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Spin and orbital angular momenta of light reflected from a cone
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We examine several retro-reflecting optical elements, each involving two reflections. In the case of a hollow
metallic cone having an apex angle of 90◦, a circularly polarized incident beam acquires, upon reflection, the
opposite spin angular momentum. However, no angular momentum is transferred to the cone, because the reflected
beam picks up an orbital angular momentum that is twice as large but opposite in direction to that of its spin. A
90◦ cone made of a transparent material in which the incident light suffers two total internal reflections before
returning may be designed to endow the retro-reflected beam with different mixtures of orbital and spin angular
momenta. Under no circumstances, however, is it possible to transfer angular momentum from the light beam to
the cone without either allowing absorption or breaking the axial symmetry of the cone. A simple example of
broken symmetry is provided by a wedge-shaped metallic reflector having an apex angle of 90◦, which picks up
angular momentum upon reflecting a circularly polarized incident beam.
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I. INTRODUCTION

Electromagnetic (EM) waves carry energy, linear momen-
tum, and angular momentum (AM). The rate of flow of energy
(per unit area per unit time) at each point r in space and
instant t in time is given by the Poynting vector S(r,t) =
E(r,t) × H(r,t), where E and H are the local electric and
magnetic fields, respectively. The linear momentum density is
given by S(r,t)/c2, where c is the vacuum speed of light. The
angular momentum density with respect to an arbitrary point
ro is (r − ro) × S(r,t)/c2.

It turns out that two apparently different properties of
EM waves can give rise to angular momentum. Circular
polarization is one source of AM, which is usually referred
to as the spin angular momentum (SAM). The other source
is vorticity, which is associated with spiral phase variations
around a given axis and known as the orbital angular
momentum (OAM) [1–6]. Experimentally, it is possible to
distinguish the two types of AM, for example, by placing a
small absorptive or birefringent particle in the path of the light
beam. While the SAM of the beam causes the particle to spin
on its own axis, the OAM sets the particle in orbital motion
around the axis of the vortex [5,7,8].

The two types of AM are interchangeable, in the sense
that a light beam can be made to interact with one or more
optical elements in such a way that its SAM and OAM content
(each as a fraction of the beam’s total AM) changes as a
result of interaction with the optical element(s). For example, a
circularly polarized Gaussian beam, which contains SAM only,
may be sharply focused through a high-numerical-aperture
lens, producing a focused spot that contains both SAM and
OAM [9–11]. Alternatively, a circularly polarized Gaussian
beam may be sent through a specially designed birefringent
medium known as a “tuned q plate,” producing, upon transmis-
sion, a reversal of the sense of circular polarization in addition
to an optical vortex of topological charge 2q, with q being
an arbitrary integer [12]. While some of these processes may
involve a net exchange of AM between the light beam and the
optical element that is the catalyst for interconversion (e.g., a q
plate with q �= 1), others preserve the total AM of the light beam

while converting a significant fraction of its SAM to OAM, or
vice versa. A major goal of the present paper is to show the
relative ease and flexibility of such interconversions with the
aid of simple optical elements such as a hollow metallic cone
or a solid dielectric cone.

In preparation for the analysis of reflection from a cone, we
describe in Sec. II the properties of circularly polarized light
reflected from a flat plane, followed by an analysis in Sec. III of
reflection from a 90◦ metallic wedge. In Sec. IV we show how
the reflection of a circularly polarized Gaussian beam from
a hollow metallic cone not only reverses the direction of the
beam’s SAM but also endows the reflected beam with twice
as much OAM. The case of solid dielectric cones involving
two total internal reflections are the subject of Sec. VII. We
mention in passing that, although conical reflectors have been
studied in the past for their applications in atom traps [13,14]
and as end reflectors in certain types of lasers [15,16], their
ability to convert optical SAM to OAM (or vice versa) does
not appear to have been noticed.

The study of angular momentum interconversion via reflec-
tion from conical mirrors reveals an interesting characteristic
of axisymmetric objects. It turns out that an axially symmetric
perfect electrical conductor (PEC) cannot possibly pick up any
AM along its axis of symmetry, irrespective of the properties
of the EM field that illuminates it. This result, which was first
proved by Konz and Benford [17,18], is briefly described in
Sec. V. Although PECs provide an excellent approximation
to good electrical conductors in the microwave regime, their
usefulness as models for metallic objects in the optical regime
is rather limited. For example, metallic particles typically used
in optical trapping experiments generally absorb (within their
skin depth) a fraction of the incident light, which is sufficient
to transfer some optical SAM to these particles and, thereby,
set them spinning. Thus, at optical wavelengths, it is perhaps
more interesting to examine transparent dielectrics for their
ability to pick up AM from an incident light field—without
absorbing any photons, of course. It has been argued on general
grounds that axisymmetric transparent dielectrics, much like
PEC objects, cannot acquire angular momentum from incident
EM waves [19]. The proof of this assertion, however, is not
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quite as straightforward as that given for PEC objects by Konz
and Benford [17]; it involves an expansion of the incident and
scattered waves into their eigenmodes in spherical coordinates,
followed by a demonstration that incident and scattered modes
with differing azimuthal mode numbers do not couple to
each other. In the special case where the intensity distribution
inside a transparent axisymmetric dielectric exhibits symmetry
around the same axis, the proof of the impossibility of AM
transfer to the object is rather simple; this subject is treated
briefly in Sec. VIII. In light of the fact that SAM and OAM of
EM waves can be rather easily transformed into one another,
we address in Sec. IX the similarities and differences between
these two types of optical AM and probe the reasons behind
their differing manifestations in experimental settings.

