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Near-resonant propagation of short pulses in a two-level medium
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We present a numerical method for solving the Maxwell-Bloch equations describing pulse propagation for
a two-level medium. The method is accurate, efficient, stable, and well suited for this type of simultaneous
equations. By applying the numerical scheme we investigate the evolutions of pulse area, pulse propagation,
pulse velocity, and spectral shapes under both homogeneous and inhomogeneous broadening conditions. The
results show that the area evolution and pulse-reshaping procedure are significantly influenced by detuning and
inhomogeneous line shape, which also impact the oscillation tail and pulse peak. In addition, the pulse-peak
traces indicated the pulse velocity always increases with greater deviation in pulse-area value from the value 2π .
We also demonstrate the pulse velocity increased for a larger detuning or a wider inhomogeneous line shape.
Furthermore, the spectral feature shows that pulse spectra evolve into an oscillating shape.
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I. INTRODUCTION

The coherent interaction of ultrashort optical pulses with
resonant medium is a fundamental problem in quantum optics
[1]. The recent advance in ultrafast laser technology has made
it possible to generate extremely short and intense pulses, such
as single attosecond [2,3] pulses. It has attracted much interest
in the interaction of ultrashort pulse and atoms all over the
world. In the ultrafast regime, frequently in femtoseconds, the
relaxation has insufficient time to destroy the coherence, which
makes the phenomenon of light-matter interaction become
very interesting in such transient coherent processes.

On the condition that atomic relaxation is neglected, the
famous area theorem [4] governs the coherent nonlinear
transmission of ultrashort optical pulses through an inhomoge-
neously broadened medium which has an absorption resonance
frequency. Even the profile of few-cycle pulse evolution can
still be predicted by the area theorem [5]. A derivation of
the area theorem including pulse chirping is also obtained
and can be used to investigate pulse phase evolution [6]. In
most theoretical analyses for pulses at the subfemtosecond
level, the effects of the relaxation of the atomic system are
neglected since the durations of the pulses are far smaller than
the decay time. While considering the relaxation time, the
effects of the relaxation rate on pulse-area evolution have been
extensively investigated [7], which shows numerically that the
stabilization of the pulse area is not permanent because the
energy losses are due to the spontaneous decay. By zero-area
pulse [8], in the cases of both off resonance and on resonance,
zero-area pulse can produce complete population transfer in
a two-state quantum system [9]. As to the near-resonant case,
it also presents that the generalized pulse area is stabilized
for relatively small detunings [10]. For the phase of ultrashort
pulses in two-level systems, the measurement of the pulse
phase has been studied in theory and experiment [11,12]. As
to the spectral evolution in the atomic system, many studies
are devoted to the spectral modifications [13], and the spectral
feature appears to be transition frequency and has significant
deviation from a simple Lorentzian dip for a larger pulse
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area [14,15]. The changes in the spectrum of a near-resonant
pulse propagating through a two-level atomic system have
also been theoretically and experimentally studied [16]. It was
shown that at the transition frequency the spectrum structure of
the transmitted pulse depends sensitively on the pulse area, the
pulse detuning, and the absorption path length. Pulse shape is a
visual display of pulse evolution in a medium. It is reported that
by using a strong off-resonant ultrashort pulse one can control
the shape of a weak, resonant, ultrashort pulse propagating
in an assembly of two-level atoms [17]. Actually, without the
driven pulse, the propagation of ultrashort laser pulses in a
resonant atomic medium can lead to strong reshaping effects
by dispersion [1,18].

Despite the above extensive work, in comparison, only
a few theoretical or experimental studies [17] have been
devoted to the influence of the absorption spectral bandwidth
on the pulse shape, the pulse velocity, the pulse spectrum,
and other pulse-propagation properties. The inhomogeneous
linewidth [1] of a medium characterizes the absorption spectral
bandwidth. A large inhomogeneous linewidth means a strong
inhomogeneous broadening effect, and the carrier frequency is
included in absorption line. In the opposite case, the absorption
spectral bandwidth is very narrow and dominates closely
around the central frequency (and even can be represented
by the δ function). In this paper, we establish a powerful
numerical scheme to simulate the light-matter interaction in
a two-level medium. By applying this accurate and effective
numerical procedure, we analyze the evolution of pulse area
in the case of nonzero detuning for different inhomogeneous
linewidths. To have a further understanding of the interaction
of coherent pulses with the medium, an extended study of the
behaviors of pulse shape and velocity during propagation in
a two-level medium was performed. With all these effects in
mind we restrict our attention to the resonant and near-resonant
interaction and focus on the basic two-level system.

