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Light scattering from ultracold atomic gases in optical lattices at finite temperature
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We study light scattering from atoms in optical lattices at finite temperature. We examine the light scattered
by fermions in the noninteracting regime and by bosons in the superfluid and Mott insulating regimes. We
extend previous theoretical studies to include the full band structure of the optical lattice. We find that light
scattering that excites atoms out of the lowest band leads to an increase in light scattering away from the classical
diffraction peaks and is largely temperature independent. This additional light scattering leads to lower efficiency
of temperature measurements based on photon counting.
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Ultracold atoms in optical lattices exhibit a remarkable
range of behavior and have become an indispensable tool
for investigating many-body phenomena [1,2]. As the gamut
of many-body states achieved in experiments with optical
lattices expands, it is also important to consider how to detect
and reveal more information about these states. With this
goal in mind, many authors have considered the scattering of
light by these ultracold gases as a potential way of extracting
information.

Bragg scattering, where light scattering from the sample
is stimulated by a pair of lasers, is a prominent method
that has been investigated as a probe of bosons in optical
lattices [3–7], and experiments using Bragg scattering have
detected signatures of the superfluid and Mott insulator
states of the Bose-Hubbard model [8,9]. Another suggested
scheme involves light scattering into a cavity, where the
strong light-matter coupling encodes information about the
many-body state into the distribution of photons transmitted
by the cavity [10–14]. The effect of finite temperature on
light scattering has been investigated as a potential probe
of temperature for the superfluid and Mott cases [15] and
also for the noninteracting Fermi-Dirac gas [16]. Recently the
far-field diffraction pattern of a Mott insulator was imaged in
an experiment where the diffraction peaks were used to detect
the spin distribution [17]. Detection of spin distributions in
optical lattices using light-matter interactions has also been
considered theoretically [18–27].

In this paper we consider what light scattering, which is
not stimulated by another laser or by a cavity, tells us about
the many-body state. The aim being to reveal information
about the atoms while they remain in situ with a relatively
simple experimental implementation, only requiring a laser
to be shone on the atoms, as depicted in Fig. 1, followed by
the detection of scattered photons, possible after collection
by a lens. This would remove the need for a cavity or the
need to destructively image the atomic sample, which is
usually required with Bragg scattering (see Ref. [28] for a
recent exception). When scattering is not stimulated there
is less restriction on the final energy state of the scattered
photons and the full band structure of the optical lattice
must be taken into account, something which has been
neglected in previous works. We present here a treatment of
light scattering from ultracold atoms in optical lattices that

includes both the band structure and the effects of nonzero
temperature.

Our approach is organized as follows. We begin by
describing the light-scattering process that forms the basis
of our work. We then examine the light-scattering patterns
that result for noninteracting fermions and for bosons in the
superfluid and Mott insulator regimes of the Bose-Hubbard
model. We then examine how the temperature measurement
described by Ruostekoski et al. [16] applies to these systems
and is affected by the multiband structure of the optical lattice.

I. FIRST-ORDER LIGHT SCATTERING

Nonresonant light scattering from an ultracold gas can
occur in two ways. The first involves the diffraction of light
due to the nonuniform density of the gas, which leaves the
gas unchanged, while the second involves the creation of
excitations in the gas where the light transfers momentum
and/or energy to the gas. In the following we see how these
processes occur when laser light is scattered from atoms in
first-order perturbation theory.

We consider light-matter interactions where each atom can
be treated as a two-level system, as may be the case because
of angular momentum considerations in the dipole approxima-
tion. For example, in 87Rb, the transition |5 2S1/2,F = 2,mF =
2〉 → |5 2P3/2,F = 3,mF = 3〉 that is excited by σ+-polarized
light is a cycling transition, where, because of the polarization
of the input light, only one excited state can take part, which
in turn can only decay to the initial ground state. Further
simplification can be made when the light incident on the
atoms is off-resonant, with detuning � = ωa − ωi between
the atomic resonant frequency ωa and the input laser frequency
ωi . In which case the excited atomic state can be adiabatically
eliminated, giving, in the rotating wave approximation, the
following interaction Hamiltonian,

H = −g

∫
dr�̂†(r)Ẽ−(r) · Ẽ+(r)�̂(r), (1)

where g = 3πε0c
3γ /(ω3

a�) and γ is the lifetime of the excited
state. The Hamiltonian is expressed in terms of the ground-
state atomic-field operators �̂†(r) and �̂(r) and the positive-
and negative-frequency components of the slowly-varying
electric field, Ẽ+(r) and Ẽ−(r).
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FIG. 1. (Color online) Light-scattering scheme. The atoms in the
optical lattice are illuminated by a laser beam with wave vector ki .
Light is then scattered to other modes kf with spherical coordinates
θ and φ. In our examples of light scattering the optical lattices are
two-dimensional square lattices with lattice translation vectors ax̂ and
aŷ, and the input light has ki = π ẑ/a. In this coordinate system we
then have k = ki − kf = −π (sin θ cos φ, sin θ sin φ, cos θ − 1)/a.

