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Initial-state dependence of the quench dynamics in integrable quantum systems
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We identify and study classes of initial states in integrable quantum systems that, after the relaxation dynamics
following a sudden quench, lead to near-thermal expectation values of few-body observables. In the systems
considered here, those states are found to be insulating ground states of lattice hard-core boson Hamiltonians.
We show that, as a suitable parameter in the initial Hamiltonian is changed, those states become closer to Fock
states (products of single site states) as the outcome of the relaxation dynamics becomes closer to the thermal
prediction. At the same time, the energy density approaches a Gaussian. Furthermore, the entropy associated
with the generalized canonical and generalized grand-canonical ensembles, introduced to describe observables in
integrable systems after relaxation, approaches that of the conventional canonical and grand-canonical ensembles.
We argue that those classes of initial states are special because a control parameter allows one to tune the
distribution of conserved quantities to approach the one in thermal equilibrium. This helps in understanding the
approach of all the quantities studied to their thermal expectation values. However, a finite-size scaling analysis
shows that this behavior should not be confused with thermalization as understood for nonintegrable systems.
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I. INTRODUCTION

The relaxation dynamics of isolated quantum systems after
a sudden quench is a topic that is attracting much current
attention. Interest on this problem has been sparked by recent
experiments with ultracold gases [1–4]. The high degree of
isolation in those experiments allows one to consider them
as almost ideal analog simulators of the unitary dynamics of
pure quantum states. For example, in Ref. [2], Kinoshita et al.
showed that observables in a (quasi-)one-dimensional bosonic
system close to an integrable point do not relax to the values ex-
pected from a conventional statistical mechanics description.
Any non-negligible coupling to a thermal environment would
have destroyed such a remarkable phenomenon. More recently,
Trotzky et al. [4] have shown that the experimental dynamics
of Bose-Hubbard like (quasi-)one-dimensional systems can
be almost perfectly described by the unitary dynamics of
the relevant model Hamiltonian. The latter was followed
by numerically exact means utilizing the time-dependent
renormalization group algorithm [5,6].

After the experimental results in Ref. [2], many theoretical
works have found that, following a sudden quench within
integrable systems, few-body observables, in general, relax to
nonthermal expectation values [7–23] (for a recent review, see
Ref. [24]). Some of the novel insights gained through these
studies include (i) the possibility of describing observables
after relaxation by means of generalized Gibb ensembles
(GGE) [7–14,16–18,21–23]; (ii) the fact that even though
in some cases the behavior of nonlocal observables after
relaxation can be parametrized similarly to the one in thermal
equilibrium [15,20], an exact description of those observables
is provided only by the GGE [22]; and (iii) an understanding of
the GGE through a generalization of the eigenstate thermaliza-
tion hypothesis (ETH) [21]. ETH explains why thermalization
occurs in generic (nonintegrable) quantum systems after a
quench [25–27].

All the results discussed above have been obtained in studies
of several specific models. However, they are expected to

hold in general for integrable systems. An interesting, and
so far nongeneric, result reported in Refs. [8,21] was the
observation of a phenomenon close to “real” thermalization
in integrable systems, in the sense of the expectation values
of few-body observables after relaxation approaching those
predicted in thermal equilibrium. This occurred as a parameter
used to generate special classes of initial states was changed.
In Ref. [8], the initial states were insulating ground states of
hard-core bosons in half-filled period-two superlattices, while
in Ref. [21], they were the ground state of trapped systems
with a Mott insulating domain in the trap center.

In this work, we revisit the systems above and focus on
understanding the properties of the initial states for which
observables after relaxation were seen to approach thermal
expectation values, despite integrability. As said before, those
states are insulating ground states. Here, we show that the
selected tuning parameter makes those initial states approach
Fock states (products of single site wave functions) at the
same time that (i) their energy density approaches a Gaussian,
and (ii) the entropy of their associated generalized canonical
and grand-canonical ensembles approach the entropies of
the canonical and grand-canonical ensembles. We argue that
(i) and (ii) above can be understood because the distribution
of conserved quantities in such initial states approaches the
one of systems in thermal equilibrium. Hence, they can have
thermal-like energy densities, entropies, and observables after
relaxation. However, after a finite-size scaling analysis, we
conclude that this phenomenon differs conceptually from
thermalization as it happens in nointegrable systems.

The presentation is organized as follows: in Sec. II, we
introduce the models and observables of interest. We also
define the ensembles considered and provide details on how
the calculations are performed. Section III is devoted to study
of the overlaps of the initial states with the eigenstates of
the final Hamiltonians, as well as to the description of the
energy densities in all cases. The scaling of the entropy with
system size, for the different ensembles analyzed and for
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superlattice and trapped systems, is presented in Sec. IV. In
Sec. V, we study the distribution of the conserved quantities
for the different initial states and within standard statistical
ensembles. Finally, the conclusions are presented in Sec. VI.

II. MODEL, ENSEMBLES, AND OBSERVABLES

We are interested in the equilibrium and nonequilibrium
properties of lattice bosons in the limit of infinite on-site
repulsion (hard-core bosons). Those systems can be described
by the Hamiltonian

Ĥ = −J

L−1∑
j=1

(b̂†j b̂j+1 + H.c.) +
L∑

j=1

V ext
j n̂j , (1)

with the additional on-site constraints b̂
†2
j = b̂2

j = 0, which
preclude multiple occupancy of the lattice sites. Here, J is
the nearest-neighbor hopping, V ext

j is a site-dependent local
potential, and L is the number of lattice sites. The hard-core
boson creation (annihilation) operator in each site is denoted
by b̂

†
j (b̂j ) and the site number occupation by n̂j = b̂

†
j b̂j . In

what follows, we consider only systems with open boundary
conditions, and t = 1 sets our units of energy.