All the numerical simulations reported in the following
sections are based on the finite difference time domain method
[20]. In these simulations, the incident beam is started at t =
0 in the source plane, which is typically an xy plane located
just above the object of interest. The beam is then propagated
downward to interact with the object. The reflected beam,
which returns in the general direction of the positive z axis, is
monitored once it reaches beyond the source plane.

II. REFLECTION OF CIRCULARLY POLARIZED
GAUSSIAN BEAM FROM A FLAT REFLECTOR

Consider a circularly polarized Gaussian beam of light
propagating along the negative z axis, as shown in Fig. 1.

(a) (b) (c)

(f)(e)(d)

(h) (i)(g)

FIG. 1. (Color online) RCP Gaussian beam propagating along the negative z axis; λo = 0.5 μm; FWHM = 4 μm. Shown in the cross-sectional
xy plane are the amplitude and phase profiles of Ex , Ey , Ez, and also the Poynting vector components Sz and S⊥. The phase distributions of Ex

and Ey are uniform: φ(Ex) = 0◦, φ(Ey) = 90◦. Ez is relatively weak, but its phase profile shows a 2π vorticity around the z axis. The clockwise
circulation of S⊥ around z is responsible for the SAM of the beam.
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For concreteness, we have assumed a beam with a vacuum
wavelength of λo = 0.5 μm, having a full-width-at-half-
maximum (FWHM) amplitude of 4.0 μm. The amplitude
and phase profiles of the three E-field components in a
cross-sectional plane are shown in the figure. Also shown are
the distributions of the z component of the Poynting vector,
Sz, as well as its transverse component S⊥ = Sx x̂ + Sy ŷ. For
the right-circularly-polarized (RCP) beam depicted here, the
clockwise circulation of S⊥ in the xy plane gives rise to an
AM aligned with the negative z direction. The AM per unit
distance along z is related to S⊥(x,y), to the vacuum speed of
light c, and to the position vector r = x x̂ + y ŷ, as follows:

Jz ẑ = (1/c2)
∫∫

r × S⊥(x,y)dxdy. (1)

For the beam depicted in Fig. 1, since Jz is associated with
the polarization state, it is commonly referred to as the beam’s
SAM. Note that Ez, which is substantially weaker than Ex and
Ey , exhibits a 2π vorticity in its phase profile; any orbital AM
associated with this vorticity, however, should be negligible in
the present example.

Suppose now that the above beam is reflected from a flat
PEC mirror in the xy plane. At normal incidence, both Ex

and Ey undergo a 180◦ phase shift upon reflection, leaving
the sense of rotation of the E field unchanged. Of course the
propagation direction is reversed, causing the reflected beam
to be left circularly polarized (LCP), but the direction of the
angular momentum Jz remains along the negative z axis. This
unchanging z component of the beam’s angular momentum
upon reflection at normal incidence implies that the mirror
does not acquire an angular momentum in the process. In
other words, the mirror does not tend to rotate in response to
the incident beam—even though it picks up a linear momentum

FIG. 2. (Color online) RCP Gaussian beam arrives at the surface
of a PEC mirror at the oblique incidence angle θ ; the incident AM
is denoted by J inc. Upon reflection, the s component of the incident
E field reverses direction, while the p component reorients itself to
remain perpendicular to the propagation direction. The projections
on the mirror surface of both Ep and Es of the incident and reflected
beams cancel each other out at z = 0. The reflected beam is thus left-
circularly polarized, having the same AM content as the incident beam
(i.e., Jref = Jinc), but oriented differently. While the z components of
J inc and J ref are identical, their x components are equal and opposite.
This change of the x component of AM upon reflection produces a
net torque on the mirror, which tends to rotate it around the x axis.

along the negative z axis in consequence of the reversal of the
direction of the light beam’s linear momentum.