In the interaction picture we have ĤI (t) =
eiĤ0t/h̄Ĥ e−iĤ0t/h̄, where Ĥ0 is the Hamiltonian of
the noninteracting light-matter system, and the time
evolution operator is given by the integral equation
UI (t,0) = 1 − i

h̄

∫ t

0 dt ′ĤI (t ′)UI (t ′,0) [29]. For a weak
perturbation the evolution of the state is given approximately
by expanding this integral equation to first order, giving

|�(t)〉I =
(

1 − i

h̄

∫ t

0
dt ′ĤI

)
|�(0)〉I . (2)

We take the initial state of the system to be an atomic
eigenstate |�u〉 and a laser represented by the classical
field Ẽ+(r) = E

2 eiki ·rεi . The first-order coupling then leads
to photons being scattered from the laser into other modes
(kf ,λ) with wave vector kf , frequency ωf , and polarization
ελ(kf ), resulting in a momentum change h̄k = h̄(ki − kf ) and
energy change h̄ω = h̄(ωi − ωf ). The probability at time t of
the system being in a new atomic eigenstate |�v〉 with an
additional photon in the mode (kf ,λ) is then∣∣∣∣〈kf ,λ| ⊗ 〈�v|1

h̄

∫ t

0
dt ′ĤI |�u〉 ⊗ |0〉

∣∣∣∣
2

= tGλ(kf )δt [(Ev − Eu)/h̄ − ω]

×
∣∣∣∣
∫

dreik·r〈�v|�̂†(r)�̂(r)|�u〉
∣∣∣∣
2

, (3)

where Gλ(kf ) = |gEε∗
λ(kf ) · εi |2ωf /[8h̄ε0(2π )2] is the cou-

pling constant between the electromagnetic-field modes and
Ej is the unperturbed energy of the state |�j 〉. The function
δt (ω) = 2 sin2(ωt/2)/(πtω2) approaches the Dirac δ function
δ(ω) as the interaction time t approaches infinity, enforcing
energy conservation.

For σ+-polarized input laser light we can sum over polariza-
tions in the coupling to get G(kf ) = ∑

λ Gλ(kf ) = |gE |2[1 +
cos(θ )2]ωf /[16h̄ε0(2π )2]. The total rate of scattering photons

with wave vector kf and frequency ωf of either polarization
is then

(kf ,ωf ) = G(kf )S(ki − kf ,ωi − ωf ), (4)

where S(k,ω) is the dynamic structure factor [30]. For a finite-
temperature system, in the canonical ensemble with partition
function Z, the dynamic structure factor is [30,31]

S(k,ω) = 1

Z

∑
u,v

δ[(Ev − Eu)/h̄ − ω]e−Eu/(kBT )

×
∣∣∣∣
∫

dreik·r〈�v|�̂†(r)�̂(r)|�u〉
∣∣∣∣
2

. (5)

The structure factor can be divided up into two parts, the first
with u = v describes classical diffraction, which results in
no energy or momentum transfer to the gas, that is, the light
scattering is elastic. The second part, where u �= v, describes
inelastic light scattering that results in excitations of the gas.

For nonresonant light scattering the frequency change ω is
determined by the difference in energies between the initial and
final many-body states. For scattering from ultracold atoms
these energy differences are all many orders of magnitude
less than the frequency of the input light. To a very good
approximation we then have kf = |ki |k̂f , where k̂f has
associated angles θ and φ as shown in Fig. 1. To get the total
rate of photon scattering in direction k̂f , we integrate Eq. (4)
over frequency. This gives

Itotal(k̂f ) = Iatom(θ ) × S(ki − |ki |k̂f ), (6)

where Iatom(θ ) = 9Iinγ
2(1 + cos(θ )2)/(32h̄ck3

i �
2) is the scat-

tering distribution resulting from the electronic structure of the
atom and laser intensity Iin = ε0c|E |2/2, and

S(k) = 1

Z

∑
u

∫
drdr′eik·(r−r′)e−Eu/(kBT )

×〈�u|�̂†(r′)�̂(r′)�̂†(r)�̂(r)|�u〉 (7)

is the scattering distribution due to the spatial structure of the
atomic sample, known as the static structure factor [31].

