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Stable weak-light ultraslow spatiotemporal solitons via atomic coherence
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We propose a scheme to generate stable ultraslow three-dimensional spatiotemporal optical solitons, or
ultraslow optical bullets, at very low light levels via atomic coherence. The system we consider is an ensemble
of resonant, lifetime-broadened N -type four-level atoms, working in a regime of electromagnetically induced
transparency. Due to the quantum interference effect induced by a control field, the absorption of a probe field
is largely suppressed. Moreover, the Kerr nonlinearity is greatly enhanced, and the dispersion property of the
probe field is drastically changed. Using a method of multiple scales, we derive two coupled nonlinear envelope
equations controlling the evolution of the envelopes of the probe field and an assisted field. We show that under
certain conditions the envelope of the probe field satisfies a three-dimensional nonlinear Schrödinger equation and
the envelope of the assisted field obeys a linear Helmholtz equation. We obtain various optical bullet solutions for
the probe-field envelope and demonstrate that such optical bullets have many novel features, including very slow
propagating velocity and very low generation power. In addition, they can be actively controlled and manipulated
by adjusting system parameters. The stabilization of the optical bullets obtained can be easily realized by the
trapping potential contributed by the assisted field, which is also investigated in detail.
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I. INTRODUCTION

In past two decades, there has been intensive study on
optical wave packets that are localized in all three spatial
dimensions as they propagate in space and evolve in time.
These wave packets, called spatiotemporal optical solitons or
optical bullets [1], appear as a result of the interplay between
dispersion, diffraction, and nonlinearity. Optical bullets are
of great interest due to their rich nonlinear physics and
important applications [2–22]. However, up to now most
optical bullets are produced in passive optical media, in which
faroff resonance excitation schemes are employed in order to
avoid significant optical absorption. Moreover, for generating
the optical bullets in passive optical media, very high light
intensity is usually needed to obtain nonlinearity strong enough
to balance dispersion and diffraction effects. In addition, in
passive media an active control on the property of optical
bullets is hard to realize because there is no energy-level
structure and selection rules that can be used and manipulated.

For practical applications, the optical bullets having low
generation power and good controllability are desirable. Active
optical media, in which light interacts with matter resonantly,
can be used to achieve such goal. However, for on-resonance
media there is usually a very large optical absorption. In
recent years, such a paradigm has been changed by the
finding of electromagnetically induced transparency (EIT) in
resonant atomic systems. Due to the quantum interference
effect induced by an additional control field, the propagation of
a weak probe field displays many striking features, including a
significant suppression of optical absorption, a large reduction
of probe-field group velocity, and a giant enhancement of Kerr
nonlinearity [23]. Based on these important features, it has
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been suggested recently that new types of temporal [24–27]
and spatial [28–31] optical solitons are possible in highly
resonant atomic systems.

In this article, we propose a scheme to generate three-
dimensional (3D) optical bullets in an active optical medium
via quantum coherence. The system we consider is an
ensemble of resonant, lifetime-broadened four-level atoms,
working in an EIT regime and at low temperature. By the
use of the EIT effect induced by a continuous-wave (CW)
control field, the absorption of a weak probe pulse can be
largely suppressed. Simultaneously, the Kerr nonlinearity is
greatly enhanced and the dispersion property of the probe
pulse is drastically changed, which are used to form 3D optical
bullets in the system. Using a standard method of multiple
scales, we derive two coupled nonlinear envelope equations
governing the spatiotemporal evolution of the probe field and
an assisted field. We show that under some conditions the
envelope equation of the probe field can be reduced into a
(3 + 1)-dimensional [(3 + 1)D] [32] nonlinear Schrödinger
(NLS) equation and the envelope of the assisted field obeys
a linear Helmholtz equation. We obtain various optical bullet
solutions for the probe-field envelope and demonstrate that the
optical bullets suggested in the present active system are very
different from those in passive systems obtained before [1–19],
and possess many novel features, including: (i) They have
ultraslow propagating velocity (∼10−5c; c is the light speed in
a vacuum). (ii) Their generation power is very low (�1 μW ).
(iii) They can be actively controlled and manipulated based
on the active characters of the system. Especially, the signs
of the Kerr nonlinearity and dispersion can be manipulated
at will by, for example, adjusting detunings and pulse length.
(iv) They can be stabilized easily by using the assisted CW
laser field, or a pulsed assisted field with a suitable time length,
which provides an “external” potential acting on the optical
bullets, hence stabilizing their propagation. The stable and
controllable weak-light ultraslow optical bullets via atomic

033816-11050-2947/2011/84(3)/033816(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.033816


HUI-JUN LI, YUAN-PO WU, AND GUOXIANG HUANG PHYSICAL REVIEW A 84, 033816 (2011)

coherence obtained here may have potential applications in
optical information processing and transmission.