The above situation changes if the light is reflected from the
mirror’s surface at oblique incidence. As shown in Fig. 2, the
incident beam’s component of the E field along the s direction
undergoes a 180◦ phase shift upon reflection. In contrast, the
E field along the p direction reorients itself in such a way as
to remain perpendicular to the propagation direction, while
also cancelling out the tangential component of the incident E
field at the mirror’s surface. The net result is that the reflected
beam, once again, becomes left circularly polarized, with its
SAM oriented opposite the beam’s propagation direction. The
change of angular momentum upon reflection is now given by
J inc−J ref = 2Jincsinθ x̂, implying that the mirror must pick
up this difference and begin to rotate around the x axis. This
result may indeed be confirmed by a direct calculation of the
Lorentz force on the mirror’s surface. The push of the H field
on the induced surface currents and also the pull of the E field
on the induced surface charges have slight asymmetries with
respect to the x axis, resulting in a net torque that causes the
mirror to rotate around this axis. Reversing the sense of circular
polarization of the incident beam reverses the direction of the
torque and, consequently, the direction of rotation of the mirror
around x.

III. REFLECTION FROM A METALLIC WEDGE

Suppose now that the Gaussian beam depicted in Fig. 1 is
reflected from a perfectly conducting 90◦ wedge, as shown
in Fig. 3. The two successive bounces from the flat facets of
the wedge cause the beam to return along the positive z axis,
albeit with the same sense of circular polarization as that of
the incident beam (RCP in the present example). The change
in the optical AM upon reflection is now given by J ref−J inc =
2Jinc ẑ, causing the wedge-shaped retro-reflector to pick up this
difference and begin to spin around z. The computed E-field
amplitude and phase distributions of Fig. 4 confirm that the
reflected beam is indeed RCP, and the plot of S⊥ shows that

FIG. 3. (Color online) Wedge-shaped reflector consists of two
PEC sheets joined at 90◦. The length, width, and height of the reflector
used in the simulations are l = w = 12 μm, h = 6 μm. The RCP
Gaussian beam of Fig. 1 is incident from above. After successive
reflections at the sheets, the beam returns along the positive z axis,
having retained its RCP state of polarization.
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FIG. 4. (Color online) Cross-sectional amplitude and phase profiles of Ex , Ey , Ez for the Gaussian beam of Fig. 1, after reflection from the
90◦ PEC wedge depicted in Fig. 3. The phase profiles of Ex and Ey have acquired some curvature, but φ(Ex)−φ(Ey) ≈ 90◦. The z component
has retained its 2π vorticity, albeit with reversed handedness. The counterclockwise circulation of S⊥ around z confirms the reversal of the AM
direction upon reflection from the wedge.

the angular momentum of the reflected beam is opposite in
direction to that of the incident beam.

IV. REFLECTION FROM A METALLIC CONE

A naı̈ve extension of the above ideas may lead one to
believe that reflection of a circularly polarized Gaussian beam
from the PEC cone of 90◦ apex angle shown in Fig. 5(a)
will result in the transfer of AM from the light beam to
the conical reflector. This, however, is not what happens in
reality. The simulation results shown in Fig. 6 reveal that the
reflected beam no longer remains Gaussian but becomes an
optical vortex with a 4π phase winding. As expected, the
SAM associated with the incident RCP beam reverses direction
upon reflection. However, the beam also acquires twice as
much OAM, associated with its vorticity, in such a way as to

precisely cancel out the reversed SAM of the light beam. The
end result is that the total AM of the reflected beam (i.e., spin
+ orbital) turns out to be exactly the same as the SAM of the
incident beam. The absence of change in the light beam’s AM,
of course, means that the conical reflector does not pick up
any rotational motion.

A simple explanation for the appearance of OAM in the
reflected beam may be given with the aid of the diagram of
Fig. 5(b). In this top view of the conical reflector, the light ray
striking the cone at point A emerges at A′. At these locations,
the Ex and Ey components of the E field coincide with the p-
and s-polarization directions associated with oblique incidence
on the cone’s surface (p is perpendicular, while s is tangential
to the local surface). Ignoring the time delay associated with
the ray in its passage from A to A′, we see that the RCP E field
of the incident ray at A rotates from Ex toward Ey , while the
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FIG. 5. (Color online) (a) Hollow PEC conical reflector having
a 90◦ apex angle. In our simulations, the cone’s base radius and
height were R = h = 6 μm. The RCP Gaussian beam of Fig. 1 is
incident from above, along the negative z axis. After two successive
reflections at the conical surface, the beam returns along +z with the
same polarization state as the incident beam (RCP), but also having
acquired vorticity with a 4π phase winding. (b) Cross-sectional view
of the cone as seen from above. The ray arriving at time t = 0 at
point A on the cone surface is reflected twice before emerging at A′.
For this ray, the x and y components of the E field coincide with p-
and s-polarization directions, respectively. Ignoring the constant time
delay needed for all such rays to traverse a given cross-sectional plane,
the ray entering at A will have the same phase as the ray emerging
at A′. The two reflections are responsible for E′

y being parallel to
Ey , and E′

x being antiparallel to Ex . For the incident ray at A, the
sense of polarization is right-circular, meaning that the E field rotates
from Ex toward Ey . Similarly, the sense of rotation for the reflected
ray emerging at A′ (also right-circular) is from E′

x toward E′
y . With

regard to the incident ray at B, since at t = 0 the E field is aligned
with the x axis, it takes a certain fraction of the oscillation period for
E to arrive at the local p direction. When this ray crosses the cone and
arrives at B′, its E field must rotate still further to come into alignment
with E′

x . Therefore, the phase difference between the rays emerging
at A′ and B′ is twice the angle θ between the x axis and the local p
direction at B. This explains the appearance of a 4π phase winding
on the reflected beam that emerges from the cone.

