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Entanglement from longitudinal and scalar photons
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The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar
photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar
photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled
states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and
scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable
effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach
of this kind may be useful for a covariant description of the dynamics of quantum information processing.
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I. INTRODUCTION

The covariant quantization of the electromagnetic field in
the Lorentz gauge involves longitudinal and scalar (temporal)
photons in addition to the transverse photons that are familiar
from the Coulomb gauge [1–6]. This is necessary because
the vector and scalar potentials form the components of
a relativistic four-vector, and all four components must be
quantized in order to maintain manifest covariance. Although
the Lorentz and Coulomb gauges are physically equiva-
lent, a manifestly covariant treatment of photons may be
useful in order to provide a covariant description of the
generation of entanglement and of quantum information
processing.

It will be shown here that the exchange of longitudinal
and scalar photons can produce entanglement between two
atoms or harmonic oscillators as illustrated in Fig. 1. The form
of the entangled state produced in this way is very different
from that obtained in the Coulomb gauge. Nevertheless, it
will be explicitly shown that the results in the two gauges are
physically equivalent. Simple examples of this kind provide
useful insight into the way in which the two gauges are
equivalent despite their apparent differences.

Most experiments demonstrating entanglement, quantum
teleportation, and quantum information processing have been
analyzed using a theory of photons (the Coulomb gauge)
that is not manifestly covariant. The role of special relativity
and covariance in entanglement and quantum information
has been discussed in a number of earlier papers [7–25],
none of which are based on a covariant description of the
photons in the Lorentz gauge. A covariant polarization for
the photons has often been used in the Coulomb gauge,
which provides a correct description of entangled states and
quantum information under Lorentz transformations. The use
of the covariant quantization of the electromagnetic field
in the Lorentz gauge goes a step further and allows a
manifestly covariant description of the time evolution of the
system, including a covariant form for the Hamiltonian and
perturbation theory [4].

In addition to being useful for a covariant description
of the dynamics of entanglement and quantum information
processing, these results provide additional insight into the
techniques used to quantitatively measure entanglement. In
particular, the question arises as to whether or not the usual

measures of entanglement would give results that are the same
with or without the entanglement from the longitudinal and
scalar photons.

The longitudinal and scalar photons do not physically exist
in a freely propagating beam of light, and the theory is designed
in such a way that the scalar photons are associated with
negative probabilities (the indefinite metric) that cancel the
effects of the longitudinal photons in the absence of any
interaction [1–6]. That is not the case in the presence of
a charge or current distribution, such as in an atom, where
the longitudinal and scalar photons can produce physically
observable effects such as the Coulomb force. It should
be emphasized that the inclusion of longitudinal and scalar
photons along with the indefinite metric forms the basis for the
accepted covariant formulation of quantum electrodynamics
[1–6].

Since the Lorentz gauge is not widely used in quantum
optics, a brief review of the covariant quantization of the
electromagnetic field in the Lorentz gauge is given in the
next section. The entanglement between two harmonic os-
cillators produced by the exchange of longitudinal and scalar
photons in the Lorentz gauge is then calculated in Sec. III.
The corresponding situation is considered in the Coulomb
gauge in Sec. VI, where the equivalent interaction between
the harmonic oscillators is due to the classical scalar potential.
The observable properties of the entangled states are then
compared in Sec. V, where it is shown that there is no physical
difference between them. A summary and conclusions are
presented in Sec. VI.

II. REVIEW OF COVARIANT QUANTIZATION IN THE
LORENTZ GAUGE

The need for longitudinal and scalar photons in a covariant
treatment of problems of this kind can be seen by first
considering the situation in classical electromagnetism, where
the vector potential A(r,t) and the scalar potential �(r,t) form
the components Aμ of a relativistic four-vector A. Using the
Lorentz gauge gives rise to the usual wave equations with
retarded solutions, which are manifestly covariant. Quantizing
all three components of A(r,t) as well as the scalar potential
�(r,t) in the Lorentz gauge is necessary in order to maintain
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FIG. 1. (Color online) Entanglement between two atoms or
harmonic oscillators A and B produced by the exchange of virtual
longitudinal and scalar photons. In the absence of any interaction,
oscillator A is assumed to be in its first excited state while oscillator
B is in its ground state. The energies of the first-excited states are
assumed to differ by δE = h̄ωB − h̄ωA. The perturbed eigenstate of
the system includes a probability amplitude ε for oscillator A to be
in its ground state with oscillator B in its excited state, as can be
calculated using perturbation theory.

the manifest covariance of the theory under Lorentz transfor-
mations.

The quantization of the electromagnetic field in the
Coulomb gauge gives rise to the usual operators â

†
⊥1(k)

and â
†
⊥2(k) that create photons with wave vector k and

transverse polarization ε1 and ε2. These photons represent
the transverse part of the vector potential A(r,t), while the
scalar potential �(r,t) is not quantized. This is convenient in
several respects, but it is not manifestly covariant; under a
Lorentz transformation, components of the field that were not
quantized in one reference frame will be quantized in another
reference frame.

All three components of the vector potential A(r,t) as well
as the scalar potential �(r,t) are quantized in a covariant
treatment in the Lorentz gauge [1–6]. This gives rise to a new
set of photon creation operators â

†
l (k) and â

†
s (k) that create

photons associated with the longitudinal part of A(r,t) and
the scalar potential �(r,t), respectively. These photons are
referred to as longitudinal and scalar (or temporal) photons
[1,2].