The article is arranged as follows. In the next section, we
give an introduction of the model under study. In Sec. III, using
a method of multiple scales we derive two coupled nonlinear
equations for the envelopes of the probe and the assisted fields,
and discuss under what condition these envelope equations can
be reduced to a (3 + 1)D nonlinear NLS equation and a linear
Helmholtz equation. In Sec. IV, we investigate the formation
and propagation of the 3D optical bullets and discuss their
stability in detail. In the final section, we summarize the main
results obtained in our work.

II. MODEL

We consider a cold, lifetime-broadened atomic system with
an N -type energy-level configuration, as shown in Fig. 1.
A weak pulsed probe field (strong CW control field) with
center angular frequency ωp (ωc) and half Rabi frequency
�p (�c) interacts resonantly with the energy states |1〉 and
|3〉 (|2〉 and |3〉). The energy states |1〉, |2〉, and |3〉 together
with the probe and control fields consist of a widely studied
�-type three-level EIT core. In addition, a weak assisted laser
field with center angular frequency ωa (half Rabi frequency
�a) couples to energy states |2〉 and |4〉, which contributes a
cross-phase modulation (CPM) to the probe field. We take
the energy levels from the D2 line of 87Rb atoms, with

FIG. 1. (Color online) Energy-level diagram and excitation
scheme of the lifetime-broadened four-state atomic system interacting
with a weak pulsed probe field (with half Rabi frequency �p), a
strong CW control field (with half Rabi frequency �c), and a weak
assistant field (with half Rabi frequency �a). �3, �2, and �4 are
one-photon, two-photon, and three-photon detunings, respectively.
The energy levels are taken from the D2 line of 87Rb atoms,
with |1〉 = |5S1/2,F = 1,mF = −1〉, |2〉 = |5S1/2,F = 2,mF = 0〉,
|3〉 = |5P3/2,F = 2,mF = −1〉, and |4〉 = |5P3/2,F = 1,mF = 1〉.
fij = |pij /D2|2 × 120 is the relative transition strength, with D2 =
3.58 × 10−27 cm C and pij being the dipole transition matrix element
between the state |i〉 and the state |j〉.

the states selected as |1〉 = |5S1/2,F = 1,mF = −1〉, |2〉 =
|5S1/2,F = 2,mF = 0〉, |3〉 = |5P3/2,F = 2,mF = −1〉, and
|4〉 = |5P3/2,F = 1,mF = 1〉. fij in the figure is the relative
transition strength, defined by fij = |pij /D2|2 × 120, where
D2 = 3.58 × 10−27 cm C and pij is the dipole transition matrix
element between the state |i〉 and the state |j 〉 [33].

The electric-field vector in the system can be written as
E = ∑

l=p,c,a elEl exp [i(kl · r − ωlt)] + c.c., where el (kl) is
polarization direction (wave vector) of lth field with envelope
El . The Hamiltonian of the system is given by Ĥ = Ĥ0 + Ĥ ′,
where Ĥ0 and Ĥ ′ describe a free atom and the interaction
between the atom and the electric field, respectively. Our
theoretical model is based on the density matrix equation
for the four-level atoms together with the Maxwell equations
for the weak laser fields. In the Schrödinger picture, the
state vector of the system is |�(t)〉 = ∑4

j=1 aj |j 〉, where

|j 〉 is the eigenvector of Ĥ0 with eigenenergy h̄ωj , and
aj is the probability amplitude of the state |j 〉. Under
electric-dipole and rotating-wave approximations, the Hamil-
tonian reads Ĥ = ∑4

j=1 h̄ωj |j 〉〈j | − h̄(�pei(kp ·r−ωpt)|3〉〈1| +
�ce

i(kc · r−ωct)|3〉〈2| + �ae
i(ka · r−ωat)|4〉〈2| + H.c.), with �p ≡

(ep · p13)Ep/h̄, �c ≡ (ec · p23)Ec/h̄, and �a ≡ (ea · p24)Ea/h̄,
and H.c. being the Hermitian conjugate.

By making the transformation aj = Aj exp
[i(kj · r − ωj t − �j t)], with �1 = 0, k1 = 0,k2 =
kp − kc,k3 = kp, and k4 = kp − kc + ka, we obtain
the Hamiltonian in the interaction picture Ĥint =
−h̄

∑4
j=1 �j |j 〉〈j | − h̄(�p|3〉〈1| + �c|3〉〈2| + �a|4〉〈2| +

H.c.), where �3 = ωp − (ω3 − ω1),�2 = ωp − ωc − (ω2 −
ω1), and �4 = ωp − ωc + ωa − (ω4 − ω1) are the one-, two-,
and three-photon detunings, respectively. The equation of
motion of the density matrix σ (with the matrix element
defined by σij = AiA

∗
j ) in the interaction picture reads

∂σ

∂t
= − i

h̄
[Ĥint,σ ] − 	(σ ), (1)

where 	(σ ) is a 4 × 4 relaxation matrix. Explicit expressions
of the equations of motion for σij have been given in the
Appendix A.