This paper is organized as follows. In Sec. II the basic
equations and definitions are introduced. Sec. III elaborates
the numerical procedure and gives the flow chart. Sec. IV
is devoted to a numerical analysis of the behaviors of the
generalized pulse area and pulse-propagation properties and
discusses the influence of pulse and medium parameters on
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the pulse velocity and spectral shapes. Finally, in Sec. V we
present our conclusions.

II. BASIC EQUATIONS AND DEFINITIONS

To study pulse propagation we solve the simultaneous
Maxwell-Bloch equations for a two-level medium with the
rotating-wave approximation and consider the propagation in
the direction z. The Maxwell equation for propagation is

�̇t (z,t) + cn−1�̇z(z,t) = τ−2
0

∫ ∞

−∞
v · g(�)d�, (1)

where τ0 = (2h̄n2/Nμ0c
2μ2ω)1/2 is the effective time, � =

�0 + ω − ω0 is the detuning of the laser frequency ω from
the resonance frequency ω0, �0 is caused by inhomogeneous
broadening, g(�)is the absorption line shape, such as the
line shape determined by Doppler broadening, N is the
atomic density, n is the medium’s refractive index, �(z,t) =
μẼ(z,t)/h̄ is the Rabi frequency, Ẽ(z,t) is the field envelope of
the pulse, and v(�,z,t) is the component of the Bloch vector
that determines the absorption of a single atom and can be
calculated from the Bloch equations

u̇t = −u/T2 − � · v

v̇t = −v/T2 + � · u + � · w

ẇt = −(w − w0)/T1 − � · v.

(2)

Here w0 is the initial population difference between the upper
and lower states and T1 and T2 are the longitudinal and
transverse relaxation times, respectively. Dimensionless space
and time variables are z′ = nz/cτ0, t ′ = t/τ0, T ′

1 = T1/τ0,
T ′

2 = T2/τ0, �′ = �τ0, and �′ = �τ0. For convenience, we
record z′,t ′,T ′

1,T
′

2,�
′, and �′ as z,t,T1,T2,�, and �. Equa-

tions (2) are unchanged, but Eq. (1) is reduced to

�̇t (z,t) + �̇z(z,t) =
∫ ∞

−∞
v · g(�)d�. (3a)

In Eq. (3a), g(�) is the normalized inhomogeneous line
shape. Before going further, we point out that in homoge-
neously broadened medium, g(�) is too narrow to have an
effect on the integral term, and it is written

�̇t (z,t) + �̇z(z,t) = v(z,t). (3b)

We define it as a Gaussian line shape function

g(�) =
√

2 ln 2/π�2
de

− 2 ln 2
�2

d

�2

, (4)

where �d is the full width at half maximum of the inhomoge-
neous line shape (FWHM ILS). The simultaneous solution of
Eqs. (2) and (3) leads to fields that, when they are integrated
over time at each propagation distance, give the area

S(z) =
∫ ∞

−∞
�(z,t ′)dt ′, (5)

which obeys the simple equation [2]

dS

dz
= −α

2
sin S, (6)

where α = ωπμ0Nμ2cg(0)/nh̄ is the linear optical attenua-
tion coefficient for the material and g(0) is a Gaussian line

shape with its maximum at � = 0. It proves useful to define
� as follows:

�(t) = �0e
− 2 ln 2

t2p
t2

, (7)

where tp is the FWHM of the Gaussian pulse and �0 is the
pulse peak. Fourier transform solution of Eq. (7) shows the
spectrum FWHM of the input pulse is �p = 2

√
2 ln 2/(πtp).