This model is integrable [28] and can be exactly solved
by first mapping it onto the spin-1/2 XX model (with a
site-dependent magnetic field in the z direction) by means
of the Holstein-Primakoff transformation [29] and then onto
a noninteracting fermion Hamiltonian utilizing the Jordan-
Wigner transformation [28,30]. In the fermionic language,
the Hamiltonian can be straightforwardly diagonalized and
all the spectral and thermodynamic properties of hard-core
bosons can be computed either analytically or numerically in
polynomial time. Off-diagonal correlations are more difficult
to calculate. However, using properties of Slater determinants,
they can also be computed very efficiently numerically for
ground-state [31,32] and finite-temperature [33] equilibrium
problems, as well as during the unitary nonequilibrium
dynamics [34]. Those insights will be used later.

More generally, the nonequilibrium dynamics of isolated
quantum systems can be studied by writing the (arbitrary)
initial state |ψI 〉 as a linear combination of the eigenstates
|�α〉 of the Hamiltonian Ĥ that drives the dynamics, which
satisfies Ĥ |�α〉 = Eα|�α〉. Hence,

|ψI 〉 =
D∑

α=1

Cα|�α〉, (2)

where D is the dimension of the Hilbert space and Cα =
〈�α|ψI 〉, and the time evolving wave function can be written
as

|�(t)〉 = e−iĤ t/h̄|ψI 〉 =
D∑

α=1

Cαe−iEαt/h̄|�α〉. (3)

The time evolution of a generic observable Ô is then
dictated by the sums over all eigenstates

〈Ô(t)〉 = 〈�(t)|Ô|�(t)〉 =
∑
α,β

C∗
αCβ ei(Eα−Eβ )t/h̄ Oαβ, (4)

where Oαβ = 〈�α|Ô|�β〉, and the infinite time average of
Eq. (4) (in the absence of degeneracies) can be thought as the
result of a diagonal ensemble average [27]

〈Ô〉DE =
∑

α

|Cα|2Oαα. (5)

As shown in Refs. [21,27], this infinite time average describes
observables after relaxation. We should stress that this can
be true even in the presence of degeneracies associated with
integrability, except for cases with massive degeneracies [14].
The validity of the description of integrable systems after
relaxation, by means of the infinite time average (5), has been
demonstrated for the 1/r Hubbard model in Ref. [14], and
for the same (hard-core boson) systems considered here in
Ref. [21] (supplementary materials).

The result in Eq. (5) is to be compared with the predictions
of conventional statistical mechanics ensembles, for a system
in equilibrium with energy EI = 〈ψI |Ĥ |ψI 〉 and total number
of particles N . The canonical ensemble predicts

〈Ô〉CE = 1

ZCE

∑
α

e−Eα/kBT Oαα, (6)

where ZCE = ∑
α e−Eα/kBT , T needs to be taken such that

EI = Z−1
CE

∑
α e−Eα/kBT Eα , and the sums run over all eigen-

states of the Hamiltonian (with energy Eα) in the sector with
N particles. The grand-canonical ensemble, on the other hand,
predicts

〈Ô〉GE = 1

ZGE

∑
α

e−(Eα−μNα )/kBT Oαα, (7)

where ZGE = ∑
α e−(Eα−μNα )/kBT , T and μ need to be

taken such that EI = Z−1
GE

∑
α e−(Eα−μNα )/kBT Eα and N =

Z−1
GE

∑
α e−(Eα−μNα )/kBT Nα , and the sums run over all eigen-

states of the Hamiltonian (with energy Eα and number of
particles Nα). The predictions of Eqs. (6) and (7) in general
agree in the thermodynamic limit.

Thermalization is then said to occur if, for sufficiently
large systems, 〈Ô〉DE � 〈Ô〉CE � 〈Ô〉GE. Hence, the fact that
thermalization occurs in isolated systems is surprising as
〈Ô〉DE depends on the initial conditions through the projection
of the initial state onto all the eigenstates of the Hamiltonian,
while conventional statistical ensembles depend only on
the initial conditions through EI and N . Since the energy
distribution of the initial state |ψI 〉 in the eigenstates of the
final Hamiltonian is narrow (because of locality, see Ref. [27]
and its supplementary materials) and centered around EI ,
similarly to the canonical and grand-canonical ensembles,
then thermalization can be understood to occur because
of ETH [25–27]. ETH states that in generic many-body
systems Oαα almost do not fluctuate between eigenstates that
have similar energies, i.e., the eigenstates themselves already
exhibit thermal behavior.

Furthermore, it has been also proposed that one can define
the entropy of the isolated system after the quench to be the
diagonal entropy [35]

Sd = −
∑

α

|Cα|2 ln(|Cα|2), (8)
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which satisfies all the thermodynamic properties required from
an entropy. Indeed, this entropy has been recently shown to be
consistent with the microcanonical entropy for nonintegrable
systems [36], and hence, for sufficiently large systems it is
expected to agree with the entropy of the canonical ensemble

SCE = ln ZCE + EI

kBT
, (9)

and with that of the grand-canonical ensemble

SGE = ln ZGE + EI − μN

kBT
, (10)

up to subextensive corrections.
In general, in integrable systems such as the ones of

interest in this work, the presence of a complete set of
conserved quantities prevents thermalization [7,27]. (The
eigenstate thermalization hypothesis has been shown to fail in
those systems [21,27]). However, after relaxation, few-body
observables can be described by means of a generalization of
the Gibbs ensemble [7], with a density matrix