The electric-field evolution is controlled by Maxwell equa-
tion ∇2E − (1/c2)∂2E/∂t2 = (1/ε0c

2)∂2P/∂t2, where P =
N (p13σ31 exp [i(k3 · r − ωpt)] + p23σ32 exp{i[(k3 − k2) · r −
ωct]} + p24σ42 exp{i[(k4 − k2) · r − ωat]} + c.c.). Under a
slowly varying envelope approximation, the Maxwell equation
is reduced to

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + κ13σ31 = 0,

(2a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�a + c

2ωa

(
∂2

∂x2
+ ∂2

∂y2

)
�a + κ24σ42 = 0,

(2b)

where κ13,24 = Nωp,a|ep,a · p13,24|2/(2ε0h̄c), with N being the
atomic concentration. For simplicity, the probe field and the
assistant field have been assumed to propagate in z direction,
i.e., kp,a = ezkp,a .
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III. ASYMPTOTIC EXPANSION AND (3 + 1)D NONLINEAR
ENVELOPE EQUATIONS

Although a lot of research on the system shown in Fig. 1
exists [23,34], most of these projects are designed for the
linear and steady-state solution. Here we are interested in
the nonlinear evolution and the possible formation of optical
bullets in the system. For this aim we employ the standard
method of multiple scales that is well developed in nonlinear
wave theory [35] to investigate the evolution of both the
probe and assisted fields. We assume that the atoms are
initially populated in state |1〉. We make the asymptotic expan-
sions σij = σ

(0)
ij + εσ

(1)
ij + ε2σ

(2)
ij + ε3σ

(3)
ij + · · · , and �p,a =

ε�(1)
p,a + ε2�(2)

p,a + ε3�(3)
p,a + · · · , with σ

(0)
ij = δi1δj1. Here ε

is a small parameter characterizing the typical amplitude
of the probe and assisted fields. To obtain divergence-
free expansions, all quantities on the right hand sides of
the asymptotic expansions are considered as functions of the
multiscale variables zl = εlz (l = 0,1,2), tl = εlt (l = 0,1),
x1 = εx, and y1 = εy. Substituting these expansions into
Eqs. (A1) and (2), one can obtain a series of linear but
inhomogeneous equations for σ

(l)
ij and �(l)

p,a (l = 1,2,3, . . .),
which can be solved order by order.

At the first order, we obtain the solution under linear level

�(1)
p = F eiθ , (3a)

�(1)
a = G, (3b)

σ
(1)
31 = ω + d21

D
Feiθ , (3c)

σ
(1)
21 = −�∗

c

D
Feiθ , (3d)

with D = |�c|2 − (ω + d21)(ω + d31) [36], and other σ
(1)
ij

being zero. In the above expressions, θ = K(ω)z0 − ωt0,
and F and G are yet to be determined envelope functions
depending on the slow variables t1, z1, and z2. We see that
in this order the evolutions of both fields are independent.
Moreover, the assisted field is free, but the probe field
experiences a dispersion and absorption (contributed by the
�-type three-level EIT core) with the linear dispersion relation
given by

K(ω) = ω

c
+ κ13(ω + d21)

D
. (4)

Shown in Fig. 2 are the imaginary part ImK(ω) [panel (a)]
and the real part ReK(ω) [panel (b)] of K(ω) as functions of
dimensionless frequency ω/	3. The system parameters used
are 	1 = �1 = 0 Hz, 	2 = 1 × 103 Hz, 	3 = 35 MHz, κ13 =
1.0 × 1010 cm−1s−1, and �2,3 = −1.5 × 106 s−1. The dashed-
dotted and the solid lines in both panels correspond to the
presence (�c = 5 × 107 s−1) and the absence (�c = 0) of
the control field, respectively. One sees that when �c is
absent, the probe field has a large absorption [the solid line of
panel (a)]; however, when �c is applied, a transparency
window is opened [the dashed-dotted line of panel (a)]. The
steep slope for the large control field [the dashed-dotted line

FIG. 2. (Color online) Imaginary part ImK(ω) [panel (a)] and the
real part ReK(ω) [panel (b)] of the linear dispersion relation of the
probe field as functions of dimensionless frequency ω/	3. In both
panels, the dashed-dotted and solid lines correspond to the presence
(�c = 5 × 107 s−1) and the absence (�c = 0) of the control field,
respectively. A transparency window is opened for the large control
field [the dotted-dashed line in panel (a)]. The steep slope of the
dashed-dotted line for the large control field [the dotted-dashed line
in panel (b)] results in a slow group velocity.

of panel (b)] results in a slow group velocity at the center
frequency of the probe field (i.e., ω = 0):

Vg ≡
(

∂K

∂ω

)−1

= 8.31 × 10−6c. (5)

The suppression of the absorption and the reduction of the
group velocity are due to the quantum interference effect
induced by the control field.