corresponding E field of the (twice-reflected) ray at A′ rotates
from E′

x toward E′
y . Next, consider the ray incident at B and

emergent at B′. Here the p- and s-polarization directions no
longer coincide with the x and y axes. For the ray incident at
B, it takes a fraction of the oscillation period for the E field
initially aligned with the x axis to assume the p orientation.
Then, upon crossing the cone and arriving at B′, it must rotate
still further before assuming the orientation of E′

x . It is these
time delays that determine the phase of the emergent ray at
B′ relative to that at A′ and are, therefore, responsible for the
4π phase winding imposed on the reflected beam. The twist
in the s-p orientation around the cone is similar to the rotation
of the birefringence axis in q plates, albeit without reliance on
anisotropy.

An uncanny similarity exists between the way a PEC cone
reverses the spin of an optical beam while imprinting upon it
a helical phase, and the way in which the adiabatic inversion
of the bias magnetic field in an Ioffe-Pritchard trap flips the
individual atomic spins of a Bose-Einstein condensate (BEC)
while imparting vorticity to the condensate as a whole [21].
The helical phase thus imposed on the BEC can be interpreted
as a Berry’s phase [22]. By analogy, we may refer to the
4π phase spiral associated with the beam reflected from the

PEC cone (and depicted in Fig. 6) as a Pancharatnam-Berry
phase [23,24]. Incidentally, this terminology is also used
in conjunction with the vorticity imparted to a circularly
polarized beam upon passage through a q plate [12].

A second example from atomic physics is the coherent
transfer of orbital angular momentum from an atomic system
to a light field [25]. In the reported experiment, a rubidium
vapor sample was given a spatially varying quantum phase
by using a spin degree of freedom. The 87Rb atoms acquired
orbital angular momentum through Larmor precession in a
magnetic quadrupole field. Subsequently, a Gaussian control
beam propagating through the vapor cell generated a Laguerre-
Gaussian beam that had the expected degree of vorticity.

The fact that the PEC cone does not absorb energy from
the incident light, and also its circular symmetry around z,
are sufficient grounds upon which to prove the impossibility
of transferring optical AM from a light beam to the material
object; a simple proof is presented in Sec. V. It should therefore
come as no surprise that, in the process of reflection from
the hollow PEC cone, the incident beam, whose SAM is
destined for reversal, goes through the trouble of acquiring
the requisite amount of OAM in order to maintain its overall
angular momentum.

We mention in passing that shifting the cone laterally by a
short distance away from the center of the incident beam does
not alter the main conclusions of the preceding analysis. In
particular, when the cone was shifted by 2μm along the y axis,
the reflected beam retained its total optical power and also its
angular momentum along z, confirming once again that, in the
absence of absorption, the cone cannot be made to spin around
its own axis, even when the incident beam lacks symmetry
with respect to that axis [17–19].

V. IMPOSSIBILITY OF OPTICAL AM TRANSFER TO
PERFECT ELECTRICAL CONDUCTORS OF AXIAL

SYMMETRY

We reproduce here the argument of Konz and Benford [18]
in order to show that the PEC cone cannot possibly acquire
angular momentum in its interactions with the EM field. Since
EM waves cannot penetrate below the surface of PEC objects,
the Lorentz force of the light can only act on charges and
currents induced on the surface(s) of such media. The Lorentz
force density is given by

F(r,t) = σ (r,t)E(r,t) + (r,t) × μo H(r,t). (2)

This equation describes the density of the EM force at point
r of the surface at time t, produced by the action of the local
E field on the surface charge density σ (r,t), and by the action
of the local H field on the surface current density (r,t); here
μo is the permeability of free space. Now, since the tangential
E field at the surface of a PEC must be zero, the local E field
everywhere is perpendicular to the surface. Also, since the
component of the H field perpendicular to the PEC surface is
necessarily zero, both the local H field and the surface current
density must be parallel to the surface at each and every
point. Consequently, the force acting on any point of a PEC
surface is perpendicular to that surface. Axial symmetry of the
object around z now ensures the vanishing of the EM torque
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FIG. 6. (Color online) Reflection of the RCP Gaussian beam of Fig. 1 from the hollow PEC cone depicted in Fig. 5(a). The reflected beam
is also RCP, as can be seen in the plot of φ(Ex)−φ(Ey), which is nearly constant at ∼90◦ (modulo 2π ). Both φ(Ex) and φ(Ey) exhibit 4π

vorticity around the z axis; the phase of Ez, however, exhibits only a 2π spiral. The doughnut-shaped profiles of Ex , Ey , Sz hint at the vorticity
of the reflected beam. The clockwise circulation of S⊥ around z is dominated by vorticity, which opposes the counterclockwise circulation due
to the beam’s polarization state. The overall AM of the beam remains the same before and after reflection from the PEC cone.