The static structure factor applies in the perturbative
regime, where it has been used successfully to describe
neutron scattering from liquid helium [30] and to calculate
the spectrum of light scattered from ultracold gases [32,33],
along with the response of ultracold gases to Bragg excitation
[34]. In this paper we use the structure factor to predict the
angular dependence of light scattering for atoms in an optical
lattice. While our formalism can be applied to any lattice and
input laser configuration, in all our examples we consider the
setup in Fig. 1, where the optical lattice is assumed to be a
two-dimensional square lattice in the xy plane, illuminated by
light propagating in the z direction with wavelength equal
to that of the light used to create the optical lattice. The
change in photon wave vector upon scattering is then k =
ki − kf = −π (sin θ cos φ, sin θ sin φ, cos θ − 1)/a, where φ

and θ are the scattering angles shown in Fig. 1 and a is the
lattice intersite separation. We denote the strength of the optical
lattice potential in the x,y and z directions by Vx,Vy , and Vz,

respectively, in units of the recoil energy ER = h̄2π2

2ma2 . In the
following sections we calculate the light scattering predicted
for fermions and bosons and see how different correlations in
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different many-body states affect the angular distribution of
the scattered light.

II. FERMIONS

For spin-polarized fermions of the same species, s-wave
scattering is prohibited, and for low temperatures the fermionic
atoms are approximately noninteracting. The Hamiltonian for
the many-body system is then exactly diagonalized by the
single-particle Bloch states φq,m(r) [35], where q is the quasi-
momentum and m is the band index. At finite temperature each
Bloch state is occupied according to Fermi-Dirac statistics.

We can expand the atomic-field operators in terms of the
Bloch states, �̂(r) = ∑

q,m b̂q,mφq,m(r), where b̂q,m is the
annihilation operator of an atom in the Bloch state φq,m(r).
Together with the corresponding set of creation operators b̂

†
q,m,

these operators obey the standard fermion anticommutation
relations. This expansion leads to the following expression for
the static structure factor,

S(k) =
∑

q1 ,q2 ,q3 ,q4
m1 ,m2 ,m3 ,m4

f ∗
q1,m1,q2,m2

(k)fq4,m4,q3,m3 (k)

× 〈
b̂†q1,m1

b̂q2,m2 b̂
†
q3,m3

b̂q4,m4

〉
, (8)

where

fq1,m1,q2,m2 (k) = M

∫
drφ∗

q2,m2
(r)φq1,m1 (r)eik·r (9)

is the transition matrix element between the Bloch functions
associated with a momentum transfer k. For sufficiently low
temperatures all the atoms reside initially in the lowest band
of the optical lattice; however atoms may be excited to higher
bands by scattering a photon. We then have two terms, the first
due to light scattering within the lowest band of the optical
lattice, that is,

Sg(k) =
∑

q1,q2,q3,q4

f ∗
q1,0,q2,0(k)fq4,0,q3,0(k)

×〈b̂†q1,0b̂q2,0b̂
†
q3,0b̂q4,0〉, (10)

and the second due to scattering into the higher bands of the
lattice, that is,

Sb(k) =
∑

q1,q2,q3,m�=0

f ∗
q1,0,q2,m(k)fq3,0,q2,m(k)〈b̂†q1,0b̂q3,0〉. (11)

This part of the structure factor was neglected in other
treatments of finite-temperature light scattering [15,16], and
we find that this can make a significant difference to predictions
about the light scattering.

We can calculate the higher band component with the help
of the sum rule∑

q,m

f ∗
q1,0,q,m(k)fq2,0,q,m(k) = δq1,q2 , (12)

which is implied by the completeness of the Bloch functions.
Using this relation we find

Sb(k) = N −
∑

q1,q2,q3

f ∗
q1,0,q2,0(k)fq3,0,q2,0(k)〈b̂†q1,0b̂q3,0〉, (13)

where N is the total number of atoms on our M-site lattice.
All operators are now in the lowest band and we drop the band
index from our notation.