At the second order, the solvability condition for σ
(2)
ij and

�(2)
p,a requires

i

(
∂

∂z1
+ 1

Vg

∂

∂t1

)
F = 0, (6a)

i

(
∂

∂z1
+ 1

c

∂

∂t1

)
G = 0. (6b)

Equation (6) means that up to the second order the evolutions of
the probe field and that of the assisted field are still independent
of each other.

At the third order, using the solvability condition for σ
(3)
ij

and �(3)
p,a , we obtain the coupled nonlinear equations for F and

G:

i
∂

∂z2
F + c

2ωp

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F − 1

2
K2

∂2F

∂t2
1

+α11|F |2F + α12|G|2F = 0, (7a)

i
∂

∂z2
G + c

2ωa

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
G + α21|F |2G = 0, (7b)

where K2 = ∂2K/∂ω2. The explicit expressions for the coef-
ficient of self-phase modulation (SPM) of the probe field (i.e.,
α11), and the coefficients of cross-phase modulation (CPM)
between the two fields (i.e., α12 and α21) are given in the
Appendix B.

Now we make some remarks on Eqs. (6) and (7). From
Eq. (6) we know that the probe-field envelope F travels
with group velocity Vg , whereas the assisted-field envelope G

travels with velocity c. Thus the two wave fields will separate
from each other when traveling to a large propagating distance.
In this case, Eq. (7a) reduces to a (3 + 1)D NLS equation for F ,
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allowing an optical bullet solution. However, such an optical
bullet solution is unstable [1–5]. To obtain stable optical bullets
we make the following assumptions: (i) The assisted field is
a stationary one (i.e., G is independent of t1 and hence also
independent of z1), or it is a pulsed field but with a enough
large time length [37] so that the derivatives ∂/∂t1 and ∂/∂z1

in Eq. (6b) can be neglected. In the both cases the assisted
field is (or can be approximated as) a CW beam and so the
probe field can interact with the assisted field for a long time.
(ii) If we select the atomic transition between |2〉 and |4〉 to
be relatively weak compared to those between |1〉 and |3〉 and
between |2〉 and |3〉, the coupling constants in Eqs. (2a) and
(2b) satisfy κ24 	 κ13, and hence α21 	 α11,α12. In this way
the CPM term in Eq. (7b) can be safely neglected. In fact, we
have made such a selection in our model shown in Fig. 1, in
which the transition strength between |2〉 and |4〉 is much less
the transition strength between |1〉 and |3〉 and between |2〉
and |3〉, i.e., f24 	 f13,f23. Under these conditions, Eq. (7)
is reduced into a linear Helmholtz equation. As a result, by
combining Eqs. (6) and (7) we obtain the following simplified
envelope equations:

i

(
∂

∂z
+ 1

Vg

∂

∂t

)
U + c

2ωp

(
∂2

∂x2
+ ∂2

∂y2

)
U − 1

2
K2

∂2U

∂t2

+α11|U |2U + α12|V |2U = 0, (8a)

i
∂V

∂z
+ c

2ωa

(
∂2

∂x2
+ ∂2

∂y2

)
V = 0, (8b)

after returning to the original variables, where U = εF and
V = εG. One sees that the role of the assisted field envelope
G is now to provide just an external potential [controlled by
the linear Helmholtz Eq. (8b)] to the probe field envelope F

[controlled by the (3 + 1)D NLS Eq. (8a)]. This is desirable
since the external potential G can be used to stabilize the
optical bullets formed in the envelope F of the probe field, as
shown below.

IV. OPTICAL BULLETS AND THEIR STABILITY

A. Estimation on the coefficients in the coupled
envelope equations

We now explore possible optical bullet solutions based on
the Eqs. (8a) and (8b). For convenience, we convert them into
the dimensionless form

i
∂u

∂s
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2
+ gd

∂2

∂τ 2

)
u + g11|u|2u

+ g12|v|2u = 0, (9a)

i
∂v

∂s
+ δ

2

(
∂2

∂ξ 2
+ ∂2

∂η2

)
v = 0, (9b)

with u = U/U0, v = V/(U0c0), s = z/Ldiff,τ =
(t − z/Vg)/τ0, (ξ,η) = (x,y)/R⊥, gd = −LdiffK2/τ

2
0 ,

g11 = α11/|α11|, g12 = α12c
2
0/|α11|, and δ = ωp/ωa . Here

Ldiff ≡ ωpR2
⊥/c (with R⊥ being a typical beam radius)

is a typical diffraction length, and τ0 is a typical pulse
length of the probe field. We have taken Ldiff = LNL

[with LNL = 1/(|α11U
2
0 |) being a typical nonlinear length];

thus we have U0 =
√

c/(ωpR2
⊥|α11|) (a typical Rabi frequency

of the probe field). Note that c0 is proportional to a typical
Rabi frequency of the assisted field, which is a free parameter
that can be used to adjust the magnitude of the coefficient of
the cross-phase modulation, and hence control the stability of
the optical bullets.