Physically, a beam of light is polarized only in the transverse
direction and the longitudinal and scalar photons must be
fictitious in the absence of any charge or current distributions.
Gupta [1] and Bleuler [2] independently proposed a solution
to this problem in which negative probabilities are associated
with the scalar photons in such a way that they cancel out
the effects of the longitudinal photons in a radiation field.
The usual inner product 〈φ |ψ〉 between two states |φ〉 and
|ψ〉 is replaced with an indefinite metric (φ|ψ), which has the
property that states with an odd number of scalar photons have
a negative norm. An excellent description of the indefinite
metric and the quantization in the Lorentz gauge is given
in the text by Cohen-Tannoudi et al. [6] and we will use
notation similar to theirs. It should be emphasized that this
is the currently accepted covariant formulation of quantum
electrodynamics [3–6].

The adjoint of the operators â⊥1, â⊥2, âl , and âs with respect
to the new (indefinite) metric will be denoted by âT

⊥1, âT
⊥2,

âT
l , and âT

s . The desired properties of the indefinite metric

can be obtained if we postulate the following commutation
relations: [

â⊥ε(k),âT
⊥ε(k′)

] = δk−k′ ,[
âl(k),âT

l (k′)
] = δk−k′ , (1)[

âs(k),âT
s (k′)

] = −δk−k′ .

It is important to note the minus sign in the commutation
relation for âs(k), which plays an important role in maintaining
the consistency of the theory. This is equivalent to taking âT

s =
−â

†
s , where â

†
s is the adjoint of âs with respect to the usual inner

product. It is then straightforward to show that states with an
odd number of scalar photons have a norm of −1.

The Hamiltonian for the radiation field is chosen to be
Hermitian with respect to the indefinite metric and has the
form

ĤR =
∫

d3k
h̄ω

2

[ (
âT

⊥1â⊥1 + â⊥1â
T
⊥1

) + (
âT

⊥2â⊥2 + â⊥2â
T
⊥2

)
+ (

âT
l âl + âl â

T
l

) − (
âT

s âs + âs â
T
s

) ]
. (2)

The minus sign on the last term in Eq. (2) gives a positive
energy for the scalar photons when combined with the
commutation relations of Eq. (1).

The components of the vector and scalar potential operators
are given by

Âi (r) =
∫

d3k

√
h̄

2ε0ω (2π )3

[
âi (k) eik·r + âT

i (k) e−ik·r] ,

(3)

Âs (r) =
∫

d3k

√
h̄

2ε0ω (2π )3

[
âs (k) eik·r + âT

s (k) e−ik·r] .

Here, ε0 is the permittivity of free space and Âs ≡ �̂/c. Âi(r)
and Âs(r) form the components of a four-vector Âμ(r).

The particle field operators ψ̂(r,t) and ψ̂†(r,t) are defined
as usual in the second-quantized Dirac theory. If we let ĤP

denote the Dirac Hamiltonian describing the particles in the
absence of any interaction with the electromagnetic field,
then the total Hamiltonian for the system of particles and
electromagnetic field has the form [6]

Ĥ = ĤP + ĤR + ĤI . (4)

Here the interaction Hamiltonian is given by

ĤI =
∫

d3rjμ (r) Aμ (r)

=
∫

d3r[−ĵ (r) · Â (r) + cρ̂ (r) Âs (r)], (5)

where ρ̂(r) and ĵ(r) are the usual charge and current density
operators.

The time dependence of ψ̂(r,t) in the Heisenberg picture
can be calculated from

dψ̂ (r,t)
dt

= 1

ih̄
[ψ̂ (r,t) ,Ĥ ]. (6)
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Evaluating the commutators gives

ih̄
dψ̂ (r)

dt
=

[
βmc2+qcÂs (r) + cα ·

(
h̄

i
∇ − qÂ (r)

)]
ψ̂ (r) .

(7)

This is the usual second-quantized Dirac equation, where α

and β are the Dirac matrices, which is thus consistent with the
Hamiltonian of Eq. (4).

The negative norms that arise from the anomalous commu-
tation relations for âs(k) and âT

s (k) could, in principle, lead
to events that occur with negative probabilities. This can be
avoided [1–3] if we restrict the physical states |χ〉 of the field
to those that satisfy the additional (subsidiary) condition

[âl (k) − âs (k) + λ̂ (k)] |χ〉 = 0. (8)

Here the operator λ̂(k) is defined by

λ̂ (k) = c

ω
√

2ε0h̄ω
ρ̂ (k) . (9)

It can be shown that the subsidiary condition of Eq. (8)
corresponds to the Fourier transform of the Lorentz condition

∇ · Â + 1

c2

∂�̂

∂t
= 0. (10)

Only the positive-frequency components of Eq. (10) are
included in the subsidiary condition of Eq. (8), since it would
be impossible to satisfy that condition with the negative-
frequency components included.

In the absence of any charges, λ̂(k) = 0 and the subsidiary
condition takes on the simpler form

[âl (k) − âs (k)] |χ〉 = 0. (11)

It can be seen from Eq. (11) that the probability amplitudes to
annihilate a longitudinal or scalar photon must be equal for a
pure radiation field, such as a beam of light. The probability
of detecting a scalar photon is then equal and opposite to
that of detecting a longitudinal photon, and the total detection
probability is just that of the transverse photons. This is an
example of the way in which the subsidiary condition ensures
that no physically observable event can occur with negative
probability.

It can be shown from the commutation relations of Eq. (3)
that

âs â
T
s |0〉 = −|0〉 , (12)

where |0〉 is the vacuum state with no photons. This result is
very useful when calculating the relevant matrix elements for
use in perturbation theory.

