly symmetrical with respect
to the crossing point, however, nearly or even perfectly
symmetric crossings can be found. Probably the simplest
example of a perfectly symmetric zero-gap periodic system
is a 1D layered PhC for which the indices and thicknesses of
the two layers satisfy

n1d1 = n2d2/s, s = 1,2,3, . . . . (16)

In such systems, the s + 1 gap at vacuum wavelength4

λc = 2n1d1 = 2n2d2/s, (17)

has exactly zero width.
When s = 1, this system is called a quarter-wave stack

(QWS) PhC (see, e.g., [24,45]); note that the terminology
is associated with the first gap of this layered system, at the
middle of which the optical length of both layers is one-quarter
a wavelength. For simplicity, in what follows, we analyze the
case of a zero-gap in the QWS system [see Fig. 2(b)]. As
shown in Appendix B, PhCs with other values of s yield the
same coefficients, hence, the same reversal efficiencies. For
dispersive materials, i.e., when the refractive indices depend
on the wavelength, the QWS condition (16) has to be satisfied
exactly at the crossing point in order for the gap to maintain
a zero width. For simplicity, we assume that the dispersion is
negligible, and defer the discussion of the role of dispersion to
Sec. VI C.

Near a gap, the solution of Eq. (7) consists predominantly
of two spectral components, one on each of the crossing bands.
Each can be written as the product of a carrier unidirectional
Floquet-Bloch (FB) mode �f/b on either the positive (f )
or negative (b) group-velocity band with a slowly varying
envelope f/b, i.e.,

W = [f (x1,t1)�f (x0) + b(x1,t1)�b(x0)]e−iωct0 + c.c., (18)

4For s odd (even), the gap occurs at zero-FB momentum, Kd =
Kcd = 0 (at the edge of the Brillouin zone, Kd = Kcd = π ). Zero
gaps also occur at higher frequencies.
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where ωc = 2πc/λc is the band crossing frequency and c.c.
stands for the complex conjugate. The unidirectional FB modes
�a are the eigensolutions of Eq. (7), i.e., they satisfy

−iωanPhC(x0)�a(x0) = M (0)(x0)�a, (19)

where ωa = ωf/b is the central frequency of the pulses on
each band, chosen at the same FB wave vector. The forward
(backward) fluxes are given by the upper (lower) component
of the vector W of Eq. (6).

In what follows, we neglect the complex conjugate terms in
Eq. (18). This is justified for pulses which are sufficiently
narrow spectrally, i.e., for pulses for which the separation
of scales (10) is meaningful. We also ignore the population
of any other distant band [41]. Indeed, as shown in [41],
the population of distant bands [or companion components,
namely, contributions from FB modes of other bands (hence
frequencies)] is manifested by the appearance of a nonzero
second-order term in the kp expansion of the band structure.
This term accounts for the group-velocity dispersion (GVD)
whose magnitude scales inversely with the temporal duration
of the pulse. Since, however, the QWS system exhibits strictly
linear dispersion in the vicinity of the band crossing, GVD
vanishes, so that population of distant bands does not play a
role in the dynamics even for very short pulses.5

The central frequency of the forward propagating input
pulse can be detuned from the crossing point (Kc = 0,ωc).
Since the band structure is symmetric with respect to the
crossing point (see Appendix A and Fig. 2), and since the
frequency conversion is vertical [see Fig. 2(b) and discussion
after Eq. (23)], we can define

δωf ≡ ωc − ωf = −δωb = 


2
. (20)

We also assume that the detuning is small compared with
the wave period, 
 � 2π/T , in agreement with the above
assumptions on the separation of scales (10).

Substituting Eq. (18) in Eq. (7), multiplying by �∗
f and �∗

b ,
respectively, and integrating over x0 allows us to remove the
dependence on the fast scale x0. In particular, this leads to the
following equations for the time evolution of the forward and
backward envelope components[
1 + M0m(t1)m(0)

ff

]
ft1 (x1,t1) + vff fx1

− [
iωcM0m

(0)
ff m(t1) − M0m

′m(1)
ff + iδωf + M0βff (t1)

]
f

= −M0m
(0)
f bm(t1)bt1 − vf bbx1

+M0
[
iωcm

(0)
f bm(t1) − m′m(1)

f b + βf b(t1)
]
b, (21a)

[
1 + M0m(t1)m(0)

bb

]
bt1 (x1,t1) + vbbbx1

−[
iωcM0m

(0)
bb m(t1) − M0m

′m(1)
bb + iδωb + M0βbb(t1)

]
b

= −M0m
(0)
bf m(t1)ft1 − vbf fx1

+M0
[
iωcm

(0)
bf m(t1) − m′m(1)

bf + βbf (t1)
]
f, (21b)

5See also discussion after Eq. (23).

where we defined the coefficients as the integrals over the
unidirectional FB modes, as follows:

vab =
∫ d

0
�†

a(x0)V �b(x0)dx0, (22a)

m
(0)
ab =

∫ d

0
�†

a(x0)n
m

(x0)�b(x0)dx0, (22b)

m
(1)
ab =

∫ d

0
�†

a(x0)n
m

(x0)CT �b(x0)dx0, (22c)

βab(t1) = c

2

∫ d

0
�†

a(x0)β(x0,t1) �b(x0)dx0. (22d)

Equations (21a) and (21b) are transport equations with
time-dependent velocities, coupled by the modulation m(t1).
The equations for f and b are symmetrical, however, the
initial condition is highly asymmetric, consisting exclusively
of forward waves (see also Sec. VII). Moreover, note that
the form of the coefficient of the dynamic terms ft1 and bt1

(namely, 1 + M0...) implies that a modulation that increases
the refractive index (M0 > 0) will not give the same results
as a modulation that decreases the refractive index (M0 < 0).
This effect, however, is significant only once the change in the
pulse velocity due to the modulation is appreciable.