Because the system under study is of resonant, lifetime-
broadened character, the coefficients in the Eq. (9a) are
generally complex. If the control field Rabi frequency �c is
small, the imaginary part of the coefficients is comparable with
their real part, and hence stable optical bullet solutions do not
exist. However, under the EIT condition |�c|2 � γ31γ21 [38],
the absorption of the probe field can be largely suppressed, and
hence the imaginary part of these coefficients can be made to
be much smaller than their real part.

To show this we make an estimation on the value
of the coefficients in the Eqs. (9a) and (9b). Consider
a typical atomic gas of 87Rb atoms, with D2 line tran-
sitions 52S1/2 → 52P3/2. The energy levels are chosen
as those in Fig. 1. From the data of 87Rb [33], we

have the dipole matrix elements |p13| = −
√

1
8 × 3.58 ×

10−27 cm C and |p24| =
√

1
120 × 3.58 × 10−27 cm C.

The other system parameters are given by 	2 = 1 ×
103 Hz, 	3,4 = 35 MHz, κ13 = 1.0 × 1010 cm−1s−1, κ24 =
1.0 × 109 cm−1s−1, ωp,a = 2.37 × 1015 s−1, R⊥ = 4.0 ×
10−3 cm, �c = 5.0 × 107 s−1, and �3 = −3.0 × 108 s−1, with
	31 ≈ 	32 = 	3/2, 	42 = 	4. Even if the above system
parameters are chosen to be fixed, we still have other system
parameters �3, �4, and τ0 that can be chosen and adjusted in
a fairly arbitrary domain, which can be used to obtain many
different regimes, two of which are listed in the following:

Regime 1. �2 = −1.5 × 106 s−1, �4 = −1.0 × 109 s−1,
τ0 = 1.48 × 10−6 s, c0 = 1.3. We have Ldiff = 1.26 cm, U0 =
9.0 × 106 s−1,Vg/c = 5.6 × 10−6, and thus

δ = 1.0, gd = 1.0 − 0.098i, g11 = 1.0 − 0.018i,
(10)

g12 = 1.0 − 0.008i, g21 = 0.06 + 0.001i.

Regime 2. �2 = 2.5 × 106 s−1, �4 = −1.0 × 109 s−1, τ0 =
7.4 × 10−7 s, c0 = 1.2. We obtain Ldiff = 1.26 cm, U0 =
1.6 × 107 s−1,Vg/c = 1.4 × 10−5, and hence

δ = 1.0, gd = 1.0 − 0.019i, g11 = −1.0 − 0.023i,
(11)

g12 = 1.0 + 0.046i, g21 = 0.08 + 0.001i.

We see that the imaginary parts of the coefficients in
Eqs. (9a) and (9b) are indeed much less than their real parts.
The physical reason for so small imaginary parts is due to the
quantum interference effect induced by the control field that
makes the absorption of the probe field largely suppressed.
In the following discussion, the small imaginary parts of the
coefficients are neglected for analytical analysis, but they are
included in numerical simulations. We also see that due to
the active character of our resonant atomic system, one can
obtain the case of self-focusing (g11 ≈ 1; Regime 1) and the
case of self-defocusing (g11 ≈ −1; Regime 2). In this article,
we concentrate on the case of self-focusing. The study on the
self-defocusing case will be given elsewhere.
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We now estimate the self- and cross-Kerr susceptibilities
based on the formulas of α11 and α12 given by Eqs. (B1a) and
(B1b) and the system parameters given above. Under the EIT
condition |�c|2 � γ31γ21 [38], we obtain

χ (3)
pp = 2c

ωp

|p13,24|2
h̄2 α11 ≈ 3.57 × 10−9 (m/V)2, (12a)

χ (3)
pa = 2c

ωp

|p13,24|2
h̄2 α12 ≈ 2.19 × 10−9 (m/V)2, (12b)

which are at least one order of magnitude larger than that
without the EIT effect. The giant enhancement of the Kerr
coefficients is also due to the quantum interference induced by
the control field.

B. Optical bullet solutions and their stability

Equation (9a) without the CPM term (i.e., g12 = 0) is a
(3 + 1)D NLS equation. If in such a case an optical bullet
is excited, it will be unstable [4,5]. Our aim is not only to
obtain an optical bullet, but also to provide a way to stabilize
it. Thus in our model the assisted field interacting resonantly
with the energy states |2〉 and |4〉 is added (see Fig. 1), which
contributes a trapping potential to the probe field and hence
can be used to stabilize the optical bullet formed in the probe
field.