This paper is primarily concerned with a comparison of the
entanglement obtained in the Lorentz and Coulomb gauges.
The velocities of the particles will be assumed to be much less
than the speed of light and only the electromagnetic field will
be treated covariantly. In that limit Eq. (4) reduces [26] to the
usual nonrelativistic Hamiltonian

Ĥ = 1

2m

(
h̄

i
∇ − e

c
Â

)2

+ q�̂ + ĤR. (13)

The entangled states of interest can now be calculated in the
Lorentz gauge using the Hamiltonian of Eq. (13) and the

commutation relations of Eq. (1). A fully relativistic example
including the use of the Dirac theory for the particles will be
described elsewhere.

III. ENTANGLEMENT IN THE LORENTZ GAUGE

Any physical interaction between two systems can gen-
erate entanglement between them. In the Lorentz gauge, the
exchange of longitudinal and scalar photons can produce an
entangled state between the two harmonic oscillators shown
in Fig. 1. For example, oscillator A can emit a longitudinal or
scalar photon and make a transition from its excited state to
its ground state, after which oscillator B can absorb the photon
and make a transition from its ground state to its excited state.

For simplicity, we will consider the case of one-dimensional
harmonic oscillators in which the motion of the charged
particles is confined to lie along the direction between the
two oscillators, which we will take to be the x axis. Similar
results are expected for two-level atoms, but the use of
one-dimensional harmonic oscillators simplifies the matrix
elements needed for perturbation theory calculations. This
assumption limits the dipole moments of the oscillators to
the x̂ direction while the wave vectors of the photons can be
in any direction.

In the absence of any coupling to the electromagnetic field,
the energy eigenstates of the system are product states such as

|ψ0〉 = |1A〉 |0B〉 . (14)

Here, |1A〉denotes the first excited state of oscillator A while
|0B〉 denotes the ground state of oscillator B. The difference in
the energies of the first excited states will be denoted by δE =
h̄(ωB − ωA), where ωA and ωB are the unperturbed resonant
frequencies of the two oscillators. It will be assumed that
δE 	 h̄ωA.

If we include the coupling to the electromagnetic field, then
the exchange of virtual photons will perturb the eigenstate of
Eq. (14) to give a state of the form

|ψ〉 = |1A〉 |0B〉 + ε |0A〉 |1B〉 . (15)

Here, ε is a complex probability amplitude whose value can be
calculated using perturbation theory. [Equation (15) will not
be normalized in order to simplify the notation.] The fact that
δE is small causes other possible terms in the perturbed state
of Eq. (15), such as those in which both oscillators occupy
higher excited states, to be negligible in comparison, as will
be seen below.

One of the main goals of this paper is to compare the value of
ε as calculated in the Lorentz gauge to the corresponding value
in the Coulomb gauge. The exchange of transverse photons
will be neglected here since it has the same effect in both
gauges. As mentioned above, the velocities of the particles
will be assumed to be small compared to the speed of light.

The value of ε can be calculated to second order in the
charge q of the particles using steady-state perturbation theory
[25]:

|ψ (2)〉 =
∑
m

∑
l

|m〉〈m|ĤI |l〉〈l|ĤI |n〉
(En − Em)(En − El + iηh̄)

. (16)
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Here, |ψ (2)〉 is the second-order change in the eigenstate, |n〉
is the initial state of Eq. (14), and |l〉 and |m〉 are complete sets
of possible virtual states. The iηh̄ term avoids a singularity
if En = El , where the limit of η → 0 is taken as usual. The
matrix elements do not allow transitions to intermediate states
where |l〉 = |n〉 and the corresponding term can be omitted
from the sum over l. The value of ε in Eq. (15) corresponds to
the coefficient of the virtual state |m〉 = |0A〉 |1B〉.

There are two basic kinds of processes that can produce
an entangled state of the form shown in Eq. (15). The
most intuitive process is one in which oscillator A emits a
longitudinal or scalar photon and makes a transition from its
excited state to its ground state, after which oscillator B absorbs
the photon and makes a transition from its ground state to
its excited state. Diagrams of this kind will be referred to
as type I.

In addition to this, it is possible for oscillator B to emit
a longitudinal or scalar photon and make a transition from
its ground state to its excited state, even though the energy
En − El in the denominator of Eq. (16) is larger in magnitude
than for the more intuitive type-I processes described above.
In that case, oscillator A can subsequently absorb the photon
and make a transition from its excited state to its ground state.
Counterintuitive diagrams of this kind will be referred to as
type II. Their contribution to ε will be found to be comparable
to that from the more intuitive type-I processes because there is
less cancellation between the probably amplitudes to exchange
longitudinal and scalar photons for a type-II process.

We will first consider a type-I process in which oscillator
A emits a virtual scalar photon that is absorbed by oscillator
B. The use of Eqs. (3) and (5) gives the matrix element for the
emission of the scalar photon:

〈l|Ĥ ′
S |n〉 = 〈0A,kS |

∫
d3rcρ̂ÂS |1A,0S〉

= qc

√
h̄

2ε0ωγ (2π )3

∫
d3rψ∗

0A(r)e−ikS ·rψ1A(r).

(17)

Here, |1A,0S〉 denotes the initial state with oscillator A in its
first excited state and no scalar photons, while 〈0A,kS | denotes
the intermediate state with oscillator A in its ground state and
a scalar photon with wave vector kS and frequency ωγ = ckS .
The interaction Hamiltonian for the scalar photons has been
denoted by Ĥ ′

S . The nonrelativistic limit of the Hamiltonian,
Eq. (13), was used to express the matrix elements in terms of
the harmonic oscillator wave functions ψ0A(r) and ψ1A(r).