ρ̂GGE = Z−1
GGEe− ∑

n λnÎn , (11)

where ZGGE = Tr[e− ∑
n λnÎn], {În} are the conserved quantities,

and n = 1, . . . ,L. In our systems, {În} are the occupation
operators of the single-particle eigenstates of the noninteract-
ing fermionic Hamiltonian to which hard-core bosons can be
mapped. {λn} are the Lagrange multipliers, which are selected
such that 〈ψI |În|ψI 〉 = Tr(Înρ̂GGE). For hard-core bosons,
they can be computed using the expression [7]

λn = ln

[
1 − 〈ψI |În|ψI 〉

〈ψI |În|ψI 〉

]
(12)

and ZGGE is then

ZGGE =
∏
n

(1 + e−λn ). (13)

The fact that the GGE is able to predict expectation values
of few-body observables after relaxation can be understood
in terms of a generalized ETH [21]. The idea in this case is
that eigenstates of the Hamiltonian that have similar values
of the conserved quantities have similar expectation values of
few-body observables. The GGE is then the ensemble that,
within the full spectrum, selects a narrow set of states with the
same distribution of conserved quantities that is fixed by the
initial state.

The GGE entropy is given by

SGGE = ln ZGGE +
∑

n

λn〈ψI |În|ψI 〉. (14)

Furthermore, one can also define a canonical version of this
generalized ensemble, with a density matrix

ρ̂GCE = Z−1
GCEe− ∑

n λnÎn , (15)

for which only states with N particles are considered when
calculating traces. We keep λn in the sector with N particles
to have the same values as within the GGE and take the
partition function to be the trace over states with N particles,

ZGCE = Tr[e−∑
n λnÎn]N . The entropy of this ensemble can be

computed as

SGCE = Tr[ρ̂GCE ln(ρ̂GCE)]N (16)

where, once again, only eigenstates of the Hamiltonian with
N particles contribute to the trace.

An interesting recent finding in Ref. [36] was that despite
the fact that the generalized ensembles do describe few-
body observables in integrable systems after relaxation, their
entropy is always greater than that of the diagonal ensemble,
and the difference increases linearly with increasing system
size. This means that an exponentially larger number of states
contribute to the generalized ensembles when compared to
the diagonal one. The generalized ETH ensures that, despite
having a much greater number of states, the generalized
ensembles predict the outcome of the realization dynamics.
This is because the overwhelming majority of the states
that contribute to the generalized ensembles have identical
expectation values of few-body observables as the ones that
contribute to the diagonal ensemble [21]. All these results are
expected to be generic in integrable systems.

In this work, instead, we focus on special classes of
initial states that lead to expectation values of few-body
observables that approach those in thermal equilibrium,
despite integrability [8,21]. Since we know that ETH is not
satisfied in those systems [21,27], the fact that observables
after relaxation approach thermal values then must be related
to special properties of the overlaps Cα of the initial states
with the eigenstates of the final Hamiltonians. Hence, we study
the behavior of the Cα’s in such systems. Hard-core bosons
can be mapped onto noninteracting fermions, so one can
generate the exponentially large Hilbert space of finite systems,

whose size is ( L

N
), without the need of diagonalizing the full

Hamiltonians. Those many-body states are created as products
of noninteracting fermionic eigenstates. They can be written as
Slater determinants, in terms of fermionic creation operators
f̂

†
k , as

|�α〉 =
N∏

l=1

L∑
k=1

P α
kl f̂

†
k |0〉, (17)

and the same can be done for the initial state |�I 〉 =∏N
l=1

∑L
k=1 P 0

kl f̂
†
k |0〉. The overlap between the initial state

and the eigenstates of the final Hamiltonian can then be
calculated numerically as the determinant of the product of
two matrices [31,32]

Cα = 〈�α|ψI 〉 = det[(Pα)†P0], (18)

which, together will all the expressions presented previously,
allow us to compute the energy distributions and entropies
in the diagonal, canonical, grand-canonical, and generalized
ensembles.

III. OVERLAPS

We first focus on the behavior of the weights |Cα|2
determined by the initial state and compare it with the one
given by the canonical ensemble e−Eα/kBT /ZCE. Most of
the results reported in this manuscript are obtained from
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FIG. 1. (Color online) Weights of the eigenstates of the final
Hamiltonian in the diagonal (top half in both panels) and canonical
(bottom half in both panels) ensembles, |Cα|2 and e−Eα/kBT /ZCE,
respectively, for L = 36 and N = 18 (half filling). The panel on the
left (a) depicts results for a quench from AI = 4 to AF = 0, and the
panel on the right (b) for a quench from AI = 0 to AF = 4. In both
cases, we select the initial state to be the ground state of Eq. (1) for
the given value of A = AI . The color scale indicates the number of
states, per unit area in the plot, that have a given weight.

calculations for superlattices with period two. What that means
is that in Eq. (1),

V ext
j = A(−1)j .

We will mainly focus on fillings (i) N = L/2 (half filling),
for which observables after relaxation were seen to quickly
approach the thermal predictions when the value of AI was
increased and AF = 0, but no such thing was observed when
AI = 0 and AF was increased [8], and (ii) N = L/4 (quarter
filling), which does not exhibit an approach to the thermal
predictions, like the one seen at half filling, no matter the
selected values of AI and AF . Some results for trapped
systems, related to the findings in Ref. [21], will be reported
in the following section.