Since the assisted field (represented by v) is governed by
the Helmoholtz Eq. (9b), its solution can be obtained indepen-
dently. Using the transformation v = �(r) exp [i(−bs + lφ)]
with r2 = ξ 2 + η2, Eq. (9b) with δ = 1 becomes

∂2�

∂r2
+ 1

r

∂�

∂r
+

(
2b − l2

r2

)
� = 0, (13)

where l(� 0) is a winding number (or vorticity) and b is a
real constant. Considering a natural boundary condition, the
solution of Eq. (13) is the Bessel function � = Jl(

√
2br),

with Jl being the lth-order Bessel function. Substituting this
solution into Eq. (9a) with gd = 1, we can obtain the (3 + 1)D
NLS equation

i
∂u

∂s
+ 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2
+ ∂2

∂τ 2

)
u + g11|u|2u

+ g′
12c

2
0|Jl(

√
2br)|2u = 0, (14)

with g′
12 = α12/|α11|. Obviously, the role of the assisted field

is to contribute an external trapping potential to the probe field.
Using the further transformation u = exp (iμs)ψ(ξ,η,τ ),

Eq. (14) becomes

(
∂2

∂ξ 2
+ ∂2

∂η2
+ ∂2

∂τ 2

)
ψ − 2μψ + 2g11ψ

3

+ 2c2
0g

′
12|Jl(

√
2br)|2ψ = 0, (15)

where ψ is a real function and μ is a propagation constant.
The optical bullet solutions of Eq. (15) will be presented in the
following.

The linear stability of an optical bullet solution will be
analyzed by considering a perturbation to the optical bullet ψ ,
i.e.,

u(ξ,η,τ,s) = [ψ + (w1 + w2) exp (λs) + (w∗
1 − w∗

2)

exp (λ∗s)] exp (iμs), (16)

where w1,2 = w1,2(ξ,η,τ ) and λ are the normal modes and
corresponding eigenvalue of the perturbation, respectively.
Substituting the perturbed solution (16) into Eq. (14), one
obtains the linear eigenvalue problem

−iλw1 = 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2
+ ∂2

∂τ 2

)
w2

+ [ − μ + g11ψ
2 + c2

0g
′
12|Jl(

√
2br)|2]w2, (17a)

−iλw2 = 1

2

(
∂2

∂ξ 2
+ ∂2

∂η2
+ ∂2

∂τ 2

)
w1

+ [ − μ + 3g11ψ
2 + c2

0g
′
12|Jl(

√
2br)|2]w1, (17b)

which can be solved numerically by using the method in
Ref. [39]. The optical bullet is stable if the real part of all
eigenvalues is negative or zero.

We now present various localized nonlinear solutions of
Eq. (15) for different l. For l = 0 we obtain a zero-order
optical bullet, for which the external potential provided by the
assisted field is a trapping potential proportional to |J0(

√
2r)|2,

where J0(
√

2r) is zero-order Bessel function, (we take b = 1
without loss of generality). Shown in Figs. 3(a) and 3(b) are
the isosurfaces of the amplitude ψ = 0.01 of the probe field
for (c0,μ) = (1.5,0.7) and for (c0,μ) = (2.5,3.3), respectively.
The solution is obtained by numerically solving Eq. (15) in

(a) (b)

(c) (d)

FIG. 3. (Color online) (a) and (b) Isosurface plots of the amplitude
ψ = 0.01 of the probe field in the self-focusing case (i.e., g11 = 1,
g12 = 1) for (c0,μ) = (1.5,0.7) and (c0,μ) = (2.5,3.3), respectively.
The external trapping potential contributed by the assisted field is
the zero-order (i.e., l = 0) Bessel function. (c) Probe-field power P

as a function of the propagation constant μ and c0. (d) Real part of
maximum eigenvalue, i.e., Re(λ), as a function of μ and c0 obtained
by solving the eigenvalue problem (17). In both panels (c) and (d),
the dotted-dashed, dashed, and solid lines are for c0 = 1.5,2.0, and
2.5, respectively.
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terms of the modified squared-operator method [39]. The
initial trial function in the numerical simulation is of a
Gaussian type, which evolves into the ground state of Eq. (15),
i.e., the optical bullet solution of the system.

To test the stability of the optical bullet obtained, we
calculate the power of the probe field, defined by P =
2π

∫∫∫ +∞
−∞ ψ2dξdηdτ , as a function of the propagation

constant μ and the potential strength constant c0. The result
is shown in Fig. 3(c). We see that for a given c0, P

first increases to arrive at a maximum, and then decreases.
According to the Vakhitov-Kolokolov (VK) criterion [40],
the domain in which the optical bullet is stable is the one
with dP/dμ > 0. Generally, the stability domain is small for
small c0. However, when increasing c0 the stability domain is
enlarged. This is easy to understand because a larger c0 means a
stronger trapping of the optical bullet provided by the external
potential. Hence, one can adjust the assisted field, and hence
the external potential, to control the stability of the optical
bullet, which is easy to realize physically in the present active
system.