along the z axis—because any force vector that is perpendicular
to the surface is also coplanar with the z axis. This completes
the impossibility proof of transferring EM angular momentum
to an axisymmetric PEC object along its axis of symmetry.

Note that the above proof is independent of the properties
of the light beam; in particular, the beam is not limited by
any symmetry constraints. Also, there is no prohibition of AM
transfer to the object along directions other than those of its
symmetry axes. Finally, metallic objects that are good (but not
perfect) electrical conductors do not satisfy the requirements
of the above theorem. This is because the tangential E field
at the surface, as well as the perpendicular H field within the
skin depth, of such metallic objects are not exactly zero. To
the extent that real metallic objects absorb energy from the
EM field, they are capable of absorbing AM as well and can,

therefore, be expected to pick up rotational motion (even along
their axes of symmetry) upon interacting with EM waves.

VI. FOCUSING CIRCULARLY POLARIZED LIGHT VIA A
PARABOLIC REFLECTOR

A variation on the theme of conical reflectors is provided
by the PEC parabolic mirror shown in Fig. 7. Assuming
the paraboloid’s height above the xy plane as a function of
the radial distance r is given by h(r) = ar2, the focal point of
the mirror is a distance of 1/(4a) above the xy plane on the
z axis. Choosing the entrance aperture radius as R = 6 μm
and setting a = 1/12 μm−1, we find the height of the entrance
aperture as h = 3 μm, and the focal point F of the mirror is
located at z = 3 μm. The paraboloid focuses the collimated
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FIG. 7. (Color online) Parabolic PEC mirror brings a collimated
incident beam propagating along the negative z axis to diffraction-
limited focus at its focal point F. The height of the simulated mirror
is h = 3 μm, its radius at the top is R = 6 μm, and its focal plane is
located 3 μm above the xy plane.

Gaussian beam of Fig. 1 into a diffraction-limited spot at its
focal plane, as shown in Fig. 8. Note that, unlike the case of
the hollow cone of Fig. 5, each incident ray is reflected only
once from the paraboloidal surface.

The theorem proven in the preceding section informs us that
no AM should be transferred to the mirror and that, therefore,
the incident and reflected angular momenta must be identical.
The fact that the SAM of the incident rays is along the z axis,
whereas the rays reflected from the paraboloid have their SAM
tilted away from z, implies that the SAM content of the beam
must drop in the process of focusing. Conservation of optical
AM would then require the conversion of some of the incident
SAM to OAM. This is the same argument that has been made
in the past with regard to focusing circularly polarized light
through an axially symmetric lens [9–11]. We present here the
example of a parabolic mirror, not as a novelty in itself but as a
means to compare and contrast its SAM-to-OAM conversion
mechanism with that of the PEC cone.

With reference to the various plots of Fig. 8, we note that
the AM of the focused beam, which is associated with the
net circulation of S⊥ around z, is a complex mixture of spin
and orbital components, although it is difficult to pinpoint the
individual contributions of SAM and OAM to the total AM.
While the vorticity of the focused beam is entirely in the z
component of the E field, that of the beam reflected from
the PEC cone (and depicted in Fig. 6) is primarily associated
with the Ex and Ey components. Clearly, the SAM-to-OAM
conversion must occur at the surface of the parabolic mirror,
even though none of the light beam’s energy or AM is
transferred to this reflector.

Because of departure from paraxiality, the AM of the beam
reflected at the parabolic mirror could no longer be computed
by integrating the angular momentum density in a single
cross-sectional plane of the beam; rather, it was necessary to
illuminate the reflector with a short pulse of light, then monitor
the entire AM of the pulse before and after reflection. When
this procedure was followed, we found that the total AM of
the wave packet was conserved.

If the parabolic mirror of Fig. 7 were to be extended beyond
its current height of h = 3 μm, the spreading of the focused
spot (while propagating along +z) would be arrested by the

extended paraboloid, the reflected beam becoming collimated
once all its rays bounce off the (extended) mirror for a second
time. The emerging (collimated) beam would then have a
reversed SAM relative to the incident beam, and also an
acquired 4π vorticity, similar to that of the beam reflected from
the PEC cone shown in Fig. 6. Seen from this perspective, the
focused spot of Fig. 8 occupies a “halfway house” between the
incident beam of Fig. 1 and the fully converted beam of Fig. 6.