III. NUMERICAL PROCEDURE

Because, in general, the set of coupled Eqs. (2) and
(3) cannot be solved analytically, numerical computations
are necessary. In this section we describe the method of
predictor-corrector fourth-order Runge-Kutta scheme that we
used to calculate the dynamical properties of Maxwell-Bloch
equations. Our computational procedure includes the initial
value predictor cycle and the corrector-predictor cycle. As we
mentioned above, our method is designed to simulate wave
propagation through a two-level medium. Since the emphasis
here is on the numerical procedure, we show just the particular
set of the coupled Eqs. (2) and (3).

In practice it is often useful for Eqs. (2), dependent on
the time differential only, to be solved by using the classical
fourth-order Runge-Kutta scheme. This procedure is discussed
in more detail in [15]. The method we use can be written as

ut+1 = ut + ht (fu1 + 2fu2 + 2fu3 + fu4)/6,

vt+1 = vt + ht (fv1 + 2fv2 + 2fv3 + fv4)/6,

wt+1 = wt + ht (fw1 + 2fw2 + 2fw3 + fw4)/6,

(8)

where ht is the step size for differentiation in time domain
and fui , fvi , and fwi are the right-hand sides of Eqs. (2),
respectively. As illustrated in Fig. 1(a), m = T/ht , where T

is the time length. Equation (3) has the important property
that its characteristics depend on both the space differential
and the time differential. We first consider the right-hand
side of Eq. (3a). The integral term is a cumulative sum of

FIG. 1. Flow charts for subroutines of (a) partial differential
Bloch equations and (b) integral equations. (c) Main routine flow
chart.
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inhomogeneous line shape [Fig. 1(b)] and can be rewritten in
integral form as∫ ∞

−∞
v(�,z,t) · g(�)d� =

∑
k

v(kδ�,z,t) · g(kδ�)δ�, (9)

where δ� is the step size of inhomogeneous line shape. For
convenience, we record the right side of Eq. (9) as 	z,t [in
a homogeneous broadened medium, Eq. (9) is neglected and
	z,t = v(z,t)]. The simple finite-difference form of Eq. (3) is

(�z+1,t+1 − �z,t+1)/hz + (�z,t+1 − �z,t )/ht =
∑
z,t+1

. (10)

where hz is the distance between any two space neighboring
points. We assume the step size for differentiation in time is the
same as the step size for differentiation in space for simplicity,
which is h = hz = ht . Hence, it can be viewed as a rectangle
in z and t space with a square mesh of points. Equation (10) is
reduced to

�z+1,t+1 = �z,t + h
∑
z,t+1

. (11)

In order to enhance the numerical calculation accuracy,
we use the middle grid point to improve the simple finite-
difference scheme. Thus

�z+1,t+1 = �z,t + h

(∑
z,t+1

+
∑

z+1,t+1

)
/2. (12)

In order to solve the coupled Eqs. (2) and (3), we apply
a predictor-corrector scheme. To understand this technique,
we first look at the initial value predictor cycle; the envelope
function of the Rabi frequency is given by Eq. (7). In addition,
we assume that the system initially contains no energy, which
means u0 = 0, v0 = 0, and w0 = −1 (all atoms at the ground
state). We obtain u, v, and w by applying the classical fourth-
order Runge-Kutta scheme under the determined value � and
z = 1, then integrate u using Eq. (9) under the determined
value z = 1 when starting at � = −∞ and ending at � = ∞,
and finally substitute 	1 into Eq. (11) to obtain the next �

(z = 2) in the time domain, as we show in Fig. 1(c).
During the corrector-predictor cycle, again using the

fourth-order Runge-Kutta scheme and integrating the Eq. (9),
we then substitute 	z−1 and 	z into Eq. (12) to obtain
the corrected �z. We note that the corrected �z should be
used to correct u, v, and w under the value z. Again we
substitute the obtained u into Eq. (9) to get the integrating value
	z+1, and we have the predictor value �z+1. As illustrated
in Fig. 1(c), our program loop returns to the starting point
of the corrector-predictor cycle under the condition of z < l

(l = L/h, where L is the length).
We point out again that, under the condition of a homo-

geneously broadened medium, the subroutine of the integral
equations in the main routine flow chart shown in Fig. 1(c) is
neglected and replaced by the subroutine of partial differential
Bloch equations. So the initial value predictor cycle and the
predictor-corrector cycle no longer need to apply the integral
procedure; other procedures are the same as described above.