We can now evaluate all the expectation values using Fermi-
Dirac statistics. We find that light scattering within the lowest
band is the sum of two components, Sg(k) = Sg0(k) + Sg1(k).
The zeroth-order component, which does not result in many-
body excitations in the lattice, is

Sg0(k) =
∣∣∣∣∣
∑

q

fq,q(k)Nq

∣∣∣∣∣
2

+
∑

q

|fq,q(k)|2Nq(1 − Nq),

(14)

where Nq = 〈b̂†qb̂q〉 gives the expected population of the
lowest-band Bloch state with quasimomentum q. This com-
ponent is the sum of a contribution due to the average
density of the Fermi-Dirac gas and a contribution due to
the finite-temperature fluctuations in the average density. The
first-order component, resulting from atoms being excited into
unpopulated Bloch states within the lowest band, is

Sg1(k) =
∑
q �=p

|fq,p(k)|2Nq(1 − Np). (15)

The scattering function for scattering involving the higher
bands, which we refer to as interband scattering, is given by

Sb(k) = N −
∑
p,q

|fq,p(k)|2Nq. (16)

The above theory extends the treatment in Ref. [16] through
the inclusion of the interband scattering and, further, by
consistently working in the Bloch basis we have not made any
approximations involving the localization of atoms to lattice
sites, allowing our model to be applied over the full range of
lattice strengths.

The components of the light scattering are shown in
Fig. 2 as a function of scattering angle for a two-dimensional
lattice as described in Fig. 1. The strongest component is the
elastic scattering, which forms sharp diffraction peaks with a
diffraction maximum at θ = φ = 0 that scales with N2. The
interband component scales with N and is near zero intensity
at the diffraction maximum, but can overwhelm the elastic
scattering for higher angles and leads to a background level of
scattering between the classical diffraction peaks. Neither the
elastic term nor the interband term are significantly affected
by the temperature or occupation statistics of the gas. The
first-order component does change however, for example if
the lowest band is completely full with N = M , no excitations
are available within the lowest band due to Pauli blocking
and the first-order component is identically zero, while for
N/M = 0.5 the contribution from this component scales with
N . In Fig. 2(c) we compare the angular distribution of light
scattered for a full lattice with that of a lattice with filling factor
f = N/M = 0.5.

The first-order component also decreases as θ → 0 due
to the Pauli blocking that appears in Eq. (15). Fermions can
only scatter into states that are unoccupied and for a particular
momentum transfer h̄k this restricts the number of atoms that
can scatter light. At zero temperature, the only atoms that can
be involved in inelastic scattering within the first band are those
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FIG. 2. (Color online) Comparison of the angular dependence of
the components of the static structure factor for a Fermi-Dirac gas on
a 30 × 30 lattice with Vx = Vy = 8ER,Vz = 15ER and temperature
0.02ER/kB = 0.16TF , where TF is the Fermi temperature. (a)
Dependence on θ of the structure factor components Sg0(k) (solid
blue line), Sg1(k) (dashed green line) and Sb(k) (dotted red line) for
φ = 0 and filling factor f = 0.5. (b) As in panel (a) with φ = π/4.
(c) Comparison of the structure factors for gases with filling factors
f = 0.5 (solid blue line) and f = 1 (dashed green line).

with momenta h̄q such that h̄|q + k| > pF , where pF is the
Fermi momentum. A lower scattering angle corresponds to a
lower momentum transfer, reducing the number of atoms that
can scatter light and hence the amplitude of light scattering.
As temperature increases more final momentum states become
available to scatter to throughout the momentum distribution
and the low-angle scattering increases with temperature. We
further examine the temperature dependence of the light
scattering in Sec. IV.

III. BOSONS

For bosons in an optical lattice at low temperatures s-wave
interactions between the atoms play an important role. The
resulting system dynamics are well described by the Bose-
Hubbard model [36], which is characterized by the energy of
on-site interactions U and the energy associated with tunneling
between lattice sites, J . For low on-site interaction strength,
the atoms form a superfluid. As interaction strength increases
a phase transition occurs and the system becomes a Mott

insulator. We examine the light scattering from both these
phases, beginning with the superfluid regime.