VII. REFLECTION OF CIRCULARLY POLARIZED LIGHT
FROM A TRANSPARENT DIELECTRIC CONE

In place of the hollow PEC cone described in Sec. IV, we
would now like to employ a solid dielectric cone to retro-reflect
the Gaussian beam depicted in Fig. 1. A first requirement for
the dielectric cone is that its refractive index ncone be large
enough that the 45◦ incidence angle on its conical surface
exceed the critical angle of total internal reflection (TIR). A
second requirement is for the cone to have an antireflection
coating on its top surface to ensure that the entire beam
enters the cone and then, following two internal reflections,
leaves the cone. (For numerical computations, the simplest
antireflection coating is a quarter-wave-thick dielectric layer
of refractive index

√
ncone; see Fig. 9.) Even after the above

considerations, the dielectric cone differs from the PEC cone
in one important respect: the phase difference between the
reflected Ep and Es components of polarization depends on
the cone’s refractive index, ncone, thus introducing different
states of elliptical polarization in the reflected beam.

We studied two cases of retro-reflection from conical
dielectrics of differing refractive indices in order to understand
the various aspects of SAM-to-OAM conversion. Figure 10
shows the characteristics of the reflected beam when a 90◦
glass cone of refractive index ncone = 1.55, base radius =
height = 6 μm, coated with a 100-nm-thick layer of refractive
index ncoat = 1.245, is illuminated with the RCP Gaussian
beam of Fig. 1 (λo = 0.5 μm, FWHM = 4 μm). For the chosen
ncone, the phase difference between the s and p components of
the light rays after each TIR is φs − φp = 45◦, resulting in a
net phase shift (upon two reflections) of 90◦ and, therefore,
complete conversion of the incident circular polarization to
linear polarization. The reflected beam thus has no SAM, but
it is endowed with a certain amount of OAM.

When we computed the integrated Poynting vector in the
cross-sectional plane of the reflected beam, we found it to
contain only 92.1% of the incident optical power; this is due
to the fact that, because of diffraction, a small fraction of the
incident rays strike the conical surface at an incidence angle
below the critical TIR angle; these rays are partially transmitted
through the cone, a fact that could be readily confirmed by
monitoring the transmitted optical power below the cone. We
then proceeded to integrate the AM density r × S⊥/c2 over
the reflected beam’s cross section and found it to be ∼92.6%
of the incident AM. Thus, accounting for the leakage and aside
from small numerical errors, the AM content of the reflected
beam is seen to be the same as that of the incident beam. In
other words, the incident SAM appears to have completely
disappeared and been replaced by an equal amount of OAM
in the reflected beam. The net result is that no optical AM has
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FIG. 8. (Color online) Various properties of the reflected beam at the focal plane of the paraboloid depicted in Fig. 7; the incident beam is
that shown in Fig. 1. Whereas Ex and Ey are vortex free, there is a 2π vorticity in the Ez component of the reflected beam. While the transverse
component S⊥ of the Poynting vector contains contributions from both SAM and OAM, it is difficult to isolate their individual contributions
in these pictures. The integral of Sz over the xy plane yields the total optical power of the reflected beam, which turns out to be equal to that of
the incident beam, as expected. The integral of r × S⊥/c2 over the focal plane, however, overestimates the total AM of the beam by as much as
44%; this is due to the substantial departure from paraxiality of the focused beam.

been transferred (in the form of mechanical AM) to the glass
cone.

We also confirmed that a lateral shift in the position of
the cone relative to the beam center does not alter the main
conclusions of the preceding analysis. When the cone was
displaced by 2 μm along the y axis, we found the general
behavior of the spin and orbital angular momenta to remain
the same. The total AM of the beam along the z axis also
retained its initial value (to within numerical errors), again
verifying the impossibility of getting the cone to spin on its
axis.

In our second set of simulations, we chose ncone = 2.56 and
coated the top facet of the cone with a 78-nm-thick layer of
refractive index ncoat = 1.6. As before, the cone’s base radius

was equal to its height at 6 μm, and the incident RCP Gaussian
beam had λo = 0.5 μm and FWHM = 4 μm. The phase
shift introduced between the s and p components after each
TIR is now φs − φp = 79.3◦, resulting in a state of elliptical
polarization upon retro-reflection from the cone. Figure 11
shows the characteristics of the reflected beam in this case. The
reflected optical power is now close to 100% of the incident
power (i.e., no leakage through the cone), and the reflected
AM is also close to 100% that of the incident AM. While
the incident AM is exclusively due to spin, the reflected beam
contains a mixture of SAM and OAM. Once again, the reflected
beam is seen to have automatically adjusted its OAM content
in order to preserve the total AM of the incident beam, thus
ensuring that the cone does not acquire any mechanical angular
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FIG. 9. (Color online) Transparent dielectric cone having a 90◦

apex angle and an antireflection coating layer on the top facet. In our
simulations, the base radius and the height were R = h = 6 μm, the
refractive index of the coating layer was the square root of the cone’s
index, and the coating layer’s thickness was λo/(4ncoat). The RCP
Gaussian beam of Fig. 1 is incident from above, along the negative z
axis. The beam returns along the positive z axis after two successive
total internal reflections at the conical surface.