By comparing Eqs. (5) and (6), one may naively think that
for those states for which an approach to thermal expectation
values was observed, the weights of the initial state in the
eigenstates of the final Hamiltonian |Cα|2 may approach those
of the canonical ensemble e−Eα/kBT /ZCE. In Fig. 1, we plot
the values of |Cα|2 (top half in both panels) and e−Eα/kBT /ZCE

(bottom half in both panels) for quenches from the ground
state of a superlattice (AI = 4) to the homogeneous lattice
(AF = 0) (a) and from the ground state of the homogeneous
lattice (AI = 0) to the superlattice (AF = 4) (b).

Figure 1 clearly shows that the actual values of |Cα|2
differ not only quantitatively (several orders of magnitude)
from those of e−Eα/kBT /ZCE but also qualitatively for both
quenches, as the former exhibit a slower decay with the
energy of the eigenstates. No convergence between the values

of |Cα|2 and e−Eα/kBT /ZCE is observed as AI and AF are
changed (not shown). In Fig. 1, we also provide information
about the number of states, per unit area in the plot, that
have a given weight within in each ensemble (color scale).
For the quench from AI = 4 to AF = 0, one can see in
Fig. 1(a) (top half) that the number of states with nonzero
values of |Cα|2 continuously increases as the energy increases
and reaches a maximum around the center of the spectrum,
where the density of states is largest. A similar behavior can
be seen within the canonical ensemble in Fig. 1(a) (bottom
half). For the quenches from AI = 0 to AF = 4, on the other
hand, there are isolated islands with nonzero weights both
in the diagonal and canonical ensembles [Fig. 1(b)]. This is
because the many-body spectrum exhibits bands of eigenstates
separated by gaps, which are determined by the value of
AF . Such a behavior can be straightforwardly understood
from the single-particle band structure. In the periodic case,
a reasonably good approximation for large systems with open
boundary conditions, the latter exhibits two bands given by the
expression

ε±(k) = ±
√

4t2 cos2(ka) + A2, (19)

where “+” denotes the upper band and “−” the lower band
and k is the single-particle momentum. Depending on which
values of k are occupied in the many-body state, the bands
seen in Fig. 1(b) form.

Results for the same quenches as in Fig. 1, but for
quarter-filled systems, are presented in Fig. 2. The latter are
qualitatively similar to the former in everything, except for
the behavior of the number of eigenstates with nonzero values
of |Cα|2 in the quenches from AI = 4 to AF = 0 [top half in
Fig. 2(a)]. At quarter filling, when AI = 4, the initial state
imprints a modulation on the number of eigenstates with
nonzero |Cα|2 (note that the spectrum in the final Hamiltonian,
when AF = 0, has no gaps). That modulation is not present
for the quenches at half filling [top half in Fig. 1(a)] and,
as expected (because of the continuous spectrum of the final
Hamiltonian), it is not present in the canonical results in the
bottom half of Fig. 2(a).

The fact that the weights in the diagonal and canonical
(or any other) ensemble differ from each other is generic for
integrable and nonintegrable systems [37] and, as such, need
not preclude thermalization. After all, the weights with which
eigenstates of the Hamiltonian contribute to the canonical and
microcanonical ensembles also differ. The relevant quantity to
compare different ensembles is the energy density ρ(E), which
is equal to the sum of the weights studied in Figs. 1 and 2, over a
given energy window δE, divided by δE. By construction, the
integral of this quantity over the full energy spectrum is nor-
malized to 1. (δE needs to be selected in such a way that the re-
sults for the energy density are independent of its actual value.)
The energy density depends not only on the weights but also
on the density of states and tells us which part of the spectrum
is the one that contributes the most to the ensemble averages.

In Fig. 3, we present ρ(E) for the quenches for which
the weights of the diagonal and canonical ensembles were
reported in Figs. 1 and 2. As expected, the energy density
in the canonical ensemble is very close to a Gaussian ρ(E) =
(
√

2πδE)−1e−(E−EI )2/(2δE2) in all cases. For the quenches from
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FIG. 2. (Color online) Same as Fig. 1 but for L = 44 and N = 11
(quarter filling).

AI = 0 to AF = 4, the Gaussian is cut by the bands described
previously.

In diagonal ensemble, ρ(E) has been recently shown to be
very well described by a Gaussian for nonintegrable systems
and sparse (very different from Gaussian) in integrable systems
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FIG. 3. (Color online) Energy density ρ(E) for the quenches
depicted in Figs. 1 and 2. Results are presented for the case AI = 4,
AF = 0 in the left panels [(a) and (c)] and for AI = 0, AF = 4 in the
right panels [(b) and (d)] and for systems at half filling [(a) and (b)]
and at quarter filling [(c) and (d)]. ρ(E) is reported for the diagonal
and canonical ensembles, and, when appropriate, we have fitted the
results to a Gaussian (continuous lines in the plots). In all cases
δE = 0.1.
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FIG. 4. (Color online) Scaling of the energy density in the
diagonal (a) and canonical ensembles (b) with increasing system
size. Results are reported for the quenches from AI = 4 to AF = 0 at
half filling. Continuous lines depict the result of the fit of each data
set to a Gaussian.

[36]. We find the latter to be generic for our quenches, as
shown in Figs. 3(c), 3(d), and, maybe less evident but still
true, Fig. 3(b). Surprisingly, we find that for quenches from
AI �= 0 to AF = 0 at half filling, the energy density in the
diagonal ensemble approaches a Gaussian as the value of
AI is increased. See Fig. 3(a) for AI = 4 and AF = 0. This
highlights the special character of this class of initial states and
will be analyzed more quantitatively in the following sections.