The existence of simple explicit analytical formulas for the
FB modes of the layered system (see, e.g., [45]), allows us
to compute the coefficients (22a)–(22c) analytically. Near the
band crossing, the obtained expressions are relatively simple,
and shed light on the physical meaning of the various terms in
Eqs. (21a) and (21b). First, the diagonal velocity coefficients
vff (vbb) represent the velocity of the forward (backward)
pulses. Indeed, it is shown in [41] that the vaa term is equal to
the first term in the kp expansion of the band structure, i.e., to
the group velocity; also, in Appendix B1 it is shown that

vff = −vbb ≡ vg ≡ ∂ω

∂k

∣∣∣∣
ωc

= c√
n1n2

. (23)

The off-diagonal velocity coefficients vab are responsible for
reflection coupling (i.e., for horizontal transitions k → −k)
[41]. Intuitively, the strictly linear dispersion relations at the
crossing point imply that no reflection coupling is taking
place, i.e., that vbf = vf b = 0. Indeed, this is confirmed
in Appendix B1.6 The vanishing of the reflection coupling
ensures that the modulation-induced transitions between the
bands are strictly vertical so that the frequency conversion is
free of wave-vector mixing [see Fig. 2(b)].

The diagonal m(0)
aa coefficients describe the phase accu-

mulation induced by the modulation. Indeed, it is shown in
Appendix B2 that these diagonal coefficients are identical,
i.e., md ≡ m

(0)
ff = m

(0)
bb , and that for a piecewise-uniform

modulation, they are given by

md = 1

2

(
nm1

n1
+ nm2

n2

)
, (24)

6Indeed, the rigorous relation between the band structure curvature
(GVD) and vbf is given in [41].
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where nmj is the amount by which layer j is modulated.7

The diagonal m(1)
aa coefficients represent the change of

the electromagnetic energy induced by the modulation. In
Appendix B3 it is shown that for a piecewise-uniform
modulation, the coefficients m(0)

aa and m(1)
aa are equal.

The off-diagonal coefficients m
(j )
f b = m

(j )
bf

∗
are responsible

for reversal coupling, i.e., to the vertical transitions ω + δω →
ω − δω [see Fig. 2(b)]. One can interpret these coefficients as
the measure of the imperfect spatial overlap (or equivalently,
the phase mismatch) between the modes immediately above
and below the crossing frequency. Their mathematical form
(see Eqs. (22b) and (22c)), which is reminiscent of the
orthogonality integral [see. e.g., Eq. (A1)], implies that their
size should increase with the index contrast between the layers.
Indeed, it is shown in Appendixes B2 and B3 that for a
piecewise-uniform modulation and zero detuning, the coupling
coefficients are given by

mod = m
(0)
f b = m

(1)
f b = 1

2

n2 − n1

n2 + n1

(
nm1

n1
− nm2

n2

)
. (25)

Thus, the reversal coupling tends to zero as the index contrast
approaches zero or if the modulation maintains the QWS
condition (16), i.e., if no gap is opened due to the modulation.
In all other cases, the dependence of the coupling coefficient
on the indices is nontrivial (see also Sec. VI B). It can also be
shown that for nonzero detuning, mod becomes complex.

Lastly, the βab coefficients (22d) are particularly intriguing.
They are defined in terms of an integration over β (15). For
the layered structure under consideration, n′

PhC (and n′
m as well

for a piecewise continuous modulation) vanishes everywhere
except at the interfaces between the layers, where it becomes
infinite. In these cases, the coefficients (22d) can be evaluated
by smoothing the index discontinuities over a finite length
L, computing the FB modes numerically, and then taking
the limit L → 0. Our numerical computations, performed
for several configurations of indices, thicknesses, and sizes
of time-localized modulations, indicate that for a layered
PhC, these terms vanish, βab(L → 0) = 0. Nevertheless, any
other configuration (namely, a smooth index PhC, spatially
nonuniform modulations, etc.) requires the specific numerical
evaluation of βab.

Due to all the above, for a piecewise-uniform modulation,
Eqs. (21a) and (21b) simplify into

[1 + M0mdm(t1)]ft1 (x1,t1) + vgfx1

+M0md [m′ − iωcm(t1)]f − iδωf f

= M0m
(0)
od [iωcm(t1)b − m′b − m(t1)bt1 ], (26a)

[1 + M0mdm(t1)]bt1 (x1,t1) − vgbx1

+M0md [m′ − iωcm(t1)]b − iδωbb

= M0m
∗
od [iωcm(t1)f − m′f − m(t1)ft1 ]. (26b)

In what follows, we focus on this set of equations.
Before finishing this section, we would like to comment

on alternative derivations of envelope equations for pulse

7Typically, nmj = 1 (nmj = 0) for a layer which is modulated (not
modulated). These coefficients become spatially-dependent for a non-
uniform modulation.

(or beam) propagation in periodic structures. First, a simpler
formalism is available for a small refractive index contrast
between the layers, leading to what is called the nonlinear
couple mode equations [46] [see footnote above Eqs. (4)].
Second, similar equations to Eqs. (26a) and (26b) can be
derived using the slowly varying envelope approximation
(SVEA), i.e., by assuming that the carrier wave is a Fourier
mode (i.e., a plane-wave) rather than a FB mode. However,
not only the unidirectional wave formulation is simpler, more
elegant, and more accurate than a derivation based on the
SVEA [47], but for PhCs, the SVEA is not strictly valid,
since in the presence of λ-fast index variations, the second
derivatives are not small compared to the other terms. An
exception is, possibly, the case in which the index contrast
is small (or in other words, that the grating is shallow); see,
e.g., [43]. Indeed, in that case, the difference between the
Fourier and FB bases is small.