The matrix element of Eq. (17) could be evaluated in the
dipole approximation, but it will be found that this would lead
to divergent integrals. The divergence can be eliminated by
retaining the exponential factor and not making the dipole
approximation, in which case the integral of Eq. (17) can be
evaluated to give

〈l|Ĥ ′
S |n〉 = qc

√
h̄

2ε0ωγ (2π )3 (−ikS · d) e−ikS ·rA0e−(kS ·d)2/2.

(18)

Here, rA0 is the location of the center of oscillator A and d is
the dipole moment of the harmonic oscillator (aside from the
charge) and is given by

d = 〈0A| x̂ |1A〉 =
√

h̄

2mωA

, (19)

where m is the mass of the particles.
The matrix element for the absorption of the scalar photon

by oscillator B can be evaluated in the same way to give

〈m|Ĥ ′
S |l〉 = −qc

√
h̄

2ε0ωγ (2π )3 (ikS · d) eikS ·rB0e−(kS ·d)2/2,

(20)

where it has been assumed that the two oscillators have the
same dipole moment. It is important to note the minus sign
in front of this equation, which comes from Eq. (12). The
contribution from the longitudinal and scalar photons will be
found to nearly cancel for a type-I process as a result of this
minus sign.

Converting the sum of Eq. (16) to an integral and inserting
Eqs. (18) and (20) gives the contribution |ψ (2)〉IS of this
process to the perturbed state as

|ψ (2)〉IS = q2c

2ε0δE (2π )3

∫
d3kS

(kS · d)

kS

2

× exp [−ikS · (rA0−rB0)]

×e−(kS ·d)2 1

ωA − ωγ + iη
|0A〉 |1B〉 . (21)

The contribution |ψ (2)〉IIS from the emission of a scalar
photon by oscillator B and its absorption by oscillator A can be
calculated in a similar way. The main difference is the energy
of the intermediate state, with the result that

|ψ (2)〉IIS = q2c

2ε0δE (2π )3

∫
d3kS

(kS · d)

kS

2

× exp [ikS · (rA0 − rB0)] e−(kS ·d)2

× 1

−ωB − ωγ + iη
|0A〉 |1B〉 . (22)

We now calculate the contribution from a type-I process in
which oscillator A emits a longitudinal photon that is absorbed
by oscillator B. The matrix elements for the emission of
a longitudinal photon by oscillator A involve −ĵ(r) · Al(r),
where Al(r) is the longitudinal part of the vector potential. In
the nonrelativistic limit this gives

〈l|Ĥ ′
l |n〉 = − q

2m

√
h̄

2ε0ωγ (2π )3

∫
d3rψ∗

0A (r) (k̂l · d̂)

×
(

e−ikl ·r h̄
i

∂

x
+ h̄

i

∂

x
e−ikl ·r

)
ψ1A (r) . (23)

Here, ωγ = ckl , Ĥ ′
l denotes the interaction Hamiltonian

associated with longitudinal photons with wave vector kl , and
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k̂l and d̂ denote the corresponding unit vectors. Evaluating this
integral gives

〈l|Ĥ ′
l |n〉 = −qc

ωA

ωγ

√
h̄

2ε0ωγ (2π )3 (−ikl · d) e−ikl ·rA0

×e−(kl ·d)2/2. (24)

This matrix element for the emission of a longitudinal photon
differs from that for the emission of a scalar photon, Eq. (18),
by a minus sign and a factor of ωA/ωγ . This ensures that the
subsidiary condition of Eq. (11) would be satisfied exactly
for the emission of real longitudinal and scalar photons with
ωA = ωγ , for example.

The matrix element for the absorption of a longitudinal
photon by oscillator B can be evaluated in the same way to give

〈m|Ĥ ′
l |l〉 = −qc

ωB

ωγ

√
h̄

2ε0ωγ (2π )3 (ikl · d) eikl ·rB0

×e−(kl ·d)2/2. (25)

The contribution |ψ (2)〉I l of this process to the perturbed
eigenstate is then given by combining Eqs. (16), (24), and (25)
to obtain

|ψ (2)〉I l = − q2c

2ε0δE (2π )3

∫
d3kl

(kl · d)

kl

2

× exp [−ikl · (rA0 − rB0)] e−(kl ·d)2 ωAωB

ω2
γ

× 1

ωA − ωγ + iη
|0A〉 |1B〉 . (26)

Similarly, the contribution |ψ (2)〉II l from the emission of
a longitudinal photon by oscillator B and its absorption by
oscillator A can be shown to be

|ψ (2)〉II l = − q2c

2ε0δE (2π )3

∫
d3kl

(kl · d)

kl

2

× exp [ikl · (rA0 − rB0)] e−(kl ·d)2 ωAωB

ω2
γ

× 1

−ωB − ωγ + iη
|0A〉 |1B〉 . (27)

The nonrelativistic Hamiltonian of Eq. (13) also contains a
term proportional to q2A2/(2mc2), which can simultaneously
emit or absorb two longitudinal photons. The two photons are
emitted or absorbed at the same location, however. As a result,
the A2 term cannot contribute in order q2 to the effects of
interest here, which require a transition in the state of both
oscillators.