The numerical procedure is now clear. In the way described
above, we finally obtain the value of ω describing the

desired signal and the evolution of Bloch vectors in both
homogeneously and inhomogeneously broadened media. Our
method, compared with the finite-difference method or a
general numerical scheme, has the advantage that it needs
far less calculation time (three or two orders of magnitude
lower) for the same accuracy, [19,20], which is discussed in
the Appendix.

IV. RESULTS AND DISCUSSION

Now we apply the numerical procedure to investigate the
behavior of the pulse propagation in a two-level medium. In
the calculations relative units of time τ0 and distance cτ0/n

are used, and all other parameters are also given in relation to
the scaled time τ0 (see Sec. II).

A. Pulse area

Here we present a numerical analysis of the pulse area
in homogeneously and inhomogeneously broadened two-level
media. We begin from the analysis of the behavior of the pulse
area (according to Eq. (5), the definition pulse area is a time
integral starting at −∞ and ending at ∞) during propagation.
In the area theorem [1], it is obtained that the evolution of
the pulse area depends on the input pulse area and the linear
optical attenuation coefficient for the material, and there are
two striking consequences of the area theorem, which are
(i) pulses with special values of area, namely, integer even
multiples of π , will not change the pulse area but will finally
split into multiple 2π pulses and (ii) a pulse area with other
values is predicted to reshape into integer even multiples of
π value and also evolve into multiple 2π pulses [1,6]. Those
properties can be shown to be stable in an inhomogeneously
broadened medium if the atomic relaxation is neglected.

The area theorem is not suitable for a homogeneously
broadened medium, as presented in Fig. 2(a), in which we have
plotted the area S as a function of distance for different input
areas of the pulse. We restrict our calculations to the resonant
and ultrashort pulses, and the time duration of the input pulse

FIG. 2. The spatial evolution of pulse area for four values of
the input pulse area in (a) homogeneously and (b) inhomogeneously
broadened media.
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FIG. 3. Evolution of pulse area as a function of propagation
distance for different FWHM ILS.

is neglected. It is obvious that the formed oscillation and its
properties should strongly depend on the initial pulse area.
To show this feature of the propagation we have analyzed
the pulse behavior with different initial areas. Fig. 2(a) shows
that the pulse with S(0) = 1.3π needs a very short distance
(almost z = 0.02) to approach 2π and then oscillates around
the value 2π . The continuous oscillation amplitude becomes
smaller as distance increases, and the oscillation period, as a
function of the distance, becomes longer with the increasing
of distance. As compared with the pulses having areas of 1.5π

and 1.9π , the pulse with a larger area needs a shorter distance
to approach 2π , and the oscillation period and amplitude are
also decreased relatively. While the initial input pulse area is
2π , the pulse area remains unchanged and without oscillation;
actually, the shape and peak amplitude of the pulse are stable
as it propagates through the medium.

The presence of our numerical calculations in Fig. 2(b)
shows that the smaller the initial pulse area is, the longer the

FIG. 4. The spatial evolution of pulse area for different relaxation
times in (a) homogeneously and (b) inhomogeneously broadened
media.

FIG. 5. Pulse area as a function of distance for different detuning
values in (a) homogeneously and (b) inhomogeneously broadened
media.

optical path needed to approach 2π is. Exactly, it proves that
the area evolution in an inhomogeneously broadened medium
strictly obeys the area theorem in the absence of relaxation
time.

One of the most interesting results of the area evolution in
a medium is the effect of the inhomogeneous line shape. Here
we give a few results showing the influence of the FWHM
ILS �d , which characterizes the inhomogeneous line shapes
g(�) on this effect. Figure 3 shows the process of a pulse in
resonance and with an input area S(0) = 1.5π converting into
a 2π pulse. In general, for a relatively large value of �d (=3),
the evolution curve of the pulse area to approach 2π is smooth.
As to the value of �d = 0.3, the distance of the 1.5π pulse
approaching to 2π is relatively shortened, and an oscillation
tail appears. Decreasing �d (such as the dotted curve in Fig. 3)
results in the shortening of the approaching distance and makes
the oscillation increasingly stronger. Compared with the area
evolution in Fig. 2(a), we find out that the smaller the value
of �d is, the closer the evolution properties are. Actually,
homogeneous broadening is the limit of �d as it tends to
zero [1].