A different approach described by Craster et al. is to derive
envelope equations for the wave equation (rather than for the
directional flux equations, as in our derivation). This approach
was employed to a large variety of periodic structures in one
and two dimensions (see, e.g., [48]).

Finally, a different set of carrier modes, computed from
the transmission and reflection data of a given finite size PhC,
was used in coupled Helmholtz equations in the context of
three quasimonochromatic wave mixing in PhCs (see [49], and
references therein). However, this approach is only suitable
for pulses much longer than the PhC, since in that case, the
reflections from the ends of the PhC system are important.

V. WEAK-COUPLING ANALYSIS

In principle, Eqs. (26a) and (26b) are significantly simpler
to solve numerically compared with the wave equation (3)
since they do not require one to resolve the λ- and T -scale
oscillations. In practice, however, the numerical solution of
the envelope equations is nontrivial (see Sec. VII for details);
moreover, they are also difficult to solve analytically. In order
to facilitate the analysis, recall that in our case, only the forward
component (i.e., the positive group-velocity band) is initially
populated. Thus, as long as the backward component is small
compared with the forward component, we can neglect all the
coupling terms in the equation for the forward wave (26a),
i.e., we can set its right-hand side to zero.8 In other words, we
assume that there is only forward-to-backward coupling, or
simply, that the coupling is weak. In this case, a closed-form
solution can be obtained to Eqs. (26a) and (26b).

In order to derive that solution, note that the characteristics
of Eqs. (26a) and (26b) are solutions of

dx1 = ± vgdt1

1 + M0mdm(t1)
.

8This assumption is reminiscent of the “undepleted pump” approxi-
mation, which is common for wave-mixing processes (see e.g., [15]).
However, in the current context, it is the signal (i.e., forward) wave
that is assumed to be “undepleted” rather than the pump (i.e., the
modulation, which is external in our case).
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We integrate and define

x
(f,b)
1 ≡ x1 ∓ vg

∫ t1

−∞

dt ′1
1 + M0mdm(t ′1)

.

This is equivalent to transforming into frames moving with
each of the pulses. Then, Eqs. (26a) and (26b) reduce to

[1 + M0mdm(t1)]ft1

(
x

(f )
1 ,t1

)
= [iωcM0m(t1)md + iδωf − M0mdm

′]f, (27)

[1 + M0mdm(t1)]bt1

(
x

(b)
1 ,t1

)
= [iωcM0m(t1)md + iδωb − M0mdm

′]b
−M0m(t1)mod (ft1 − iωcf ) − M0m

′modf

×
(

x
(b)
1 − 2vg

∫ t1

−∞

dt ′1
1 + M0mdm(t ′1)

,t1

)
. (28)

We now define τ = (M0mdωc)−1. The solution of Eq. (27) can
be written as

f
(
x

(f )
1 ,t1

) = exp

[∫ t1

−∞
pf (t ′1)dt ′1

]
f0

(
x

(f )
1

)
,

(29)

pf (t ′1) = i
m(t ′1)

τ
+ iδωf − M0mdm

′(t ′1)

1 + M0mdm(t ′1)
,

where f0 is the envelope of the pulse traveling in the forward
direction before the onset of the modulation. Similarly, we
define

b
(
x

(b)
1 ,t1

) = exp

[∫ t1

−∞
pb(t ′1)dt ′1

]
b̄
(
x

(b)
1 ,t1

)
,

(30)

pb(t ′1) = i
m(t ′1)

τ
+ iδωb − M0mdm

′(t ′1)

1 + M0mdm(t ′1)
.

Note that for zero detuning and uniform modulation, pb = pf .
Also note that the definitions of pf and pb confirm the physical
interpretation of the md coefficients (24), namely, the phase
accumulation and change of electromagnetic energy due to the
modulation, as described in Sec. IV. Hence,

b̄
(
x

(b)
1 ,t1

) = −M0mod

∫ t1

−∞

m(t ′1)ft ′1 − iωcm(t ′1)f + m′(t ′1)f

1 + M0mdm(t ′1)

× exp

[
−

∫ t ′1

−∞
pb(t ′′1 )dt ′′1

]
dt ′1. (31)

We substitute Eqs. (27) and (29) into Eq. (31) and get after
some algebra

b̄
(
x

(b)
1 ,t1

) = −M0mod

∫ t1

−∞
h(t ′1; M0,ωf )ei
t ′1f0

×
(

x
(b)
1 − 2vg

∫ t ′1

−∞

dt ′′1

1 + M0mdm(t ′′1 )

)
dt ′1,

(32)

where

h(t ′1; M0,ωf ) = −iωf m(t ′1) + m′(t ′1)

[1 + M0mdm(t ′1)]2
. (33)

At times, long after the modulation has ended, we can set
the upper limit of both integrations to ∞. Thus, Eq. (32)

shows that the backward wave is given by a convolution
of the forward wave with h(t ′1; M0,ωf ), which has the role
of the impulse response of the system. This mathematical
form of the backward wave is reminiscent to the results of
wave-mixing-based spectral phase conjugation [19] in which
the backward wave is given by a convolution of the signal with
both pump waves.

It follows from Eqs. (32) and (33) that accurate reversal
can be achieved only in the nonadiabatic limit, i.e., when

Tmod � Tp, (34)

in which case the impulse function is essentially a delta
function.

As an example, let us assume a Gaussian modulation

m(t) = e−[(t/−t0)2T 2
mod]. (35)

For such a symmetric modulation, one expects the contri-
bution of the m′(t) term in h (33) to be small compared
with the contribution from the ωf m(t) term. Indeed, first,
m′(t) ∼ T −1

mod � ωf . Second, m′(t) has odd symmetry, so
that contributions from times before and after the middle of
the modulation t0 nearly cancel. This was confirmed with
asymptotic calculations (not shown). Thus, in what follows,
we neglect the m′(t) term in h (33).