Combining Eqs. (21), (22), (26), and (27) gives the
total second-order contribution to the entangled state. This
corresponds to a value of ε given by

ε = − q2

ε0δE (2π )3

∫
d3k

(k · d)

k2

2

cos [k · (rA0 − rB0)] e−(k·d)2

×
{

1

2

[(
ωAωB − ω2

γ

)
ωγ

] [
1

ωA − ωγ + iη
− 1

ωB + ωγ

]}
,

(28)

where ωγ = ck. The integral can be evaluated if we expand
the quantity inside the curly brackets in a power series in δE,
which has been assumed to be small. This gives

ε = − q2

ε0δE (2π )3

∫
d3k

(k · d)

k2

2

cos [k · (rA0 − rB0)] e−(k·d)2

×
{

1 + 1

2

(ω2
A + ω2

γ )

ωγ (ωA + ωγ )
(
ωA − ωγ + iη

) (
δE

h̄

)

+ 1

2

1

(ωA + ωγ )2

(
δE

h̄

)2

+ · · ·
}
. (29)

The integrals in Eq. (29) can be evaluated using contour
integration and other techniques in the limit where the dipole
moment is much less than the distance between the oscillators,
or d 	 L. In that limit, the value of the coefficient ε in the
entangled state of Eq. (15) reduces to

εL = d2q2

2πε0δEL3

[
1 − 1

2π

(
δE

h̄ωL

)
+ 1

2

(
δE

h̄ωA

)2

+ · · ·
]
,

(30)

where ωL ≡ c/L. Equation (30) corresponds to the principal
value integral of Eq. (29). This result has been labeled with a
subscript L to indicate that it was calculated in the Lorentz
gauge. The corresponding value in the Coulomb gauge is
calculated in the next section. Neither calculation includes the
contribution from the exchange of transverse photons, which
is the same in both gauges and is of no interest here.

IV. ENTANGLEMENT IN THE COULOMB GAUGE

It was shown in the previous section that the exchange of
longitudinal and scalar photons can produce an entangled state
of two harmonic oscillators. The corresponding calculation
will now be performed in the Coulomb gauge where the
Coulomb potential is not quantized and there is no longitudinal
component of the vector potential.

The total Hamiltonian of the system is still given by Eq. (4)
where ĤP is the same as before. But now the Hamiltonian for
the radiation field in the absence of interaction is given by

ĤR =
∫

d3k
h̄ω

2

[(
âT

⊥1â⊥1 + â⊥1â
T
⊥1

) + (
âT

⊥2â⊥2 + â⊥2â
T
⊥2

)]
,

(31)

which only includes the energies of the transverse photons.
The interaction Hamiltonian becomes [6]

ĤI= −
∫

d3rĵ(r) · Â⊥(r) + 1

8πε0

∫ ∫
d3rd3r′ ρ̂(r)ρ̂(r′)

|r − r′| .

(32)

Now ĤI only involves the transverse component Â⊥(r) of the
vector potential, while the second term in Eq. (32) corresponds
to the classical Coulomb energy of a charge distribution; the
operators Âl and �̂ have been eliminated.

The comparison with the Lorentz gauge is more apparent
if we use the Fourier transform of the Coulomb interaction:

1

8πε0

∫ ∫
d3rd3r′ ρ̂(r)ρ̂(r′)

|r − r′| =
∫

d3k
ρ̂†(k)ρ̂(k)

2ε0k2
. (33)
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Since the interaction Hamiltonian is already second order in q,
we only need to use first-order perturbation theory here. The
relevant perturbation to the state vector is now given by

|ψ (2)〉 =
∑
m

|m〉 〈m|Ĥ ′
C |n〉

En − Em

, (34)

where we have denoted the Coulomb interaction Hamiltonian
of Eq. (33) by Ĥ ′

C . The effects of the transverse photons will
be neglected once again.

The operator ρ̂(k) can produce a transition of one of the
harmonic oscillators from one state to another, while ρ̂†(k)ρ̂(k)
can produce simultaneous transitions in both oscillators. The
matrix elements of ρ̂(k) can be shown to be the same as
those of Eqs. (17) and (20), aside from a constant, where
the exponential factor now comes from the Fourier transform.

There are four different ways in which the virtual state
|0A〉|1B〉 can be produced starting from |1A〉|0B〉. For example,
there is a contribution |ψ (2)〉i in which operator ρ̂(k) produces a
transition of oscillator A from its excited state to its ground state
while the operator ρ̂†(k) = ρ̂(−k) simultaneously produces a
transition of oscillator B from its ground state to its excited
state. From Eq. (33), the matrix element Mi associated with
this process is given by

Mi =
∫

d3k
〈1B |ρ̂ (−k)| 0B〉 〈0A |ρ̂ (k)| 1A〉

2ε0k2
. (35)

It is also possible for operator ρ̂(−k) to produce a transition
of oscillator A from its excited state to its ground state, while
the operator ρ̂(k) produces a transition of oscillator B from
its ground state to its excited state. The corresponding matrix
element is given by

Mii =
∫

d3k
〈1B |ρ̂ (k)| 0B〉 〈0A |ρ̂ (−k)| 1A〉

2ε0k2
. (36)

In principle, it is also possible for the operator ρ̂(k) to
annihilate a particle from oscillator A in state |1A〉 and recreate
it in oscillator B in state |1B〉, with a similar effect from operator
ρ̂(−k). This corresponds to matrix elements of the form

Miii =
∫

d3k
〈0A |ρ̂ (−k)| 0B〉 〈1B |ρ̂ (k)| 1A〉

2ε0k2
. (37)

Matrix elements of this kind are negligibly small in the limit
of d 	 L, since the overlap of the wave functions of the two
oscillators decreases exponentially with their separation. We
therefore neglect Miii and the corresponding matrix element
Miv with ρ̂(k) and ρ̂(−k) interchanged.

Inserting the values of Mi and Mii into Eq. (34) gives

|ψ (2)〉 = − q2

ε0δE (2π )3

∫
d3k

(k · d)

k2

2

cos [kl · (rA0 − rB0)]

×e−(k·d)2 |0A〉 |1B〉 . (38)

Evaluating this integral as before gives the result

εC = d2q2

2πε0δEL3
. (39)

A subscript C has been added to indicate that this is the
coefficient of the term |0A〉 |1B〉 in the entangled state as
calculated in the Coulomb gauge.