A remark is in order on the scaling of the plots shown in
Fig. 3 with increasing system size. For the canonical ensemble,
it is known that the width of ρ(E), relative to the full width
of the spectrum, vanishes in the thermodynamic limit. The
question is then what happens for the diagonal ensemble. On
general grounds, for Hamiltonians containing only finite-range
terms, it was shown in Ref. [27] (supplementary materials) that
the width of ρ(E), relative to the full width of the spectrum,
also vanishes in the thermodynamic limit. The scaling of
the width of ρ(E) depends in this case on the nature of the
quench [27]. In Fig. 4, we show a finite-size scaling for ρ(E)
in the diagonal (a) and canonical (b) ensembles in the quenches
from AI = 4 to AF = 0. These results are consistent with the
vanishing of the width of ρ(E), relative to the width of the
spectrum, as the system size is increased.

IV. ENTROPIES

In the previous section, we have shown that the energy
distribution in quenches whose initial states are the ground
state of half-filled systems with a superlattice (AI �= 0) can be
well described by a Gaussian, typical of thermal states, as the
value of AI is increased. However, at least for the finite systems
we can solve numerically, we showed that such a Gaussian like
energy distribution clearly differs from that of the canonical
ensemble. In this section, we use the entropies, including the
diagonal entropy Sd [35,36], as a way to quantify the scaling of
the energy distributions in all ensembles as the system size is
increased. In Ref. [36], it was already shown that the diagonal
entropy in integrable systems increases nearly linearly with
system size, demonstrating its additive character.

In Fig. 5, we show the entropy per site for two different
quenches in half-filled systems, with increasing system size.
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FIG. 5. (Color online) Entropy per site vs. L in quenches from
the ground state of a superlattice with AI = 2 to the homogeneous
lattice AF = 0 (a) and from the homogeneous lattice AI = 0 to the
superlattice with AF = 2 (b). For both quenches, we show results
for the diagonal Sd , canonical SCE, grand-canonical SGE, generalized
canonical SGCE, and generalized grand-canonical SGGE entropies. The
systems are at half filling N = L/2.

For both quenches, one can see that all entropy per site plots
tend to saturate to a constant value with increasing L, making
evident the additivity of this observable in all ensembles.
Another result that is apparent from those plots is that Sd is
smaller than all other entropies, and it seems that it will remain
that way in the thermodynamic limit, as noted in Ref. [36]. An
important difference between the behavior of the entropies
for a quench from the superlattice to the homogeneous lattice
[Fig. 5(a)] and the quench from the homogeneous lattice to the
superlattice [Fig. 5(b)] is that, in the former, the entropy of the
GGE and the grand-canonical ensemble are nearly identical
and the entropies of the GCE and the canonical ensemble
approach each other with increasing system size. In the latter
quench, the entropies of the GGE and the grand-canonical
ensemble differ from each other and their difference is seen
to remain constant as the system size is increased. SGCE and
SCE approach each other as the system size increases, but their
difference is clearly larger than for the AI = 2 to AF = 0
quench.

In order to quantify the observations above for different
quenches and fillings, in Fig. 6 we plot the scaling of
(SCE − SGCE)/L and (SGE − SGGE)/L with system size. The
left panels [Figs. 6(a) and 6(b)] depict the results at half filling.
Figure 6(a) shows that for any given pair AI = x → AF = 0
and AI = 0 → AF = x, where x = 2,4,6,8, the difference
(SCE − SGCE)/L saturates at greater values for the quenches
starting from the homogeneous lattice than for those starting
from the superlattice (which, for the lattice sizes shown,
still keep decreasing as the system size is increased). The
difference (SGE − SGGE)/L, in Fig. 6(b), exhibits and even
more remarkable behavior. It does not change with increasing
system size, and it can be seen to be orders of magnitude
smaller for the quenches starting from the superlattice when
compared to those starting from the homogeneous system.
The difference (SGE − SGGE)/L quickly approaches zero as
the value AI in the superlattice is increased. This is exactly the
same behavior that was observed in Ref. [8] for the difference
between the expectation value of the momentum distribution
function (nk) in the grand-canonical ensemble and that of the
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FIG. 6. (Color online) Difference between the entropy of the
canonical ensemble and the GCE [(a) and (c)] and between the
grand-canonical ensemble and the GGE [(b) and (d)] for quenches
at half filling [(a) and (b)] and quarter filling [(c) and (d)]. In all
panels, the results for the quenches from the superlattice to the
homogeneous lattice are depicted using open symbols, while the
ones from the homogeneous lattice to the superlattice are depicted
using solid symbols. For the former quenches, results are reported
for AI = 2 and AF = 0, AI = 4 and AF = 0, AI = 6 and AF = 0,
and AI = 8 and AF = 0, and, for the latter, results are reported for
AI = 0 and AF = 2, AI = 0 and AF = 4, AI = 0 and AF = 6, and
AI = 0 and AF = 8. In the legend, we use the notation “AI to AF ”
to label the plots.

time average in the time evolving state. (The latter can be
reproduced using the GGE.)

Hence, we can conclude that for the particular class of
initial states in Ref. [8], where quenches starting from the
ground state of a system with a superlattice lead to expectation
values of nk that approach those in thermal equilibrium as
AI was increased, the sets of states that contribute to the
grand-canonical ensemble and the GGE become increasingly
similar to each other. Since the GGE describes observables
in the integrable system after relaxation [7,21], thermal
ensembles then will also provide a very good estimate for those
observables as AI is increased. From the results in Fig. 6(b), it
is important to stress that the entropies in the grand-canonical
ensemble and the GGE do not approach each other, for a fixed
value of AI , as the system size is increased.