For a small modulation, we can also neglect the M0 term
from the denominators, i.e., we effectively assume that the
pulses’ velocities are not affected by the modulation. In this
case, x

(f,b)
1 = x1 ∓ vgt1. Using Eq. (30), it then can be shown

that Eq. (32) reduces to

b
(
x

(b)
1 ,t1

) ∼= iωf M0modexp

[
iδωbt1 − M0mdm(t ′1) + i

τ

×
∫ t1

−∞
m(t ′1)

] ∫ ∞

−∞
m(t ′1)ei
t ′1f0

(
x

(b)
1 − 2vgt

′
1

)
dt ′1.

(36)

This integral can be solved exactly for a Gaussian pulse

f0

(
x1

vgTp

)
= e−(x2

1 /v2
gT

2
p ), (37)

where Tp
∼= 0.7W/vg , with W being the full width at half

maximum of the incident pulse. In this case, the convolution
integral is

IC ≡
∫ ∞

−∞
ei
t ′1e−[(t ′1−t0)2/T 2

mod]e−[(x(b)
1

2−4vgt
′
1x

(b)
1 +4v2

g t
′
1

2)/v2
gT

2
p ]dt ′1,

(38)

with
1

T 2
eff

= 1

T 2
mod

+ 4

T 2
p

. (39)

Then, it can be shown that

IC = √
πTefff0

⎛
⎝ x

(b)
1 − 2vgt0

vg

√
T 2

p + 4T 2
mod

⎞
⎠ e−(
2/4)T 2

effei�,

with � = i


T 2
p +4T 2

mod
(T 2

p t0 + 2T 2
mod

x
(b)
1
vg

). This shows that the

envelope of the backward pulse is indeed a properly reversed
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version of the envelope of the forward pulse; however, it is also
broader than the forward pulse due to the convolution with the
modulation.9 More generally, arbitrary asymmetric pulses will
also undergo some distortion due to that convolution. These
effects can be minimized in the nonadiabatic limit (34), where
we get

IC = √
πTmodf0

(
x

(b)
1 − 2vgt0

vgTp

)
e−(
2/4)T 2

modei
t0 . (40)

Finally, substituting in Eq. (36) gives an overall reversal
amplitude of

maxt1 |b(x1,t1)| = √
πTmodωf M0|mod |e−(
2/T 2

mod4)f0(0).

(41)

Note that the solution is symmetric with respect to the sign
of M0, because we neglected the effect of the modulation on
the pulse velocity. It also shows an exponential (Gaussian)
decrease of the efficiency with the detuning.

The calculation above can be generalized for arbitrarily
shaped pulses. Moreover, the calculation can be performed
without the simplifications applied to the impulse response
(33). Inclusion of these terms yields O(M2

0 ) corrections
to the amplitude of the reversed pulse. However, such a
calculation does not take into account even O(M0) corrections
to the amplitude and profile of the forward wave. This can
be amended by self-consistency iterations, but this would
be tedious and would probably extend the validity of the
perturbation analysis only slightly. More generally, once
the backward wave becomes comparable in magnitude to the
forward wave, in particular, for sufficiently long modulation
times, the weak-coupling solution (41) is not valid anymore. In
all those cases one needs to solve the envelope equations (26a)
and (26b) without approximation. Nevertheless, despite these
limitations, we show in Sec. VII that the weak-coupling
solution (41) provides a very good approximation to the actual
dynamics [obtained by solving the wave equation (3) and
the envelope equations (26a) and (26b)] even for conversion
efficiencies as high as 50%.

VI. DESIGN RULES

We now discuss the practical aspects of designing our
reversal mirror for electromagnetic pulses. We take into
account realistic material parameters and discuss efficiencies
and a variety of other practical issues.

A. Reversal-mirror thickness

The length of the reversal mirror D should be chosen such
that it contains all the pulse during the modulation (in a similar
manner to [22,23]). As a simple estimate, this requires D �
NW , where W ≈ vgTp/0.7 is the full width half maximum or
equivalently,

Tp � 0.7D/Nvg,

9There is also a spatiotemporal frequency shift, occurring for
nonzero detuning. This term is negligible in the nonadiabatic limit.
We neglect it below.

with typically N � 3/0.7 ∼ 5. Thus, for example, a few-cm-
long reversal mirror can contain and reverse pulses not longer
than a few tens of picoseconds.

The thicknesses of the layers determine the crossing
frequency, hence, the carrier frequency, according to Eq. (17).
Note, however, that the parameter s in Eq. (16) allows one to
scale the thickness of one of the layers.

B. Materials

1. Modulation technique

We distinguish between two classes of modulations. First,
picoseconds and longer modulation times can be done exter-
nally, e.g., by using the electro-optical (Pockels) effect [15]
or using carrier injection and depletion in semiconductor
materials (see, e.g., [40]). These techniques yield a modulation
which is, to leading order, uniform; both can be realized with
essentially linear modulators (see, e.g., [22,23,40], but see
also [50]).

Large electro-optical coefficients are found in ferroelectric
materials such as LiNbO3, BaTiO3, or BaStTiO3, all which can
be modulated on the GHz scale and faster. Index modulation
via carrier injection and depletion can be obtained in a variety
of semiconductors. For example, index modulations of the
order of 1% at about 100 GHz were achieved in silicon devices
[40,51]. Comparable modulations may be attained in other
semiconductors [52,53]. Even faster modulations of 1 ps can
be achieved in ion-implanted silicon [54].