momentum. (The plots of Sz and S⊥ in Fig. 11 show a certain
departure from circular symmetry, which we believe is caused
by insufficient numerical accuracy. The smallest pixel size,
�x = �y = �z = 5 nm, that we were able to use in these
simulations produced a mesh that was apparently too coarse
for the fields inside the high-index cone to properly converge
to a circularly symmetric solution. In other respects, however,
the simulation results depicted in Fig. 11 appear to be reliable.)

VIII. IMPOSSIBILITY OF AM TRANSFER TO
TRANSPARENT DIELECTRICS OF AXIAL

SYMMETRY

Nieminen et al. have given a rigorous argument in support
of the assertion that optical AM cannot be transferred to a
transparent axisymmetric dielectric along its axis of symmetry
[20]. In the present section, we outline a simple proof of this
impossibility theorem in the special case where the intensity
distribution throughout the object has axial symmetry around
the axis of symmetry of the object.

Consider a transparent dielectric medium with axial sym-
metry around z. Let the incident beam similarly possess axial
symmetry with respect to z in its various field amplitudes,
although one must allow for the possibility of deviation from
such symmetry in the form of optical vortices as well as
circularly polarized beams that exhibit a spiral phase around
z in one or more field components. Even in the presence
of such phase spirals, it is possible for the total intensity
distribution (|Ex |2+|Ey |2+|Ez|2) inside the transparent object
to remain symmetric around z. (This was the case for the
glass cone depicted in Fig. 10, and apparently not the case
for that in Fig. 11.) The gradient of this intensity profile,
which is proportional to the optical force density exerted on the
material medium, thus has components along the radial (r) and
vertical (z) directions of a cylindrical coordinate system, but no
components exist along the azimuthal (φ) direction. Such force
distributions, of course, cannot produce any torques along z,
as the force-density vectors everywhere remain coplanar with
the z axis. In addition, at the surface(s) of the dielectric object,
there exist surface forces due to the fact that the perpendicular

E-field component is generally discontinuous at such surfaces.
These surface forces, always being in the direction of the
surface normal, cannot produce any torque along the z axis.
This completes the impossibility proof for the special case of
an axially symmetric intensity distribution inside a transparent
and axisymmetric dielectric object.

IX. CONCLUDING REMARKS

It is sometimes considered desirable to split the EM
angular momentum into a spin part, associated with circular
polarization, and an orbital part, which is intimately tied to
the vorticity of the beam. The total AM of a light pulse
with respect to an arbitrary point ro is the integral of
(r − ro) × S(r,t)/c2 over the spatial volume occupied by the
pulse. This prescription applies whether the AM is due to the
polarization state of the beam, its vorticity, or a mixture of
the two. In other words, one does not distinguish SAM from
OAM when computing the total AM of an electromagnetic
wave. Since the distinction cannot be based on an analysis of
the Poynting vector profile, it must lie in the local or global
properties of the E and H fields and, perhaps more importantly,
in the methods of monitoring such properties.

Suppose, for instance, that the field at and around a given
point r is circularly polarized. If we place at r a small spherical
particle of an absorptive material, the particle acquires some
mechanical AM from the EM field and begins to rotate on
its axis. The essential physics of this process involves the
appearance (within the particle) of an induced dipole moment
p, which corotates with the local E field. The strength p of the
dipole moment is proportional to the local E field, with the
proportionality constant being the magnitude of the particle’s
electric susceptibility. The absorptive nature of the particle
renders its susceptibility complex valued. Absorption thus
produces a lag between the induced dipole moment p and
the local E field, with the phase of the complex susceptibility
determining the angle by which the rotating vector p lags
behind the corotating E. The torque experienced by the particle
is then given by p × E, which is responsible for the spinning
of the particle on its axis. An isotropic and transparent particle
would not have behaved in this way, because its induced dipole
moment p would have been aligned with the E field at all
times. In contrast, a transparent birefringent particle will pick
up some spin from the local field, as its birefringence produces
the all-important angle between the induced dipole p and the
local E field. In all these examples, the local or global structure
of the field’s Poynting vector is irrelevant; what matters is that
the EM field at point r has a net circular polarization and that
the experiment is designed to sense this local polarization state.