FIG. 6. Evolution of a 1.7π pulse in a homogeneously broadened
medium, � = 0.
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FIG. 7. Evolution of a 1.7π pulse for different detunings in a
homogeneously broadened medium.

In previous discussions of area evolution, we ignored both
longitudinal and transverse relaxation effects. In general, the
longitudinal relaxation time T1 is far greater than the transverse
relaxation time T2, so the parameter used corresponding to the
calculation can be chosen as T1 = 10T2. Figure 4(a) shows
the area evolution of the pulse with S(0) = 1.7π as a function
of propagation distance for different T2 in a homogeneously
broadened medium. The general picture for each case is
similar. For longer propagation distance, the pulse area no
longer oscillates around the value 2π and almost deeply
decreases to the 0π value. Because of a lack of energy by
increasing the value of T2, the pulse is not able to stabilize
and makes itself transform into a 0π pulse. The analysis of
Fig. 4(a) indicates that the larger T2 is, the longer the distance
it can propagate is. As to an inhomogeneously broadened
medium [see Fig. 4(b)], the evolution form of the pulse area
also transforms into a 0π pulse due to the relaxation and energy
losses, and the area of the pulse with T2 = 10 does not even
reach the 2π value. It is obvious that the collapse curves,
from 2π to 0π , are much smoother than the curves under
the homogeneous broadening condition. This effect can be
explained by the pulse energy loss procedure [7].

The interesting evolution behavior of the pulse area in
Fig. 5(a) shows the influence of detuning in a homogeneously
broadened medium. In the near-resonant case with � = 0.1,
the propagation distance before the pulse area approaching to
2π is obviously increased. As the detuning � becomes larger,
a longer propagation distance under the area value of 1.7π

is observed. That means the detuning delays the converting
procedure and makes the input pulse more stable at its initial
area value, i.e., � = 0.3; the pulse oscillates around the value
1.7π for a propagation length of almost 40 (units of cτ0/n).
However, under the inhomogeneous broadening condition, the
area evolution of resonant pulse propagation with detuning
still mainly obeys the area theorem [see Fig. 5(b)], and the
impact is much smaller compared with Fig. 5(a).

We therefore conclude that in atomic media with a decay
mechanism, whether the medium has inhomogeneous or
homogeneous broadening, the pulse with whatever area value
will collapse into 0π . Moreover, in the present studies, for
the homogeneous broadening condition, the detuning plays
an important role in the evolution of pulse area, but it has
relatively little influence on the behavior of area evolution in
an inhomogeneously broadened medium.

B. Pulse shape

We now turn to investigating the pulse propagation. The
results of the propagation of a 1.7π pulse in a homogeneously
broadened medium are presented in Fig. 6. It can be seen that
the pulse propagation process is interesting, the pulse shape is
obviously deformed, there exists an oscillation tail beside the
main pulse, and the peaks of the Rabi frequency are not stable.
Combining with the area evolution in Fig. 2(a), we believe that
the unstable peaks make the area necessarily oscillate around
the value 2π .

Furthermore, we also study the propagation behavior of
pulses with other area values, e.g., 1.5π pulse, 1.9π pulse,
and 2π pulse. All compared pulses propagate under the same
condition. We find that, during the reshaping procedure, the
closer the initial pulse area was to 2π , the more stable the Rabi
frequency performed (with negligible oscillation tail and more
stable peaks).