Shorter modulation times can only be achieved using
intense ultrashort pump pulses and rely on a nonlinear
mechanism such as cross-phase modulation [55] or carrier
injection and depletion [40,53,56] through a pump-probe-type
experiment. In such cases, the modulations may not be uniform
or even periodic, unless the geometry of the modulation is
designed appropriately (see, e.g., [17,18]).

We note that in the case of cross-phase modulation-based
modulation, the reversal-mirror structure need not only have
a periodically varying refractive index, but also a periodically
varying cubic nonlinear (Kerr) coefficient. A systematic study
of pulse propagation in structures with a periodically varying
(positive) Kerr coefficient was conducted by Sivan et al.
[57,58]. This work was elaborated and extended to systems
in which the magnitude and sign of the Kerr coefficient vary
periodically, as well as to structures in which both refractive
index and Kerr coefficient vary periodically. For a recent
review of light propagation in such structures, see review by
Malomed et al. [59].

2. Refractive index

As shown in the formula for the coupling coefficient (25),
high reversal efficiency can be achieved if (a) there is a high
contrast between the refractive indices of both layers and
(b) the modulation is as different as possible from such that
maintains the QWS condition. Both conditions ensure that
a gap as wide as possible is opened by the modulation. In
particular, this implies that it is far better to modulate a single
layer (e.g., by choosing one of the layers to be air), rather
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than two layers by the same amount. In this case, the coupling
coefficient is given by

|mod | = |n1 − n2|
2nj (n1 + n2)

, (42)

where j is the index of the modulated layer. In the limit of a
high contrast, mod → 1/2nj so that it is clearly advantageous
to modulate the low index layer. If, on the other hand, one
modulates the high index material, the refractive index of
the high-index layer required for optimal reversal is n1,opt =
n2(1 + √

2); still, since in this case the dependence of the
reversal coefficient on n1 is rather weak, there is only a small
reduction in efficiency for indices slightly different from n1,opt.

These configurations can be realized with material combi-
nations such as silicon or LiNbO3 and air, both giving rise to
mbf ∼ 0.08. An alternative is to use a low-index ferroelectric
with a high-index material (e.g., a semiconductor). Then, if
only the ferroelectric is modulated, the coupling coefficient
can have comparable magnitude. Another possibility is to use
high refractive-index materials, for constructing mid-IR [60]
and THz [61] reversal mirrors. The associated efficiencies may
be slightly higher.

Finally, an even higher reversal efficiency can be attained
if the refractive index of one layer is increased while the
refractive index of the other is decreased. This is possible,
for example, with cross-phase modulation-based modulation
in structures in which the Kerr coefficient has different sign in
each layer (see [59] and Sec. VI B 1).

C. Material dispersion

In the derivation of the envelope equations we have
ignored the effects of dispersion. These are unavoidable,
especially since our design prefers high-index materials and
long samples. Dispersion affects several aspects of the reversal
mirror. First, since now the refractive index depends on the
wavelength, it is clear that the QWS condition (16) cannot be
satisfied for all wavelengths. However, it can be easily shown
using the analytical expressions for the band structure that
in order to maintain a zero gap, it is sufficient for the QWS
condition (16) to be satisfied exactly at the crossing wavelength
(17).

Second, dispersion will affect the dynamics of the pulses
inside the reversal-mirror. Self-consistent inclusion of dis-
persion in Maxwell equations requires one to compute the
dynamics of the polarization via equations that account
for dynamic modulation of material paremetrs and material
response time [62]; in those cases, the wave equation (3)
is not applicable anymore. However, for the purpose of the
derivation of envelope equations, it is sufficient to introduce
the dispersion into the band-structure calculation (see [45],
or more specifically, Appendix A). In this case, dispersion
will cause a deviation from the strictly linear dispersion
relations and will be manifested via the addition of high-order
time-derivative terms (GVD and higher order dispersion) in
each envelope equation. These will lead to broadening and
even distortion (in the presence of significant higher-order
dispersion) of the pulses, possibly to a different extent on
either band. However, since the structural dispersion of the
PhC dominates over material dispersion (which is a weak effect

in dielectrics), dispersion is not expected to be significant,
especially due to the short lengths of the proposed reversal
mirrors.

D. Losses

So far, we have also ignored the possibility of losses in
the reversal mirror (i.e., absorbance or scattering). As a rough
estimate, if one of the layers has nonzero absorbance, then it
is sufficient for the absorption coefficient of the lossy layer
α = 2k0n

′′
j to satisfy α d1

d
D � 1. For example, typical losses

in silicon nanostructures (e.g., channel or ridge waveguides
where losses originate mainly from scattering from the rough-
ness of the interfaces) vary between 0.05 − 1/cm [40]. For
a silicon-air QWS (nSi ∼ 3.5, so that d ∼ (n1 + n2)d1/n2 ∼
4.5d1), this corresponds to the condition α � d

d1D
∼ 4.5

D
. Thus,

such losses can be sufficiently low even for a few-cm-long
reversal mirror. If the material of choice has even higher losses,
one can choose a different value of s in order to reduce the
thickness of the absorbing layer. Thus overall, losses are not
expected to cause any significant reduction in performance of
our reversal mirror.

VII. NUMERICS

In order to validate the analysis, we have performed
extensive numerical simulations. First, the wave equation (3)
was solved with standard absorbing boundary conditions at
both ends of the domain [62], namely,

Ex(x = 0,t) = n(x = 0,t)

c
(Et − 2Einc,t ),

Ex(x = D,t) = −n(x = D,t)

c
Et .

Second, the envelope equations (26a) and (26b) were solved,
again, with standard absorbing boundary conditions for both
envelopes with only the forward envelope initially excited,
namely,

fx(x = 0,t) = n(x = 0,t)

c
(ft − 2finc,t ),

fx(x = D,t) = −n(x = D,t)

c
ft ,

bx(x = 0,t) = n(x = 0,t)

c
bt ,

bx(x = D,t) = −n(x = D,t)

c
bt .