A. Superfluid

In the superfluid regime the atoms are not localized at lattice
sites and, particularly for light scattering, it is most intuitive to
expand the atomic-field operators in the Bloch basis as we did
for the noninteracting fermions. The creation and annihilation
operators for the Bloch states now obey the standard boson
commutator relations. The atomic Hamiltonian is then

Ha =
∑

q

Eqb̂
†
qb̂q + 1

2

∑
q1,q2,q3,q4

Uq1,q2,q3,q4 b̂
†
q1

b̂†q2
b̂q3 b̂q4 , (17)

where

Uq1,q2,q3,q4 = 4πh̄2asM

ma

∫
drφ∗

q1
(r)φ∗

q2
(r)φq3 (r)φq4 (r) (18)

results from the s-wave interaction with scattering length as .
Here for notational convenience we have assumed the band
index of the Bloch states is contained in the generalized
quasimomentum q, and the theory below includes all bands.

At zero temperature, atoms in a noninteracting Bose gas
condense into the zero-momentum Bloch state φ0(r). For weak
interactions this ground state is perturbed, and the new ground
state and elementary excitations of the gas are found using
Bogoliubov’s theory [37]. Extensions of Bogoliubov’s theory
to Bose gases in optical lattices have been made [38,39], but
work in the tight binding approximation. Here, by working in
the Bloch basis we do not need to make this approximation.

Following Bogoliubov’s treatment we replace the operators
b̂0 and b̂

†
0 of the highly populated zero momentum Bloch state

by
√

N0 =
√

〈b̂†0b̂0〉. Then assuming the nonzero-momentum
Bloch states each have a population much smaller than N0, we
can neglect terms above quadratic order in the Hamiltonian.
The Hamiltonian can then be diagonalized via the Bogoliubov
transformation [37]:

b̂†q = uqβ̂
†
q − vqβ̂−q, b̂q = uqβ̂q − vqβ̂

†
−q, (19)

where the Bogoliubov transformation coefficients are given by

uq =
√

1

2

(
Ẽq

h̄ωq
+ 1

)
and vq =

√
1

2

(
Ẽq

h̄ωq
− 1

)
, (20)

with Ẽq = Eq − E0 − N0U0 + 2N0Uq and Uq = Uq,0,0,q.
The operators β̂

†
q and β̂q are interpreted as the creation and

annihilation operators of noninteracting bosonic quasiparticles
with energy h̄ωq =

√
Ẽ2

q − N2
0 U 2

q . At zero temperature the
ground state of the system is the quasiparticle vacuum, while
for finite temperature T the population of the quasiparticle
modes is given by the Bose-Einstein distribution [40,41]

〈β̂†
qβ̂q′ 〉 = δq,q′

eh̄ωq/kbT − 1
= δq,q′nq. (21)

Furthermore, we have 〈β̂q〉 = 〈β̂†
q〉 = 0 and 〈β̂†

qβ̂qβ̂
†
q′ β̂q′ 〉 =

nqnq′ + δq,q′ (nq + 1)nq, which we will need to calculate the
structure factor.
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The above quantities depend implicitly on the condensate
number N0, which is in turn restricted by the following relation
for the number operator N̂ = ∑

q b̂
†
qb̂q,

〈N̂〉 =
∑

q

Nq = N0 +
∑
q �=0

[
u2

qnq + v2
q(nq + 1)

]
. (22)

For a fixed 〈N̂〉 = N , Eqs. (20) and (22) must be solved self-
consistently.

As noted above, the Bogoliubov approximation only in-
cludes the contributions to the interaction energy proportional
to N0, and its validity is therefore limited to the regime where
the number of quasiparticles is a small fraction of N0. In this
work we limit our calculations so that this fraction is less than
one tenth.

As in the fermion case, we assume the temperature is
sufficiently low so that all the atoms initially reside in the
lowest band of the optical lattice; however atoms may be
excited to higher bands by scattering a photon. Examining
Eq. (20) we see that if, for the higher bands, Ẽq 
 N0Uq,
then uq ∼ 1 and the quasiparticle excitations are essentially
particlelike. This criterion is easily satisfied in the cases we
investigate, in which case the only nonzero averages in the
static structure factor given by Eq. (8) are 〈b̂†q1,0b̂q2,0b̂

†
q3,0b̂q4,0〉

and 〈b̂†q1,0b̂q2,mb̂
†
q2,mb̂q3,0〉 = 〈b̂†q1,0b̂q3,0〉 for m �= 0.