V. COMPARISON OF THE RESULTS IN THE
TWO GAUGES

A comparison of εC from Eq. (39) with εL from Eq. (30)
shows that the exchange of longitudinal and scalar photons in
the Lorentz gauge gives an entangled state that is very different
in form from that obtained in the Coulomb gauge. The leading
term in the expansion of Eq. (30) is the same as that in Eq. (39),
but the Coulomb gauge does not have the same dependence
on the energy difference δE as is obtained in the Lorentz gauge.
This can be understood in part as being due to the presence
of the energies of the intermediate states in the denominators
of the second-order perturbation theory of Eq. (16), which
does not occur in the Coulomb gauge treatment. In addition,
the matrix elements associated with the longitudinal photons
in Eq. (25) do not have any direct counterpart in the Coulomb
gauge. Thus, it is not surprising that the form of the entangled
state is different in the two cases.

Nevertheless, one would expect the two results to be
physically equivalent based on gauge invariance. For classical
fields, the Coulomb and Lorentz gauges are related by a gauge
transformation of the form

A′ (r,t) = A (r,t) + ∇� (r,t) ,
(40)

φ′ (r,t) = φ (r,t) − ∂� (r,t)
∂t

,

where �(r,t) is an arbitrary function of position and time [27].
Under such a gauge transformation, the new wave function
becomes [26]

ψ ′ (r,t) = e−iq�(r,t)/h̄ψ(r,t). (41)

The system is physically equivalent in either gauge because
ψ ′(r,t) is not directly observable and ρ = ψ∗ψ is unchanged
by the transformation.

The situation is more complicated for quantized fields in
part because the Hilbert spaces have different dimensions. It
can be shown [6,28] that the state vector |ψC〉 in the Coulomb
gauge should be related to the state vector |ψL〉 in the Lorentz
gauge by

|ψC〉 = T̂ |ψL〉. (42)

The transformation T̂ is given by

T̂ = e−ic
∫

ρ̂(r)Ŝ(r)d3r/h̄, (43)

while the operator Ŝ(r) is defined by

Ŝ (r) =
∫

d3k

√
h̄

2ε0ω (2π )3

[
âs (k)

iω
eik·r − âT

s (k)

iω
e−ik·r

]
.

(44)

The operators T̂ and Ŝ(r) are defined in the Schrödinger
picture, which will be used throughout this section.

This transformation has the property that the Dirac field
operator becomes

T̂ ψ̂(r)T̂ −1 = eiqcŜ(r)/h̄ψ̂(r), (45)

which leaves the charge density unaltered:

T̂ ρ̂ (r) T̂ −1 = ρ̂ (r) . (46)
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Thus, the probability of detecting a particle at any given
location is unaffected by such a transformation and the results
of the two gauges should be physically equivalent [6].

It will now be shown that the entangled states calculated in
the Lorentz and Coulomb gauges are indeed related to each
other by the transformation of Eq. (42). Consider the state
vector |ψ ′

L〉 obtained by transforming the perturbed state vector
calculated in the Coulomb gauge back into the Lorentz gauge:

|ψ ′
L〉 ≡ T̂ −1 |ψC〉 . (47)

Here, |ψC〉 is the entangled state of Eq. (15) using the value of
εC calculated from the Coulomb gauge in Eq. (39). To second
order in q, the value of |ψ ′

L〉 can be obtained by expanding the
transformation T̂ −1 to second order in q and multiplying by
the appropriate term in the expansion of |ψC〉. This gives

|ψ ′
L〉(2) = (T̂ −1)(2)

∣∣ψ (0)
C

〉 + (T̂ −1)(1)
∣∣ψ (1)

C

〉+(T̂ −1)(0)
∣∣ψ (2)

C

〉
.

(48)

The superscripts in parentheses correspond to the order of that
term in q. As shown in the Appendix, the result is

|ψ ′
L〉 = |1A〉|0B〉 + d2q2

2πε0δEL3

[
1 − 1

2π

(
δE

h̄ωL

)

+ 1

2

(
δE

h̄ωA

)2

+ · · ·
]

|0A〉 |1B〉 . (49)

A comparison of Eq. (49) with Eq. (30) shows that the
results from the Lorentz and Coulomb gauges are indeed
related by the transformation T̂ as expected, at least to second
order in q. The derivation of Eq. (49) assumed that δE 	 h̄ωA

and that d 	 L as before. It may be worth noting that the
two gauges give equivalent results for the contribution from
each Fourier component k of the field individually before any
integration is performed. These results show that the entangled
states in the Lorentz and Coulomb gauges are physically
equivalent despite the difference in their forms.

This result is in agreement with a general proof [6,28]
that the Coulomb and Lorentz gauges must give equivalent
results. The proof is based on the use of the transformation
T̂ to transform the Hamiltonian in the Lorentz gauge into the
Coulomb gauge. The result is

T̂ ĤLT −1 = ĤP + ĤR −
∫

d3rĵ (r) · Â⊥ (r)

+ 1

8πε0

∫ ∫
d3rd3r′ ρ̂(r)ρ̂(r′)

|r − r′|
− qc

∫
d3rψ̂†(r)α · [Âl(r) − c∇Ŝ(r)]ψ̂(r).

(50)

Here, ĤL denotes the Hamiltonian in the Lorentz gauge, as
given by Eqs. (2)–(5), while Âl(r) is the longitudinal part of
the vector potential operator. The next-to-last term in Eq. (50)
corresponds to the usual Coulomb potential, as in Eq. (32).
The Fourier transform of the last term in Eq. (50) can be
shown to contain only the current operator multiplied by
[âT

l (k) − âT
s (k)] and its adjoint. As a result, the longitudinal

and scalar photons are generated with equal but opposite
probability amplitudes, as in Eq. (11), and their effects cancel

out just as they would in the absence of any interaction. Thus,
the last term in Eq. (50) has no physical effects and can be
ignored [6], which leaves us with the Hamiltonian ĤC in the
Coulomb gauge.