While considering the influence of detuning (again) on
the pulse propagation, we plot the peak curves of the Rabi
frequency in Fig. 7. The solid curve, without detuning, presents

FIG. 8. Evolution of a 1.7π pulse for different FWHM ILS.
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FIG. 9. Evolution of a 3.4π pulse for different FWHM ILS.

a deep decrease after propagating in the medium for a short
distance and evolves into an oscillating structure. As to � = 1,
we observe that the oscillations of peak curves diminished.
For the larger detunings (plotted with dash and dash-dotted
curves in Fig. 7), the peak value slowly and smoothly decays.
Accurately, if we plot the pulse evolution with different

FIG. 10. Evolution of pulse peaks for different input pulse areas
in a homogeneously broadened medium. (a) In dimensionless time.
(b) In terms of light velocity c.

detunings in a three-dimensional space time, we will find
large detuning slows down the pulse-reshaping process and
inhibits the oscillation. Actually, because the spectrum width
interaction with atoms in a homogeneously broadened medium
is very narrow, a small detuning will hinder the interaction to
some extent.

FIG. 11. Evolution of 1.7π -pulse peaks for different detunings in
a homogeneous broadened medium. (a) In dimensionless time. (b) In
terms of light velocity c.
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FIG. 12. Evolution of pulse peaks for different FWHM ILS
in an inhomogeneously broadened medium. (a), (b), and (c) In
dimensionless time. (d) In terms of light velocity c.

As in the inhomogeneously broadened medium, the pulse
behaves in a similar way with the performance in Fig. 6;
see Fig. 8(a) under slightly FWHM ILS, where we neglect
the relaxation and detuning. For the larger detuning plotted
in Fig. 8(b), the results suggest that both of the main pulse
and oscillation tail transform relatively stably for FWHM ILS
�d = 1. Obviously, by increasing the FWHM ILS further such
that the pulse-peak reshaping could be obtained in a smooth
and slow decrease process, the oscillating structure almost
disappeared. Theoretically, for the same incident pulse, the
pulse spectrum is fixed, and only the atoms with resonant
frequency can have interaction with the pulse. Increasing
FWHM ILS means that the rate of active atoms near the central

FIG. 13. Spectral shapes of the pulse at z = 1 for different pulse
areas in a homogeneous medium.

resonant frequency diminishes. That is the reason why large
�d slows the area evolution shown in Fig. 3.

As we know, pulse breakup occurs when the pulses have
areas above 3π due to the stimulated absorption and reemission
processes [1,21]. The pulse breakup depends on various
parameters, including the pulse area, the atomic density, and
so on. In Fig. 9 we compare the propagation properties of
pulses for different �d . We see that after a small optical
path the pulse breakups are observed, the first part sharpens,
and the second part widens during propagation. The evolution
of the first part is the same as shown in Fig. 8, and the area
of the second part is also converted to 2π but with slower
velocity and lower energy. When the �d is so small that the
pulse breakup in the medium occurs more easily [in Fig. 9(a)]
with a relatively short optical path, as for increasing �d , only
for a longer optical path will the pulse encounter a sufficient
number of atoms to cause reshaping. After the pulse propagates

FIG. 14. Spectral shapes of a 1.25π pulse for different detunings
in a homogeneous broadened medium; longitudinal time T1 and
transverse time T2 are both ignored.
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TABLE I. Step effects on the maximum global error of methods I, II, and III.

Step h Analytic solution I Method I Error I Analytic solution II Method II Error II Analytic solution III Method III Error III

0.01 2.4847502 2.5244935 0.0397433 2.2538526 3.2770607 1.0231534 2.8965887 2.3250312 0.5715574
0.005 2.5010517 2.4808136 0.0202381 2.4855154 3.0013508 0.5158354 2.7929807 2.5021345 0.2908462
0.001 2.4730871 2.4689348 0.0041523 2.6620791 2.7651681 0.1030890 2.7019673 2.6430887 0.0588786

farther through the medium, we can see the velocities of the
second parts are obviously different in the three plots.

Coming to the end of our discussion of the ultrashort
pulse propagation, we want to emphasize the propagation
relationship between the homogeneous and inhomogeneous
broadening. In general, for quite large �d only the central part
of the spectrum is active, and the pulse shapes, including both
the pulse peaks and with a strong or a weak oscillation tail,
also depend mainly on it.