Although the numerical solution of these equations does
not require one to resolve the T - (and λ-) scale oscillations,
it still poses a nontrivial challenge. First, note that since
the modulation is uniform in space, then, unlike the case
of light propagation through nonlinear Kerr media [41,46]
where the modulation is caused by the moving pulse itself,
Eqs. (26a) and (26b) cannot be reduced to a set of two
coupled ordinary differential equations. For this reason, simple
numerical schemes such as the one described in [63] are
not applicable to the current problem and one must employ
partial differential equation techniques. Second, the absence
of diffusion from the transport equations (26a) and (26b)
makes any discretization scheme unstable. In order to retain
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FIG. 3. (Color online) (a) Amplitude of an asymmetric pulse
[Eq. (3); red line] and the associated backward wave envelope
[Eq. (26b); blue line] at the input side of the QWS as a function
of time. (b) A spatiotemporal contour map of forward and backward
envelopes in (a). Here, t0 ∼ 650 fs and Tmod/Tp ∼ 0.1.

numerical stability, one can add small artificial diffusion,
or alternatively, use the Galerkin-Ritz technique which is
relatively nondiffusive.

In Fig. 3(a), we plot the pulse profile at the input side of the
PhC as a function of time. The reversed pulse has a somewhat
lower amplitude, but the leading and trailing edges have clearly
exchanged roles, so that wave front has been accurately re-
versed. We also show that the solutions of the wave equation (3)
and the envelope equations (26a) and (26b) are in excellent
agreement. Figure 3(b) shows a spatiotemporal contour map of
the pulse propagation. It shows that the modulation, occurring
once the pulse is in the middle of the reversal mirror, causes a
fast and complicated dynamics after which the pulse splits into
a reversed and a (somewhat delayed) forward component. Note
that the modulation causes a delay of the forward propagating
pulse (occurring even for very small modulations). This effect
is irrelevant to the performance of the reversal mirror, and is
not captured by the analysis performed in this paper.

A comparison of the reversal efficiencies as a function of
the modulation strength, which also includes the analytical
approximation (41), is shown in Fig. 4. We employ realistic
parameters corresponding to a silicon-air QWS with λc =
1550 nm; such a PhC can be fabricated on chip with current
technology [40]. First, we perform simulations of ∼20-cycle
pulses. Figure 4(a) verifies that all three solutions are in
good agreement, thus validating the analysis. The reversal
efficiencies in this case are rather low, however, they are
comparable to efficiencies of nonlinear conversion processes
of such short pulses. A possible solution is simply to amplify

FIG. 4. (Color online) (a) Reversal of a Tp = 100 fs, unit-
amplitude Gaussian input pulse (37) under a Gaussian modulation
(35) as a function of the index change M0 for n1 = 3.45, n2 = 1,
λc = 1550 nm, and Tmod = 10 fs. Shown are numerical solutions
of the wave equation [Eq. (3); blue dots] vs the solution of the
envelope equations [Eq. (26b); black circles] and the analytical
solution [Eq. (41); red solid line]. (b) Same as (a) for Tmod = 1 ps and
Tp = 10 ps.

the signal after the reversal process. This can be done most
conveniently in a phase-conjugation step coming after the
envelope reversal for which efficiencies higher than 100% can
easily be achieved.

In Fig. 4(b) we show simulations for longer pulses for
which memory and running time required for the solution
of Eq. (3) are beyond standard available computing resources.
Thus, we only show the solutions of the envelope equations
(26a) and (26b) vs the analytical solution. As in Fig. 4(a), there
is very good agreement between the numerical and analytical
solutions up to high efficiencies (∼50%). At even higher
efficiencies, the analytical approximation overestimates the
reversal efficiency as given by the solution of the envelope
equations. This is because at such high efficiencies, the
forward wave amplitude is significantly decreased, so that
the forward-to-backward wave coupling decreases as well.
Nevertheless, the solutions of the envelope equations show
that a 100% reversal efficiency can be achieved in this
configuration with index changes only slightly higher than
those predicted analytically. Thus, our reversal mirror has
comparable performance to the previously suggested time-
reversal schemes in index-modulated coupled-resonator arrays
of optical waveguides [22,23]. However, in contrast to these
schemes, the QWS admits pulses of very broad spectrum. In
addition, our system does not suffer from a deterioration of
performance due to nonadiabatic modulations.
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APPENDIX A: FLOQUET-BLOCH MODES NEAR
THE CROSSING POINT

The Floquet-Bloch modes are solutions of the Helmholtz
equation, obtained by Fourier transforming the wave
equation (3) with M0 = 0. In a single unit cell, they are given
by

φ(x) = 1

Nφ

eiκxu(x),

u = e−iκx

{
a0e

ik1x + b0e
−ik1x, 0 < x < d1,

c0e
ik2(x−d1) + d0e

−ik2(x−d1), d1 < x < d,

where kj = ωnj (ω)/c, Nφ is a normalization constant chosen
such that ∫ d

0
φ∗

a (x)n2(x)φb(x)dx = δab, (A1)

and the FB wave number is given by

κ(ω) = 1

d
arccos(Re[A]), (A2)

with A being the first element of the transfer matrix of the
layered system [see [45] and Eq. (A3c) below]. Note that for
simplicity of notation, we omit the κ subscript from u, φ,
and �.
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For normal incidence, the coefficients for the first layer are
given by [45], Eq. (6.2-7)

a0 ≡ B = −eik1d1
i

2

n2
2 − n2

1

n1n2
sin(k2d2), (A2a)

b0 ≡ e−iκd − A, (A2b)

A = e−ik1d1

[
cos(k2d2) − i

2

n2
2 + n2

1

n1n2
sin(k2d2)

]
. (A2c)