In Figs. 6(c) and 6(d), we show results for an identical
set of quenches as the one in Figs. 6(a) and 6(b) but for
systems at quarter filling. For all quenches at quarter filling,
one can see that the differences between the entropy in the
standard ensembles and in the generalized ones is orders of
magnitude larger than for the quenches at half filling. The
differences between the two are maximal for the quenches with
AI �= 0. The behavior with changing system size is, however,
similar to the one in the systems at half filling. Hence, by
comparing all panels in Fig. 6, one can further see that there
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FIG. 7. (Color online) Difference between the entropy of the
grand-canonical ensemble and the GGE for quenches at half filling
(two lower curves) and quarter filling (two upper curves) vs. AI . In
all cases AF = 0. The dotted line depicts a power-law fit to the large
AI results at half filling. For each quench, results for two different
system sizes are presented.

is something special about the quenches starting from the
half-filled superlattice.

As discussed in Refs. [8,38], the ground state of half-filled
systems in a superlattice is insulating and, as the value of
A increases, its wave function approaches that of a trivial
Fock state [a product state of empty (low chemical potential)
and occupied (high chemical potential) sites]. In Ref. [8], it
was shown that the one-particle correlation length ξ decays
as a power law ξ/a ∼ 1/

√
A/t for large values of A/t

(A/t � 4). In Fig. 7, we show how (SGE − SGGE)/L decreases
as AI increases. Here again, we find a power-law decay for
large values of AI , where (SGE − SGGE)/L ∼ 1/A6

I . This large
exponent explains the fast reduction of (SGE − SGGE)/L seen
in Fig. 6 when AI was increased.

Since for large values of AI the initial states are nearly
uncorrelated states (ξ → 0), their overlaps with the eigenstates
of the final Hamiltonian can be understood to be random
and constrained only by energy conservation. This helps
in understanding the origin of Gaussian energy distribution
observed in the previous section and the closeness of the
generalized ensemble entropies to those of the standard
ensembles as AI is increased. In Fig. 6, we also present results
for the quenches at quarter filling, where (SGE − SGGE)/L is
seen to saturate to a finite value when AI is increased. For both
fillings, and the system sizes depicted in that figure, finite-size
effects can be seen to be negligible.

Confirmation of the conclusions above can be obtained if
one realizes that a similar argument applies to the systems
discussed in Ref. [21]. There, the initial state was selected to
be the ground state of a trapped system, where Eq. (1)

V ext
j = V (j − L/2)2

is a harmonic trapping potential and the evolution was followed
after the trap potential V was turned off, i.e., VI �= 0 and
VF = 0. For a fixed number of particles, as VI increases, a Mott
insulator (Fock state for hard-core bosons) with density n = 1
forms in the center of the trap. When initial states containing
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FIG. 8. (Color online) (a) Density in the center of the trap as a
function of the excitation energy per particle ε, which is changed
by increasing VI in a system with 50 lattice sites and 10 particles.
(b) Difference between the entropy of the grand-canonical ensemble
and the GGE vs. L for systems with different excitation energy
per particle. (Inset) Integrated relative difference between nk in
the diagonal and canonical ensembles (see text) vs. the excitation
energy per particle. Results are presented for different system sizes,
L = 25,30, . . . ,45 [21].

such Mott insulating domains were used for the time evolution,
the difference between the momentum distribution function in
the diagonal ensemble and standard ensembles of statistical
mechanics was seen to decrease [21].

In the inset in Fig. 8, we show the results obtained in
Ref. [21] for the integrated difference between the predictions
of the diagonal and canonical ensembles for nk

(nk)CE =
∑

k |〈n̂k〉DE − 〈n̂k〉CE|∑
k〈n̂k〉DE

,

as a function of the excitation energy per particle

ε = EI − EG

N
,

where EG is the ground-state energy of the final (homo-
geneous) Hamiltonian. The excitation energy increases by
increasing VI , while keeping L and N constant [21].

The density in the center of the trap (in the initial state)
versus the excitation energy is plotted in Fig. 8(a). There,
one can see that (nk)CE (in the inset) is smallest and
keeps decreasing when the density in the center of the trap
approaches or becomes equal to 1, i.e., when an increasingly
large portion of the system comes close or becomes a Fock
state.

The scaling of the difference between the entropies in
grand-canonical ensemble and the GGE is shown in Fig. 8(b)
for different excitation energies. Similarly to the results for
the superlattice systems, that difference is seen to be smallest
(and decreasing with increasing system size in this case)
for the systems whose initial states are closest to Fock
states. Hence, once again, a special class of initial states is
seen to produce increasingly “thermal-like” observables and
generalized ensembles.

V. CONSERVED QUANTITIES

Conserved quantities play a fundamental role in the dynam-
ics and description after relaxation of integrable systems. The
latter follows from the evidence that generalized ensembles are

033640-7



MARCOS RIGOL AND MATTIAS FITZPATRICK PHYSICAL REVIEW A 84, 033640 (2011)

able to describe observables after equilibration while standard
statistical ensembles are, in general, not [7–14,16–18,21–23].
Hence, a distinctive behavior is expected of the distribution
of the conserved quantities for those initial states for which
observables after relaxation approach thermal values. In this
section, we study the behavior of the conserved quantities in
those and other cases analyzed in the previous sections.