In general, interactions with material media can change
not only the angular momentum content of a beam but also
its composition in terms of the relative abundance of spin
and orbital momenta. This paper has shown, among other
things, that simple retro-reflecting devices (in the form of
hollow metallic or solid dielectric cones) can readily shift
the balance of angular momentum in favor of SAM or OAM,
without changing—in the absence of absorption—the overall
AM content of a beam. A possible application of hollow
metallic cones is in conjunction with broadband light such
as white light or extremely short (femtosecond) light pulses.
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FIG. 10. (Color online) Reflection of the RCP Gaussian beam of Fig. 1 from a glass cone (ncone = 1.55, R = 6 μm, h = 6 μm, ncoat = 1.245,
tcoat = 100 nm). For the chosen ncone, the phase difference imparted to the light’s s and p components upon each TIR is 45◦. The reflected beam
is thus linearly polarized, as can be seen in the plot of φ(Ex)−φ(Ey), which is nearly zero in some regions and almost 180◦ in others. Both Ex

and Ey show 4π vorticity in their phase structure, but the corresponding OAM is only half as much as that of a full 4π vortex, because |Ex | and
|Ey | are not uniformly distributed around z. The z component of the field exhibits only a 2π vorticity. The plot of Sz is doughnutlike, albeit with
a partially filled hole. The clockwise circulation of S⊥ around z is almost entirely associated with the OAM of the (linearly polarized) reflected
beam. The proximity of the 45◦ angle of incidence on the conical surface to the critical TIR angle of 40.18◦ is responsible for a small fraction
of the incident light leaking out of the cone. In our simulation, the actual fraction of the incident light that returned along +z was 92.1%; the
corresponding AM of the returning beam was 92.6% that of the incident.

Unlike transmission-type phase plates and liquid-crystal-based
devices, metallic reflectors are largely free from chromatic
aberrations, which makes them ideal for generating optical
vortices across an entire input spectrum or transforming a short
pulse into a vortex without distorting the temporal profile of
the pulse.

Axial symmetry plays an important role in transferring
angular momentum from an EM wave to a material object.
We saw in Sec. V that an axisymmetric PEC object cannot
acquire any AM along its axis of symmetry, irrespective of the

nature of illumination. Also, it was argued in Sec. VIII that a
transparent object of axial symmetry cannot be made to spin
around its axis, so long as the intensity of the EM field within
the object remains axisymmetric with respect to that axis.
We also pointed out the existence of a more general proof of
the impossibility of AM transfer to transparent axisymmetric
objects in the case of arbitrary illumination. Breaking the axial
symmetry of the object thus becomes an important criterion
if the goal is to impart angular momentum from an EM wave
to the material object. The wedge-shaped reflector described
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FIG. 11. (Color online) Reflection of the RCP Gaussian beam of Fig. 1 from a glass cone (ncone = 2.56, R = 6 μm, h = 6 μm, ncoat = 1.6,
tcoat = 78 nm). For the chosen ncone, the phase difference imparted to the light’s s and p components upon each TIR is 79.3◦. The reflected beam
is thus elliptically polarized with a fixed degree of ellipticity but varying orientations of the polarization ellipse. This may be seen in the plots
of |Ex |, |Ey |, and φ(Ex)−φ(Ey), with the last showing as much as 43◦ phase variation over the beam’s cross section. Both Ex and Ey show
slight variations in their phase profiles over the beam’s cross section, but no multiple-of-2π vorticity, although Ez exhibits a 2π vortex. The
plots of Sz and S⊥ no longer possess circular symmetry around z, which is probably an artifact caused by insufficient numerical accuracy. The
clockwise circulation of S⊥ around z is characteristic of the beam’s total AM, which contains a mixture of SAM and OAM. In our simulation,
the fraction of the incident light that returned along the positive z axis was nearly 100%; the corresponding AM of the returning beam was also
about 100% that of the incident. The beam’s AM is thus fully conserved upon reflection, although a fraction of its SAM has been converted to
OAM.

in Sec. III is a good example of a simple device that lacks
axial symmetry in its geometric structure and has the ability
to acquire AM from an incident beam. Another example is
a slab of transparent birefringent crystal, such as a half-wave
plate, which, by virtue of its crystal asymmetry (i.e., possessing
different refractive indices along different crystallographic
directions), can change the state of polarization of an incident
light beam, say, from RCP to LCP, thereby picking up the
change in the optical AM as the light passes through the
slab.

This paper has focused exclusively on the properties of
cones having an apex angle of 90◦. The retro-reflecting
property, however, is not limited to 90◦ cones; in fact, the
property is shared among all hollow metallic cones with an
apex angle of 180◦/m, where m is any positive integer. If m
happens to be even, each incident ray suffers m reflections
inside the cone before emerging on the opposite side while
propagating antiparallel to its direction of incidence. When m
is odd, each incident ray suffers 1

2 (m−1) reflections at oblique
incidence before landing on the conical surface at normal
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incidence. The ray then retraces its path and reemerges at its
point of entry while propagating in the reverse direction. We
will explore the properties of such cones in a separate paper.
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