The results presented here provide an explicit example
of the way in which the Coulomb and Lorentz gauges give
equivalent results, as would be expected from the proof
outlined above. Aside from providing a covariant formulation
for quantum information protocols, investigations of this
kind are also relevant because any proof could conceivably
contain hidden assumptions or other weaknesses. For example,
consider classical charge and current distributions ρc(r,t)
and j c(r,t) that are explicit functions of time. How would
the transformation T̂ work in that case? We start with the
Schrödinger equation in the Lorentz gauge:

ih̄
d |ψL〉

dt
= ĤL |ψL〉 . (51)

Multiplying both sides of the equation by T̂ and inserting
T̂ −1T̂ = Î on the right gives

ih̄T̂
d |ψL〉

dt
= T̂ ĤLT̂ −1T̂ |ψL〉 = ĤC |ψC〉 . (52)

The point is that

T̂
d |ψL〉

dt
�= d

dt
(T̂ |ψL〉) (53)

if T̂ is time dependent, which it is from its definition in Eq. (43)
and the fact that ρc(r,t) is time dependent. With that in mind,
the left-hand side of Eq. (52) can be rewritten as

ih̄T̂
d|ψL〉

dt
= ih̄

d(T̂ |ψL〉)
dt

− ih̄
dT̂

dt
|ψL〉. (54)

Combining Eqs. (51) through (54) gives

ih̄
d |ψC〉

dt
= ĤC |ψC〉 + ih̄

dT̂

dt
|ψL〉 . (55)

It can be seen from Eq. (55) that the transformation
T̂ does not give the correct Schrödinger equation in the
Coulomb gauge if T̂ is time dependent. Thus, the standard
proof is not valid for time-dependent classical charge and
current distributions in its current form. The proof outlined
above can presumably be generalized to deal with time-
dependent classical sources, but this illustrates the importance
of considering simple examples, such as the entangled states
discussed above.

VI. SUMMARY AND CONCLUSIONS

The covariant quantization of the electromagnetic field in
the Lorentz gauge introduces longitudinal and scalar photons
in addition to the transverse photons familiar in the Coulomb
gauge [1–6]. For a freely propagating beam of light, the effects
of the longitudinal and scalar photons cancel out and they can
be ignored. This is not the case in the presence of charge or
current distributions, where the longitudinal and scalar photons
can produce observable effects.

It has been shown here that the exchange of longitudinal
and scalar photons can produce an entangled eigenstate of
two harmonic oscillators that is quite different from that
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produced in the Coulomb gauge where the longitudinal
and scalar photons do not exist. This difference can be
understood from the presence of the energies of the intermedi-
ate states in the denominators of second-order perturbation
theory as well as from the different form of the matrix
elements.

It was also shown that the entangled state in the Coulomb
gauge can be related to that in the Lorentz gauge by
a transformation T̂ involving the charge density and an
operator associated with the scalar photons [6,28]. This
transformation leaves the charge density unaltered, as would
a gauge transformation for classical fields, and the entangled
states in the two gauges are thus physically equivalent. The
calculations described here were limited to second order in
perturbation theory and it was assumed that δE 	 h̄ωA and
d 	 L.

This example illustrates the importance of carefully con-
sidering what is actually observable in an entangled state.
The change in the probability amplitude ε for the |0A〉 |1B〉
component in the entangled state may seem to suggest that
the exchange of longitudinal and scalar photons has produced
an additional source of entanglement. One might suppose
that we could measure the states occupied by the harmonic
oscillators in the unperturbed basis and thus determine the
magnitude of ε using an ensemble of such states. But the
state vector is not physically observable and neither are
the coefficients in an expansion of the state vector in a
particular basis, as this example illustrates. This is also the case
for gauge transformations in elementary quantum mechanics
using classical fields.

Determining the amount of entanglement present in a
quantum system is an ongoing field of investigation [29], and
several different entanglement measures have been introduced,
such as the concurrence or entanglement of formation [30]. If
we were to simply apply one of these entanglement measures
to the state of Eq. (15) in the usual way, we would find that the
results depend on the value of the parameter ε. This may seem
to indicate that there is a different amount of entanglement
in the Coulomb and Lorentz gauges, even though they are
physically equivalent. This difficulty may be due in part to
the fact that Eq. (15) ignores the virtual photons that are
also present in the system in addition to the amplitudes of
the oscillator states, and that may have to be taken into
account in calculating the total amount of entanglement in
the system. These issues are beyond the intended scope of
this paper but they illustrate the need for further work in this
area.

In view of the many nonclassical effects that arise from
quantizing the field, it seems remarkable that it should make
no difference whether or not we quantize two of the four
components of the field. Simple examples of this kind provide
physical insight into the way in which the two gauges are
equivalent, which is of fundamental importance. In addition, a
manifestly covariant description of entanglement is desirable
for a fundamental understanding of experiments based on
Bell’s inequality, especially in view of the nonlocal collapse
of the wave function. Techniques of this kind may also be
useful for a manifestly covariant description of the time
evolution of systems used for quantum information processing
and quantum communications, which may be of practical

importance for satellite systems where relativistic effects may
become significant.
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APPENDIX

As discussed in the main text, the Coulomb and Lorentz
gauges should be related by the transformation T̂ defined in
Eq. (43). In this Appendix, the expansion of Eq. (48) will
be used to show that the two gauges are equivalent for the
situation illustrated in Fig. 1, at least to second order in q.