The coefficients for the second layer are given by [45],
Eq. (6.1-11)

c0 = 1

2

[
e−ik1d1

(
1 + n1

n2

)
a0 + eik1d1

(
1 − n1

n2

)
b0

]
, (A4a)

d0 = 1

2

[
e−ik1d1

(
1 − n1

n2

)
a0 + eik1d1

(
1 + n1

n2

)
b0

]
. (A4b)

By Eq. (17), it follows that k1d1 = π − n1d1
c

δω = k2d2
s

=
π − n2d2

sc
δω, where δω = δωf/b [see Eq. (20)]. Accordingly,

to O(δω2) accuracy, for any value of s we get

A ∼= 1 + i
n1d1

c
δω

(n2 + n1)2

2n1n2
−

(
n1d1

c
δω

)2 (n2 + n1)2

2n1n2
,

so that by Eq. (A2),

cos [κ(ω)d] ∼= 1 −
(

n1d1

c
δω

)2 (n2 + n1)2

2n1n2
.

Since we are interested in a transition between modes at a
given (say positive) κ , it follows that

κ(ω) ∼=
√|n1n2|

c
|δω| > 0, (A5)

where the absolute value over the frequency ensures that the
modes under consideration have the same Bloch momentum,
as required for a vertical transition, and the absolute value
over the indices ensures that the group velocity is real even for
negative index materials. For simplicity, in what follows we
drop the absolute values.

Using all the above, it can also be shown that, to O(δω2)
accuracy, the coefficients are given approximately by

a
(f,b)
0

∼= iγ (f,b)(n2 − n1),
(A6)

b
(f,b)
0

∼= −iγ (f,b)(
√

|n2| ∓
√

|n1|)2,

where γ (f,b) ≡ d
2c

δω(f,b) is a real, dimensionless, arbitrarily
small parameter that represents the detuning from the crossing
point.

By Eqs. (A4), the coefficients for the second layer are given
by

c
(f,b)
0 = ∓

√
n1

n2
a

(f,b)
0 , d

(f,b)
0 = ±

√
n1

n2
b

(f,b)
0 . (A7)

These relations show that A → 1− at the crossing point, in
which the mode is identically zero. Thus, the gap indeed
consists only of the crossing point.

It follows that

N2
f/b

∫ d1

0
|φf/b|2 ∼= 2d1γ

2(n2 + n1)(
√

n2 ∓ √
n1)2,

and similarly,

N2
f/b

∫ d

d1

|φf/b|2 ∼= 2d2γ
2 n1

n2
(n2 + n1)(

√
n2 ∓ √

n1)2.

Hence, the normalization constants are

Nf/b ≡
∫ d

0
n2

PhC(x)|φf/b|2

= 2n1γ
√

d1(n2 + n1)(
√

n2 ∓ √
n1), (A8)

and the mode ((A1)) in the first layer is given by

φf/b(0 < x < d1)

∼
[

n2 − n1√
n2 ∓ √

n1
eik1x − (

√
n2 ∓ √

n1)e−ik1x

]
,

with similar expressions for the second layer. Note that since
for dielectric materials, n2 + n1 >

√
n2 + √

n1 � n2 − n1 >√
n2 − √

n1, the forward (backward) plane-wave component
is dominant for the forward wave envelope f (backward wave
envelope b), respectively. Note that the size of the coefficient
is independent of the frequency, at least for nondispersive
materials, so that the dominance of the forward or backward
component is abruptly switched across the zero gap.

The elements of the unidirectional FB modes (19) are
related to the (standard) FB modes (A1) through [41]

ψ±(x0) = 1

2

(√
nPhC(x0)φ(x0) ∓ ic

ω
√

nPhC(x0)

∂φ

∂x0

)
. (A9)

It is straightforward to verify that ψ± satisfy a normalization
relation similar to Eq. (A1).

APPENDIX B: CALCULATION OF COEFFICIENTS
IN ENVELOPE EQUATIONS

In this section we compute the coefficients of the enve-
lope equations (22a)–(22c) using the approximate analytical
expressions obtained for the FB modes in Appendix A. In
particular, below we rely on Eqs. (A1), (A6), (A7), (A8), and
(A9). All the analytical expressions derived below were found
to be in perfect agreement with numerical evaluation of the
definitions (22a)–(22c).

1. v

By Eqs. (22a) and (A9), it follows that

vab = −c2

2
Im

∫ d

0

[
1

ωa

φb

∂φ∗
a

∂x0
− 1

ωb

φ∗
a

∂φb

∂x0

]
dx0.

The diagonal terms reduce to

N2
a vaa

∼= n1dc
(∣∣a(a)

0

∣∣2 − ∣∣b(a)
0

∣∣2)
.
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Using Eq. (A6) gives

N2
a vaa

∼= ±4n1dcγ 2√n2n1(
√

n2 ∓ √
n1)2,

from which it follows that

vaa
∼= ± c√

n1n2
. (B1)

Thus, by Eq. (A5), we obtain that vff = −vbb = vg .
Similarly, one can show that the off-diagonal terms vanish,

vab = 0 so that, indeed, there is no reflection coupling in the
system.

2. m(0)

By Eqs. (22b) and (A9), it follows that

m
(0)
ab =

∫ d

0
�†

a(x0)p�b(x0)dx0

=
∫ d

0
p(x0)[ψ+

a

∗
ψ+

b + ψ−
a

∗
ψ−

b ]dx0

= 1

2

∫ d

0
p(x0)nPhC(x0)

(
φ∗

aφb + c2

ωaωbn
2
PhC

∂φ∗
a

∂x0

∂φb

∂x0

)
dx0.