C. Pulse velocity

Another important feature of pulse propagation in a medium
is the velocity, which is influenced not only by the pulse
properties but also by the optical materials. For an ultrashort
pulse, we use the main pulse peaks to mark the pulse trace, and
the pulse velocity is reflected according to the corresponding
space-time coordinates of the curves.

In the previous sections, we have shown that pulses
have a reshaping procedure during their propagation in an
absorbing medium, and pulse initial areas have significant
influence on the evolutions of the pulse area. Figure 10
presents the evolution of the peaks that reflects the velocity
of the pulse. As the optical path is a constant, we find that
the pulse with initial area S(0) = 1.6π needs the maximum
time among the four curves, and the pulse with initial area
S(0) = 1.7π needs a relatively short propagation time. With
the increase of pulse area (<2π ), the needed time becomes
shorter and shorter, which means the propagation velocity is
increased. A close look at the structure of the four curves
shows the following feature: At exactly the early evolution,
the trace of the solid curve is not stable, and the velocity
of the pulse peak dramatically oscillates. Gradually, the solid
curve deviates from the initial direction, and the pulse peak ve-
locity becomes flat, within 0.5–0.8c [22]. Actually, whether the
medium has homogeneous or inhomogeneous broadening, the
reshaped pulse broadens its width, loses its energy, and slows
down.

We also present the numerical study of the detuning effect
on the pulse velocity (Fig. 11). If we compare the four curves,
we can say roughly that for a pulse without detuning, � = 0,

the propagation time is the maximum, and for a pulse having
detuning � = 1 the needed propagation time is shortened.
With the further increasing of detuning, the propagation time
is pulled toward a limited value. In general, an increase of
detuning means the rate of active atoms is diminished, which
results in weakening the interaction between the pulse and the
medium. Meanwhile, the pulse velocity is naturally increased
in the medium but will not exceed the speed of a pulse with an
initial area value of 2π .

In this section, we have shown numerically that the pulse
velocity in a medium always increases with the greater
deviation in pulse-area value from the value of 2π , and we
also observe that an increase in detuning or FWHM ILS can
cause the pulse velocity to increase. The physical mechanisms
are given theoretically.

In Sec. IV A, we studied the influence of �d on area
evolution and gave the important results. Furthermore, we
investigate the influence of �d on the pulse velocity in our
model. Figure 12(a) presents the behavior of pulse peaks
with an initial area of 1.5π for various �d . Expectedly,
with an increase in �d, the pulse velocity becomes greater
because the rate of active atoms near the central resonant
frequency diminishes; this statement has been confirmed by
the results presented in Figs. 3 and 8. We also illustrate
the evolution of pulse with an initial area value of 1.8π

for the same �d . Figure 12(b) shows the evolution curves
shift toward the direction of smaller time, and the distance
between the adjacent curves is also compressed. While the
initial area is 2π , the trends mentioned above will be further
enhanced. On the other hand, the influence of �d becomes
weaker.

D. Pulse spectrum

In this section we discuss the influence of pulse area,
detuning, and distance on the spectrum of input pulse.
In the case of an inhomogeneous broadened medium, the
spectral shapes are similar to a homogeneous broadened
medium by averaging atomic variables over a Doppler profile
width [16].

In Fig. 13, we plot the spectrum of different pulse areas,
propagating in a homogeneous broadened medium with T1 =

TABLE II. Comparison of pulse-area evolution for the numerical solution and the analytic solution. The initial input pulse areas are 1.3π ,
1.5π , 1.9π , and 2π .

Error Pulse area z = 3 z = 6 z = 9 z = 12 z = 15

Absolute errors 1.3π 0.0035 0.0012 9.0198 × 10−5 6.5447 × 10−6 1.7721 × 10−6

1.5π 0.0043 6.2639 × 10−4 4.5997 × 10−5 3.3658 × 10−6 2.5447 × 10−7

1.9π 0.0012 8.9803 × 10−5 6.6600 × 10−6 5.7334 × 10−7 1.2950 × 10−7

Maximum global errors 2.0π 0.0291 0.0290 0.0288 0.0287 0.0278
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10, T1 = 10T2, and � = 0. From the discussion of Fig. 4, we
choose the small distance of z (z = 1), and in this situation
the pulse area does not decrease sharply. Frequencies near the
atomic frequency show a dip because of the interaction of the
dipole field and the pulse.