As explained in Sec. II, the expectation values of the
conserved quantities in hard-core boson systems can be
straightforwardly computed because they are the occupation
of the eigenstates of the noninteracting fermionic Hamiltonian
(there are L of those) to which hard-core bosons can be
mapped. As such, they can be calculated within the GGE
(identical to those of the initial state and the diagonal ensemble
by construction) and in the grand-canonical ensemble, for very
large lattices. In the grand-canonical ensemble, the occupation
of the conserved quantities is dictated by the Fermi distribution

〈În〉GE = 1

e(εn−μ)/kBT + 1
, (20)

where εn are the single-particle eigenenergies.
In Figs. 9(a) and 9(b), we depict the conserved quantities in

the GGE (initial state) and the grand-canonical ensemble for
quenches at half filling from the ground state in a superlattice
to the homogeneous lattice [Fig. 9(a)] and from the ground
state of the homogeneous lattice to the superlattice [Fig. 9(b)].
(The conserved quantities are ordered from the highest to the
lowest occupied in the initial state.) A clear contrast can be seen
between those two panels. In Fig. 9(a) the results for the GGE
and grand-canonical ensemble are almost indistinguishable
from each other while in Fig. 9(b) they differ from each
other markedly. This behavior does not change with increasing
system size as, in the same figure, depicted as continuous lines,
we also report results for lattices 10 times larger than those
used for the calculations depicted as symbols. Qualitatively,
these results are similar to those obtained in Ref. [21] for the
trapped systems analyzed in the previous section.

Insights into the contrast between the results in Figs. 9(a)
and 9(b) can be gained if one notices that the distribution
of conserved quantities for the quenches from and to the
superlattice are smooth and identical when AI in the former
is equal to AF in the latter. This immediately helps one
understand why the grand-canonical ensemble prediction of
the conserved quantities can match that of the quenches from
the superlattice (AI �= 0) to the homogeneous lattice (AF = 0)
but not that of the quenches from the homogeneous lattice
(AI = 0) to the superlattice (AF �= 0). In the former, the final
system exhibits no gaps (AF = 0) and the conserved quantities
[the Fermi distribution, see Eq. (20)] can be a smooth function
of n at finite temperatures, while in the latter the system is
gapped (AF �= 0) and, hence, a discontinuity must occur in
the Fermi distribution at the gap position [as seen in Fig. 9(b)
for n/L = 0.5].

The results reported in Figs. 9(c) and 9(d), for systems at
quarter filling, are qualitatively similar to those in Fig. 9(b). For
all quenches, the conserved quantities in the initial state differ
substantially from those predicted by the grand-canonical
ensemble. The differences can be noted to be particularly large
if one realizes that, for many conserved quantities, the initial
state has a zero expectation value while the grand-canonical
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FIG. 9. (Color online) Expectation value of the con-
served quantities in quenches from AI �= 0 to AF = 0
[(a) and (c)] and from AI = 0 to AF �= 0 [(b) and (d)] for systems at
half filling [(a) and (b)] and systems at quarter filling [(c) and (d)]. The
conserved quantities are ordered from the highest to the lowest occu-
pied in the initial state. Solid symbols depict the results of the GGE
(conserved quantities in the initial state) and open symbols depict
the results of the grand-canonical ensemble. The results denoted by
symbols (lines) correspond to systems with 38 (380) sites in the half-
filled case [(a) and (b)] and with 48 (480) sites in the quarter-filled case
[(c) and (d)]. Note that for the smallest system sizes depicted here
(the largest analyzed in the previous sections) finite-size effects for the
conserved quantities already are negligible. They exhibit an almost
perfect overlap with the results in systems 10 times larger. Results
are reported for quenches between AI = 2 and AF = 0, AI = 4 and
AF = 0, AI = 6 and AF = 0, and AI = 8 and AF = 0 and between
AI = 0 and AF = 2, AI = 0 and AF = 4, AI = 0 and AF = 6, and
AI = 0 and AF = 8. In the legend, we use the notation “AI to AF ”
to label the plots.

ensemble predicts nonzero, and large, values. This helps
in understanding the large differences seen in the previous
section between the entropies in the generalized and standard
ensembles for the quenches at quarter filling. Once again, the
behavior of the conserved quantities in thermal equilibrium
is dictated by the Fermi distribution and can be understood
given the gapless or gapped nature of the spectrum of the final
system.

Figure 10 depicts how the difference between the conserved
quantities in the initial state and the grand-canonical ensemble,
given by the integrated relative difference

I =
∑

n |〈În〉GGE − 〈În〉GE|∑
n〈În〉GGE

,

behaves as the system size increases. The results presented, for
half-filled systems in quenches from a superlattice potential
(AI �= 0 and AF = 0) in Fig. 10(a) and to a superlattice
potential (AI = 0 and AF �= 0) in Fig. 10(b), show more
quantitatively that the results in Fig. 9 do not change with
increasing system size.
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FIG. 10. (Color online) Integrated differences between
the conserved quantities in the GGE (initial state) and
in the grand-canonical ensemble (see text) vs. L for
half-filled systems in quenches from AI �= 0 to AF = 0
(a) and from AI = 0 to AF �= 0 (b). Results are reported for
quenches between AI = 2 and AF = 0, AI = 4 and AF = 0, AI = 6
and AF = 0, and AI = 8 and AF = 0 in (a) and between AI = 0
and AF = 2, AI = 0 and AF = 4, AI = 0 and AF = 6, and AI = 0
and AF = 8 in (b). In the legend, we use the notation “AI to AF ” to
label the plots.