Then, it can be shown that

m
(0)
ab =

∫ d

0
p(x0)nPhC(x0)φ∗

aφbdx0 =
(
a

(a)
0

∗
a

(b)
0 + b

(a)
0

∗
b

(b)
0

)
n1n̄m1d1 + (

c
(a)
0

∗
c

(b)
0 + d

(a)
0

∗
d

(b)
0

)
n2n̄m2d2

NaNb

+ n1

NaNb

∫ d1

0
p(x0)

(
a

(a)
0

∗
b

(b)
0 e−2ik1x0 + b

(a)
0

∗
a

(b)
0 e2ik1x0

)
dx0 + n2

NaNb

∫ d

d1

p(x0)
(
c

(a)
0

∗
d

(b)
0 e−2ik1x0 + d

(a)
0

∗
c

(b)
0 e2ik1x0

)
dx0.

(B2)

In Eq. (B2), the first term gives the contribution of the zero Fourier component of the modulation and the last two terms give the
contribution of the 2k0nj Fourier component of the modulation.

Let us now separate into the diagonal and off-diagonal cases. In the former case, it can be shown that

m(0)
aa = n̄m1

2n1
+ n̄m2

2n2
− n2 − n1

2n1d1(n2 + n1)

(∫ d1

0
p(x0) cos(2k1x0)dx −

∫ d

d1

p(x0) cos(2k2x0)dx0

)
. (B3)

Thus, Eq. (B3) shows that both diagonal coefficients are identical and that it is only the 2k0nj Fourier components of p(x0) which
contribute to the reversal.

For a piecewise-uniform modulation, the latter contribution vanishes so that

m
(0)
ff = m

(0)
bb = nm1

2n1
+ nm2

2n2
. (B4)

For off-diagonal coefficients, it can be shown that

m
(0)
ab

∼= n2 − n1

n2 + n1

n̄m1d1 − n̄m2d2

2n1d1
−

∫ d

0 p(x0)
[
(n2 ∓ n1)2

be
−2ik0nPhC(x0)x0 + (n2 ∓ n1)2

ae
2ik0nPhC(x0)x0

]
dx0

4n1d1(n2 + n1)
. (B5)

For a piecewise-uniform modulation, the contribution of the integrals vanishes so that

m
(0)
f b = n2 − n1

2(n2 + n1)

(
nm1

n1
− nm2

n2

)
. (B6)

3. m(1)

By Eq. (22c),

m
(1)
ab =

∫ d

0
�†

a(x0)pCT �b(x0)dx0 = m
(0)
ab

+ 1

2

∫ d

0
p(x0)[ψ+

a

∗
ψ−

b + ψ−
a

∗
ψ+

b ]dx0.

This can be shown to equal

m
(1)
ab = m

(0)
ab + 1

2

∫ d

0
p(x0)n(x0)φ∗

aφbdx0

− c2

2ωaωb

∫ d

0

p(x0)

nPhC(x0)

∂φ∗
a

∂x0

∂φb

∂x0
dx0.

Then, using Eqs. (A6) and (A7), it can be shown that

m
(1)
ab = m

(0)
ab + n1

NaNb

∫ d1

0
p(x0)

(
a

(a)
0

∗
b

(b)
0 e−2ik1x0

+ b
(a)
0

∗
a

(b)
0 e2ik1x0

)
dx0 + n2

NaNb

∫ d

d1

p(x0)

× (
c

(a)
0

∗
d

(b)
0 e−2ik1x0 + d

(a)
0

∗
c

(b)
0 e2ik1x0

)
dx0. (B7)

It follows that the diagonal terms are identical and that
for a piecewise-uniform modulation, m

(1)
ab ≡ m

(0)
ab , i.e., the

off-diagonal elements in CT do not contribute to the
dynamics.
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S. Karirinne, M. Guina, O. G. Okhotnikov, T. G. Euser, and
W. L. Vos, Appl. Phys. Lett. 87, 121106 (2005).

[53] P. J. Harding, T. G. Euser, Y.-R. Nowicki-Bringuier,
J.-M. Gérard, and W. L. Vos, Appl. Phys. Lett. 91, 111103
(2007).

[54] A. Chin, K. Y. Lee, B. C. Lin, and S. Horng, Appl. Phys. Lett.
69, 653 (1996).

[55] G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin,
J.-M. Gérard, and W. L. Vos, Appl. Phys. Lett. 98, 161114
(2011).

[56] T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss,
and L. Kuipers, Phys. Rev. A 81, 043837 (2010).

[57] G. Fibich, Y. Sivan, and M. I. Weinstein, Physica D 217, 31
(2006).

[58] Y. Sivan, G. Fibich, and M. I. Weinstein, Phys. Rev. Lett. 97,
193902 (2006).

[59] B. A. Malomed, Y. V. Kartashov, and L. Torner, Rev. Mod. Phys.
83, 247 (2011).

[60] J. Shin, J.-T. Shen, and S. Fan, Phys. Rev. Lett. 102, 093903
(2009).

[61] P. H. Bolivar, M. Brucherseifer, J. Gomez Rivas,
R. Gonzalo, I. Ederra, A. L. Reynolds, M. Holker, and P. de
Maagt, IEEE Trans. Microwave Theory Tech. 51, 1062 (2003).

[62] S. Hagness and A. Taflove, Computational Electrodynamics:
The Finite-Difference Time-Domain Method, 3rd ed. (Artech
House, Norwood MA, 2000).

[63] C. M. de Sterke, K. R. Jackson, and B. D. Robert, J. Opt. Soc.
Am. B 8, 403 (1991).

[64] P. Kinsler, S. B. P. Radnor, and G. H. C. New, Phys. Rev. A 72,
063807 (2005).

[65] A. B. Shvartsburg, Phys. Usp. 48, 797 (2005).
[66] J. R. Zurita-Sanchez, P. Halevi, and J. C. Cervantes-González,
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