When detuning is taken into consideration in Fig. 14, the
spectral shapes of the pulse evolve into an oscillating structure,
especially around resonant frequency. Meanwhile, frequencies
near the atomic frequency are amplified. This effect is related
to the procedure of light reemission [10,23].

V. CONCLUSIONS

In conclusion, we have presented a predictor-corrector
fourth-order Runge-Kutta method for integration of the
Maxwell-Bloch equations with partial differential and integral
terms. Since the characteristics are used, the Bloch equations
only contain a partial derivative with respect to the time-
independent variable, thus permitting us to apply the fourth-
order Runge-Kutta method; for the Maxwell equation, we
choose a middle-grid-point scheme to enhance the calcula-
tion accuracy; as to the predictor-corrector method, which
effectively improves the accurate results and greatly saves
calculation time.

Then, applying the numerical method, we study the evolu-
tions of the pulse area, pulse propagation, and pulse velocity
under both homogeneous and inhomogeneous broadening
conditions. We prove again that pulse area will collapse to
zero under the decay mechanism and find the FWHM ILS
and detuning have significant influence on area evolution.
The influence under the homogeneous broadening condition
is more obvious than in the inhomogeneously broadened
medium. As to the pulse-reshaping procedure, we point out
that the oscillations of the pulse-peak curve and tail are mainly
determined by the value of FWHM ILS and are also affected
by detuning. Additionally, we discuss pulse breakup under
various FWHM ILS and find pulse velocity changed obviously.
In addition, we give the pulse-peak trace that presents the pulse
velocity to some extent. For various initial input pulse areas,
it shows the pulse velocity becomes greater as the pulse area
gets closer to 2π , and a larger detuning also creates greater
pulse velocity. As to an inhomogeneously broadened medium
for the same medium, a larger FWHM ILS causes the pulse
velocity in the medium to be relatively greater. Finally, we
discuss the evolution of the pulse spectrum in a homogeneous
medium. The spectral shapes demonstrate that with absorption
the frequencies near the atomic frequency are absorbed. In the
case without consideration of absorption, spectral shapes show
an oscillating and complex structure.
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I. APPENDIX

We get some other methods in comparison with predictor-
corrector fourth-order Runge-Kutta scheme. The part of the
Bloch equation adopts Eq. (8), but the part of the Maxwell
equation uses different methods.

Method I is a predictor-corrector fourth-order Runge-Kutta
method:

�z+1,t+1 = �z,t + h · (vz,t+1 + vz+1,t+1)/2. (A1)

Method II is a square mesh of points (see discussion of
Eq. (11) in Sec. III),

�z+1,t+1 = �z,t + h · vz,t+1. (A2)

Method III is a backward difference method,

�z+1,t+1 = �z,t + h · vz,t . (A3)

We compare numerical solutions by different methods with
an analytical solution by hyperbolic-secant pulse at z = 4 (units
of cτ0/n), pulse area S(0) = 2π , detuning � = 0, and pulse
duration tp = 1 (units of τ0).

It can be seen from the Table I, in the case of the same step,
that the errors of method I are smaller by one or two orders
of magnitude than the errors of methods II and III. From the
longitudinal view, the step is halved, and errors are half, which
means methods II and III, in order to get the same accuracy
as method I, must adopt a smaller step and spend more
time.

In order to verify the convergence and reliability of the
method, we compare the analytical solution of the evolution
of pulse area in an inhomogeneous medium with the numerical
solution. We adopt a hyperbolic-secant pulse, and laser
parameters are as follows: the longitudinal and transverse
relaxation times T1 = 0 and T2 = 0, detuning � = 0,
and step h = 0.02. In Table II we get the influence of the
propagation distance on the absolute errors of pulse areas,
and the results show that with the increase of propagation
distance the absolute errors between the numerical solution
and the analytical solution get smaller. Also, the maximum
global errors of the 2π pulse also get smaller as the distance
increases [20]. As mentioned above, it shows the convergence
and reliability of the method.
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