To further check the stability of the optical bullet solutions,
we have also numerically solved the eigenvalue problem (17).
We employ the Fourier collocation method introduced in
Ref. [39] that was developed for one-dimensional (1D) and
two-dimensional (2D) problems, but here we extend it to the
present 3D one. The real part of maximum eigenvalue, Re(λ),
as a function of μ and c0 has been shown in Fig. 3(d). From
the figure we see that the stability domain of the optical bullets
[i.e. the domain where Re(λ) is nonpositive] becomes indeed
larger when increasing the potential strength c0.

Shown in Fig. 4 is the result for first-order optical bullets
(l = 1). In this case, the external potential contributed by the
assisted field is proportional to |J1(

√
2r)|2, with J1(

√
2r) being

the first-order Bessel function.

(a) (b)

(c) (d)

FIG. 4. (Color online) (a) and (b) Isosurface plots of the amplitude
ψ = 0.01 of the probe field in the self-focusing case (i.e., g11 = 1,
g12 = 1) for (c0,μ) = (1.5,0.4) and (c0,μ) = (2.0,0.7), respectively.
The external trapping potential contributed by the assisted field is the
first-order (i.e., l = 1) Bessel function. (c) Probe-field power P as a
function of the propagation constant μ and c0. (d) Real part of the
maximum eigenvalue, i.e., Re(λ), as a function of μ and c0 obtained
by solving the eigenvalue problem (17). In both panels (c) and (d), the
dashed and dotted-dashed lines are for c0 = 1.5 and 2.0, respectively.

We see that for a given c0 the stability domain of the first-
order optical bullet (l = 1) is narrower than that of the zero-
order optical bullet (l = 0). The reason is that the trap potential
given by |J1(

√
2r)|2 is weaker than that given by |J0(

√
2r)|2,

and hence the first-order optical bullet shown in Fig. 4 is less
stable than the zero-order optical bullet shown in Fig. 3. In the
same way, high-order optical bullet solutions for l � 1 can also
be obtained, and their stability domains can also be identified.
The stability domains of the high-order optical bullets are more
narrow because the strength of the trapping potential with the
form |Jl(

√
2r)|2 becomes more weak as l increases.

The results presented above are the stationary solutions
based on the Eq. (15). It is necessary to investigate the time
evolution and their stability of the optical bullets starting
directly from the evolution Eq. (9a), which has complex
coefficients with small imaginary parts. For this aim, we have
made a numerical simulation on Eq. (9a) by taking the optical
bullet solution ψ of Eq. (15) as an initial condition, and
adding a random perturbation to it. Concretely, we take u(s =
0,ξ,η,τ ) = ψ(ξ,η,τ )(1 + εf ), with ψ being the solution given
by Eq. (15), ε being a typical amplitude of the perturbation,
and f being a random variable uniformly distributed in the
interval [0,1]. We find that Eq. (9a) allows indeed optical
bullet solutions which are fairly stable for propagating to a
long distance. Illustrated in Fig. 5 is the evolution of the optical
bullets based on Eq. (9a) by taking ε = 0.1 and the solutions
of Eq. (15) as initial conditions. Panel (a) shows the isosurface
plots of the optical bullet for s = 0.0,0.4,2.0,5.3,5.6 by
taking the result given in Fig. 3(b) as an initial condition.
Panel (b) gives the isosurface plots of the optical bullet for
s = 0.0,0.8,1.5,7.7,9.0 by taking the result in Fig. 4(b) as an
initial condition. We see that despite some transient change
of their shape, the optical bullets relax to self-cleaned forms
which are quite close to the unperturbed ones.

Since τ = (t − z/Vg)/τ0, the propagating velocity of the
optical bullets VOL is approximately equal to Vg . We obtain

VOL ≈ 5.6 × 10−6c, (18)

The generation power of the (3 + 1)D optical bul-
lets can be estimated by calculating Poynting’s vector.
The peak power of the probe field is given by P̄max =
2ε0cnpS0(h̄/| p13|)2U 2

0 |umax|2, with np and S0 being the
reflective index and the cross-section area of the probe beam,
respectively. Taking S0 = πR2

⊥ ≈ 0.5 × 10−4 cm2 and using

FIG. 5. (Color online) Evolution of optical bullets based on
Eq. (9a) by taking the solutions of Eq. (15) as initial conditions.
(a) Isosurface plots of the optical bullet for s = 0.0,0.4,2.0,5.3,5.6
by taking the result in Fig. 3(b) as an initial condition. (b) Isosurface
plots of the optical bullet for s = 0.0,0.8,1.5,7.7,9.0 by taking the
result in Fig. 4(b) as an initial condition.
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the other parameters given above, we obtain the generation
power of the optical bullets

P̄max ≈ 0.01 μW (19)

(or corresponding input energy 1.48 × 10−14 J). Consequently,
the (3 + 1)D optical bullets obtained in the present system have
ultraslow propagating velocity and very low generation power,
which are very different from the other generation schemes
where the optical bullets have the propagating velocity not far
from c and their generation power up to a megawatt is usually
needed [9,17].