We can now evaluate all the expectation values using the
Bogoliubov theory for the lowest band, and the quasimomenta
q from this point refer only to the lowest band. We find that
light scattering within the lowest band is the sum of three
components, Sg(k) = Sg0(k) + Sg1(k) + Sg2(k). The zeroth-
order component, which does not result in excitations in the
lattice, is

Sg0(k) =
∣∣∣∣∣
∑

q

fq,q(k)Nq

∣∣∣∣∣
2

+
∑

q

|fq,q(k)|2(u2
q + v2

q

)2
nq(nq + 1). (23)

As in the fermion case this component results from the average
density of the gas and the finite-temperature fluctuations in
the average density. The first-order component, resulting from
atoms being excited out of or into the condensate mode, is

Sg1(k) = N0

∑
q �=0

|f0,q(k)|2(uq − vq)2(2nq + 1), (24)

and the second-order component is

Sg2(k) =
∑

q �=0,p �=0
q �=p

|fq,p(k)|2(uqup + vqvp)2nq(np + 1)

+ 1

2

∑
q �=0,p �=0

|fq,p(k)|2(uqvp + vqup)2

× [nqnp + (nq + 1)(np + 1)], (25)
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FIG. 3. (Color online) Comparison of the angular dependence
of the components of the static structure factor in the superfluid
regime for a 30 × 30 lattice with 2700 atoms. The lattice strengths are
Vx = Vy = 3ER and Vz = 20ER , leading to parameters J = 0.11ER

and U = 0.17ER , the temperature is 0.05ER/kB and the condensate
population is N0 = 2527. (a) Dependence on θ of the structure factor
components Sg0(k) (solid blue line), Sg1(k) (dashed green line), Sg2(k)
(dot-dashed black line) and Sb(k) (dotted red line) for φ = 0. (b) As
in panel (a) with φ = π/4. (c) Inelastic components only.

which results from creation and/or destruction involving two
quasiparticle modes. The distribution resulting from interband
scattering is given by

Sb(k) = N −
∑
p,q

|fq,p(k)|2Nq. (26)

Again, our theory extends that of previous studies [6,15] by
including the interband scattering, and by working consistently
in the Bloch basis, with no localization approximations, we
have a model that is applicable even for very weak optical
lattices.

In Fig. 3 we compare how the four components of the
static structure factor vary as a function of scattering angle.
We see that the classical diffraction pattern is again the
dominant feature with peaks of order N2, while the first-order
and interband components are of order N . The second-
order component is larger than the first-order and interband
components near θ = 0, a behavior that persists even at T = 0.

The behavior of the first- and second-order compo-
nents reflects the correlations between atoms in the lattice
and quantum interference and enhancement play a role in
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determining their structure. We see in Fig. 3 that the first-order
component vanishes as k → 0. This phenomenon has been
recorded in Bose liquids [31,42] and in an experiment with
a Bose condensed dilute gas, where Bragg spectroscopy was
used to probe the structure factor [43]. Here the same processes
are at work and we can understand the vanishing of the
first-order component as interference between two scattering
channels. The first channel involves the quantum depletion
of the condensate, which consists of pairs of atoms with
opposite momentum for finite interparticle interactions [44].
Light scattering can scatter an atom in one of these pairs back
into the condensate. This gives the same final state as created
by the second scattering channel where an atom is scattered out
of the condensate mode, and the amplitudes of these scattering
processes destructively interfere as k → 0 (see Ref. [43] for
further details). An interesting feature of the optical lattice
case, as opposed to the uniform Bose gas, is that the rate
at which the first-order structure factor goes to zero depends
on the ratio of J to U , which can be tuned by adjusting the
height of the lattice or by Feshbach resonance. By adjusting
the lattice parameters and examining the light scattering at
various angles we can see how the depletion, or alternatively
how number squeezing [39], in the lattice changes.

Despite involving two quasiparticle modes, the second-
order component can still make a significant contribution to
the light scattering. This is due to quantum enhancement in the
higher-order processes as seen in the experiment by Rowen
et al. [45]. For this component to be nonzero, noncondensate
modes must be populated, either as a result of interparticle
interactions or finite temperature.

B. Mott insulator

We now examine light scattering from the Mott insulator.
This state is characterized by strong interactions between
atoms leading to particle localization and one may expect
that the characteristics of light scattered from this state will
be significantly different from those of the superfluid case.