Figure 10 also makes evident that there is a big quantitative
difference between I in the systems whose initial state is
the ground state in the superlattice [Fig. 10(a)] and those whose
initial state is the ground state of the homogeneous lattice
[Fig. 10(b)]. This is better seen in Fig. 11, where I is plotted
versus AI for the former case and versus AF for the latter. In
both cases, we find power-law decays, which are ∼1/A3

I when
the initial state was created for AI �= 0 and ∼1/AF when the
final Hamiltonian has AF �= 0. It is important to stress that
while increasing AI does not qualitatively change the time
dynamics of observables of interest, increasing AF does [8].
In the latter case the damping (relaxation) of the observables
is inhibited [8], so the assumption that observables relax to
time-independent values breaks down.

Finally, from Figs. 10 and 11, we should emphasize
once again that, complementary to the behavior seen for
(SGE − SGGE)/L in the previous section, the scaling of I
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FIG. 11. (Color online) Integrated differences between the con-
served quantities in the GGE and in the grand-canonical ensemble.
Results are reported for quenches where (i) AI �= 0 and AF = 0 (two
bottom curves) vs. AI and (ii) AI = 0 and AF �= 0 (two upper curves)
vs. AF and for two different system sizes. The dotted lines depict a
power-law fits to the large AI , AF results.

versus L is similar for both types of quenches, namely any
finite value of AI (if AF = 0) or AF (if AI = 0) leads to a
finite I in the thermodynamic limit. The difference between
those quenches resides in the actual values of I and their
behavior with changing AI or AF .

On the basis of those results we can now understand that,
for the classes of initial states in Refs. [8,21] for which
observables after relaxation approached thermal values, the
control parameter used tuned the distribution of conserved
quantities to approach thermal values (resulting in generalized
ensembles that, for those states, approach thermal ensembles).
This behavior, however, should not be confused with ther-
malization as understood for nonintegrable systems. For the
latter, the difference between observables after relaxation and
the predictions of statistical mechanics ensembles is expected
to vanish in the thermodynamic limit, while, for the special
classes of initial states that we have studied here for integrable
systems, such a difference remains finite in the thermody-
namic limit for any selected (finite) value of the control
parameter.

To conclude, there is an important distinction to be made
about the generalized ensembles when compared with standard
ensembles of statistical mechanics. In the latter, the conserved
quantities (energy, momentum, angular momentum, etc.) are
additive and their number is ∼1. In the generalized ensembles,
the conserved quantities are, strictly speaking, not additive
and their number, in the integrable systems considered here,
is ∼L. The fact that they are not additive can be immediately
seen in Fig. 9, where, after making the system size 10 times
larger, the value of the conserved quantities does not change.
Instead, their number increased by a factor of 10 (that is
the reason for plotting the conserved quantities as functions
of n/L).

In Fig. 12, we show the values of the Lagrange multipliers
for the same quenches and system sizes depicted in Fig. 9.
As expected from the expression for the Lagrange multipliers
Eq. (12), they are a smooth function of the values of the
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FIG. 12. (Color online) Lagrange multipliers in quenches from
AI �= 0 to AF = 0 for systems at half filling (a) and systems at quarter
filling (b). (The results for quenches from AI = 0 to AF �= 0 are the
identical.) Symbols (lines) correspond to systems with 38 (380) sites
in the half-filled systems [(a) and (b)] and to systems with 48 (480)
sites in the quarter-filled systems. Once again, note that size effects
for the Lagrange multipliers are negligible. Results are reported for
quenches between AI = 2 and AF = 0, AI = 4 and AF = 0, AI = 6
and AF = 0, and AI = 8 and AF = 0. In the legend, we use the
notation “AI to AF ” to label the plots.
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conserved quantities (and exhibit negligible finite-size effects
in Fig. 12). One can then think of the conserved quantities,
considered here to build the generalized ensembles, as additive
in a coarse-grained sense. This follows if one realizes that,
by increasing the system size, the Lagrange multipliers in a
coarse-grained region do not change their values (Fig. 12), but
the sum of the expectation values of the conserved quantities
in that region (Fig. 9) grows proportionally to the increase
of system size. Hence, effectively, the conserved quantities
behave as additive. A discussion on the role of additivity of
the conserved quantities in generalized ensembles can be found
in Ref. [24].

VI. SUMMARY

We have studied the dependence on the initial state of the
description of integrable systems after relaxation following a
sudden quench. In general, integrable systems are not expected
to thermalize. Hence, we have focused in understanding
special classes of initial states that lead to values of observables
after relaxation that approach those in thermal equilibrium,
when a control parameter is changed. One of our main
findings is that, even for such initial states, thermalization
does not occur as in nonintegrable systems. In the latter,
the difference between the thermal expectation value of an
observable and those after relaxation is expected to vanish in
the thermodynamic limit. In the integrable systems discussed
here, no matter the initial state selected (which is an eigenstate
of another integrable system where the control parameter
is one of the parameters of the initial Hamiltonian), the

distribution of conserved quantities in the thermal ensembles
differs from (but can be arbitrarily close to) that of the diagonal
ensemble (or the GGE), and the difference does not vanish
with increasing system size. Since the values of the conserved
quantities constrain the outcome of the relaxation dynamics,
the observables after relaxation do not reach thermal values in
the thermodynamic limit.

Another of our main findings is that what the control
parameter is doing in those special classes of initial states
is tuning the distribution of conserved quantities to approach
thermal values. As a result, the initial states exhibit energy
densities that are increasingly Gaussian like and entropies of
their associated generalized ensembles that approach those
of standard ensembles. Similarly to the behavior seen for
the conserved quantities, the difference between the entropy
per site in the generalized and standard ensembles remains
nonzero in the thermodynamic limit. It can, however, be
made arbitrarily small by changing the control parameter.
Interestingly, for the model considered here, the special initial
states were found to be insulating ground states that approach
products of single site wave functions.
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