V. DISCUSSION AND SUMMARY

In the study given above, we have assumed the control
field Rabi frequency �c is a constant during time evolution.
In a real experiment, �c can not be too strong and hence will
have a small depletion after an optical bullet propagates to a
long distance. In this situation it is necessary to consider the
evolution of �c, like that done in Refs. [41,42]. This is an
interesting topic deserving to be investigated further.

In summary, we have proposed a scheme for generating
stable ultraslow optical bullets at very low light level via
atomic coherence. The system we considered is an ensemble
of resonant, lifetime-broadened four-state atoms with an N -
type level configuration, working in the EIT regime. Due
to the quantum interference effect induced by the control
field, the absorption of the probe field is largely suppressed.
Furthermore, the Kerr nonlinearity is greatly enhanced and the
dispersion property of the probe field is drastically changed.
By using the method of multiple scales we have derived two
coupled nonlinear envelope equations governing the evolution
of the envelopes of the probe and the assisted fields. We have

shown that by choosing suitable atomic levels and by using a
CW assisted field or a pulsed assisted one with a large time
length, the envelope equation of the probe field is reduced into
a (3 + 1)D NLS equation and the envelope of the assisted
field is reduced into a linear Helmholtz equation. We have
obtained various optical bullet solutions for the probe-field
envelope and demonstrated that such optical bullets have many
novel features, including very slow propagating velocity and
very low generation power. Moreover, they can be actively
controlled and manipulated by adjusting system parameters.
The stabilization of such optical bullets can be easily realized
by means of the linear trapping potential provided by the
assisted field. The stability of the optical bullets has also
been investigated in detail by using the VK criterion and
linear stability analysis. The results presented here may be
useful for understanding the physical properties of coherent
atomic systems and guiding experimental findings of (3 +
1)D nonlinear excitations with very low generation power,
which may have potential applications in optical information
processing and transmission.
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APPENDIX A: EQUATIONS OF MOTION FOR σi j

Equations of motion for σij are given by

i
∂

∂t
σ11 − i	31σ33 + �∗

pσ31 − �pσ ∗
31 = 0, (A1a)

i
∂

∂t
σ22 − i	32σ33 − i	42σ44 + �∗

cσ32 − �cσ
∗
32 + �∗

aσ42 − �aσ
∗
42 = 0, (A1b)

i

(
∂

∂t
+ 	3

)
σ33 − �∗

pσ31 + �pσ ∗
31 − �∗

cσ32 + �cσ
∗
32 = 0, (A1c)

i

(
∂

∂t
+ 	4

)
σ44 − �∗

aσ42 + �aσ
∗
42 = 0, (A1d)(

i
∂

∂t
+ d21

)
σ21 + �∗

cσ31 + �∗
aσ41 − �pσ ∗

32 = 0, (A1e)(
i

∂

∂t
+ d31

)
σ31 + �p(σ11 − σ33) + �cσ21 = 0, (A1f)(

i
∂

∂t
+ d41

)
σ41 + �aσ21 − �pσ43 = 0, (A1g)(

i
∂

∂t
+ d32

)
σ32 + �c(σ22 − σ33) + �pσ ∗

21 − �aσ
∗
43 = 0,

(A1h)(
i

∂

∂t
+ d42

)
σ42 + �a(σ22 − σ44) − �cσ43 = 0, (A1i)(

i
∂

∂t
+ d43

)
σ43 + �aσ

∗
32 − �∗

pσ41 − �∗
cσ42 = 0, (A1j)
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where 	ij is the rate at which population decays from
the state |i〉 to the state |j 〉, and dij = �i − �j + iγij

with γij ≡ (	i + 	j )/2 + γ
dph
ij . Here 	i = ∑

Ej <Ei
	ij and

γ col
ij denotes the dipole dephasing rate caused by atomic

collisions.

APPENDIX B: EXPLICIT EXPRESSIONS OF α j l

The explicit expressions of αjl read

α11 = κ13

D

{
�ca

∗(2)
32 − (ω + d21)

[
4

	31
Im

(
d21

D

)
+ a

(2)
22

]}
,

(B1a)

α12 = − κ13|�c|2
(ω + d41)D2

(B1b)

α21 = κ24

|�c|2 − d42d43

[
d43a

(2)
22 + �ca

∗(2)
32 − |�c|2

(ω + d41)D

]
,

(B1c)

with

a
(2)
22 =

[
2

	31
Im

(
d21

D

)
−

Im
(

1
d∗

32D

)
Im

(
1

d32

) − 	32

	31|�c|2
Im

(
d21
D

)
Im

(
1

d32

)
]

,

(B2a)

a
(2)
33 = 2Im

(
d21
D

)
	31

, (B2b)

a
(2)
32 = 1

d32

[
�c

D∗ + �c(a(2)
33 − a

(2)
22 )

]
. (B2c)
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