The last term in the expansion of Eq. (48) can be found
by noting that the zero-order term in T̂ −1 is just the identity
Î . The second-order term in the state vector in the Coulomb
gauge is already given in Eq. (38), so that

(T̂ −1)(0)|ψ (2)〉 = − q2

ε0δE (2π )3

∫
d3k

(k · d)

k2

2

× cos [kl · (rA0 − rB0)] e−(k·d)2 |0A〉 |1B〉 .

(A1)

The first-order term in T̂ −1 can be found by expanding the
exponential in the definition of T̂ in a Taylor series to obtain

(T̂ −1)(1) = ic

∫
ρ̂(r)Ŝ(r)d3r/̄h. (A2)

where the operator Ŝ is defined in Eq. (44). This gives

(T̂ −1)(1) = ic

h̄

∫
d3k

√
h̄

2ε0ωk

[
1

iωk

ρ̂ (−k) âs (k)

− 1

iωk

ρ̂ (k) â†
s (k)

]
. (A3)

Inserting the matrix elements of ρ(k) from Eqs. (18)
and (20) gives

( ˆT −1)(1) = iqd

h̄ (2π )3/2

∫
d3k

√
h̄

2ε0ωk

e−(k·d)2
/

2k̂ · d̂

×
∑

i

[âs (k) eik·r0i + âT
s (k) e−ik·r0i ] (b̂i + b̂

†
i ).

(A4)

Here, b̂i and b̂
†
i are the usual raising and lowering operators,

respectively, for the harmonic oscillators located at r0i .
The first-order term in the state vector can be found by

rewriting [6] the last term in the Hamiltonian of Eq. (50) as

Ĥls = −
∫

d3k

√
h̄

2ε0ωk

{
jl (−k) [al (k) − as (k)] + jl (k)

× [
aT

l (k) − aT
s (k)

] }
. (A5)
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Using first-order perturbation theory and inserting the matrix
elements for jl(k) and jl(−k) gives

|ψ (1)〉 =
∫

d3k

√
h̄

2ε0ωk

e−(k·d)2/2

{
iωAdq

h̄ωA − h̄ωk + iη

×e−ik·rA0 |0A〉 |0B〉 + iωBdq

h̄ωk+h̄ωB

e−ik·rB0 |1A〉 |1B〉
}

×k̂ · d̂
[
aT

l (k) − aT
s (k)

] |0F 〉 . (A6)

Combining Eqs. (A4) and (A6) and making use of the
commutation relations of Eq. (1) gives

( ˆT −1)(1)|ψ (1)〉 = − q2d2

(2π )3

∫
d3k

1

2ε0ωk

e−(k·d)2
(k̂ · d̂)2

×
{

ωA

h̄ωA − h̄ωk + iη
e−ik·(rA0−rB0)

+ ωB

h̄ωB + h̄ωk

eik·(rA0−rB0)

}
|0A〉 |1B〉 |0F 〉 .

(A7)

The exponential factors in Eq. (A7) can be rewritten as

e±ik·(rA0−rB0) = cos [k · (rA0 − rB0)] ± i sin [k · (rA0 − rB0)] .

(A8)

The sine term is an odd function of k and does not contribute
to the integral, so Eq. (A7) reduces to

( ˆT −1)(1)|ψ (1)〉 = − 1

(2π )3

q2d2

2ε0h̄

∫
d3k
ωk

e−(k·d)2
(k̂ · d̂)2

×
{

ωA

ωA − ωk + iηh̄
+ ωB

ωB + ωk

}

× cos [k · (rA0 − rB0)] |0A〉 |1B〉 |0F 〉 .

(A9)

The remaining term in Eq. (48) can be found by expanding
T̂ −1 to second order in a Taylor series expansion:

(T̂ −1)(2) = − c2

2h̄2

∫
ρ̂ (r) Ŝ (r) d3r

∫
ρ̂(r′)Ŝ(r ′)d3r ′.

(A10)

Inserting the matrix elements for ρ(k) and using the commu-
tation relations as before gives

( ˆT −1)(2)|ψ (0)〉 = 1

(2π )3

q2d2

2ε0

∫
d3k
h̄ωk

e−(k·d)2
(k̂ · d̂)2

× cos [k · (rA0 − rB0)] |0A〉 |1B〉 |0F 〉 ,

(A11)

where we have used the form of |ψ (0)〉 from Eq. (14). Virtual
states containing more than one photon have been neglected
as in the text.

Combining Eqs. (A1), (A9), and (A11) and expanding in
powers of δE as in the text gives the same result as Eq. (29)
which will not be repeated here. Performing the same integrals
then gives

|ψ ′
L〉(2) = (T̂ −1)(2)|ψ (0)〉 + (T̂ −1)(1)|ψ (1)〉 + (T̂ −1)(0)|ψ (2)〉

= d2q2

2πε0δEL3

[
1 − 1

2π

(
δE

h̄ωL

)
+1

2

(
δE

h̄ωA

)2

+ · · ·
]

× |0A〉 |1B〉 |0F 〉 . (A12)

Eq. (A12) is the same as the results from the Lorentz gauge
in Eq. (30). This shows that the two gauges are indeed related
by the transformation T̂ and physically equivalent. It is worth
noting that this transformation gives the correct results in the
Lorentz gauge for each k vector in the field individually. Thus,
the equivalence of the two gauges is independent of the results
of the integrals, which are primarily useful in showing the
dependence on the separation between the two oscillators.

Finally, it has been pointed out that what is traditionally
[3–6,27] referred to as the Lorentz gauge is now sometimes
referred to as the Lorenz gauge. The traditional terminology is
used here.
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