Again we assume that the temperature is low enough that all
the atoms initially reside within the lowest band of the lattice.
Expanding the atomic-field operator in terms of the localized
Wannier site basis, �̂(r) = ∑

j,m b̂j,mwm(r − rj ), gives the
following expression for the static structure factor,

S(k) =
∑

j1,j2,j3,j4,m

f ∗
j1,0,j2,m(k)fj4,0,j3,m(k)

×〈b̂†j1,0b̂j2,mb̂
†
j3,mb̂j4,0〉, (27)

where

fj1,m,j2,n(k) =
∫

drwm(r − rj1 )wn(r − rj2 )eik·r. (28)

The overlap between lowest-band Wannier functions at differ-
ent sites is very small in the Mott regime and fj1,0,j2,0(k) can
be neglected for j1 �= j2.

As in the previous cases the terms involving higher bands
can be simplified using a sum rule, this time for the Wannier
functions. Once again, the description now only involves

contributions from the lowest band and we can drop the band
index from our notation. The interband component is then

Sb(k) = N (1 − |f0,0(k)|2). (29)

Here we see that when the site overlap is negligible, the
contribution from the higher bands is dependent only on the
shape of the site Wannier function and provides no other
information about the atoms in the lattice. The contribution
to light scattering from the lowest band is

Sg(k) = |f0,0(k)|2
∑
j,l

〈n̂j n̂l〉eik·(rj −rl ). (30)

Deep in the Mott insulator regime the angular dependence
of light scattering could be calculated using perturbation
theory, an approach that has been applied in theoretical work
investigating Bragg scattering by Rey et al. [5] and extended
in Rist et al. [6]. However, perturbing J from zero leads
to corrections to the unperturbed scattering pattern of order
M(J/U )2 and corrections to the unperturbed energies of order
J [5]. When J � U these perturbations have negligible effects
on the scattering pattern and the scattering pattern is well
approximated by that produced when J = 0. We therefore
proceed to calculate the scattering at finite temperature by
assuming J = 0.

To evaluate Eq. (30) in the Mott regime at temperature T we
need to calculate

∑
u〈ψu|n̂j n̂l|ψu〉e−Eu/kBT /Z, where |ψu〉 are

the eigenstates of the Bose-Hubbard Hamiltonian with energy
Eu. Making the approximation J = 0 [46], the eigenstates
are simply number states |{n}u〉 ≡ |{n(u)

j ,j = 1, . . . ,M}〉 with

energies
∑

j Un
(u)
j (n(u)

j − 1)/2, where the total number of

atoms,
∑

j n
(u)
j = Mn0, is fixed with n0 a positive integer.

At zero temperature the ground state is simply the number
state with n0 atoms at each site.

For a translationally invariant system, the energy of these
number states remains the same under any permutation of
lattice sites. The eigenstates are then divided into degenerate
groups labeled by v, where |{n}v〉 is a representative eigenstate.
The other members of the group are got by permutations P

of the lattice sites, resulting in gv different states |P {n}v〉
each with energy Ev . We can use this symmetry to eval-
uate the required matrix elements of Eq. (30). For each v

we have

∑
P

〈P {n}v|n̂j n̂l|P {n}v〉 =
{

gv〈n2〉v, j = l,

gv (N2−M〈n2〉v )
M(M−1) , j �= l,

(31)

where 〈n2〉v = 1
M

∑
j (n(v)

j )2 is the average over the degenerate
group v. This then gives∑

j,l

∑
P

〈P {n}v|n̂j n̂l|P {n}v〉eik·(rj −rl )

= gv

[
n2

0F(k) + 〈n2〉v − n2
0

(M − 1)
[M2 − F(k)]

]
, (32)

where

F(k) =
∑
j,l

eik·(rj −rl ) =
∏

j∈{x,y,z}

sin2(Mj kj a/2)

sin2(kj a/2)
(33)
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is the classical diffraction pattern from an Mx × My × Mz

array of apertures with intersite separation a in each dimension.
Finally we find that the lowest-band contribution to the light

scatter results in two terms. The first is the classical pattern
due to the average density,

Sg0(k) = |f0,0(k)|2n2
0F(k), (34)

and the second term is due to the number fluctuations on each
site at finite temperature,

Sg1(k) = |f0,0(k)|2[M2 −F(k)]

(M − 1)Z

∑
v

gve
−Ev/kBT

(〈n2〉v − n2
0

)
.

(35)

Neither of these terms result in excitation of the many-body
state and the light scattering within the lowest band is purely
elastic.

For a number of sites of around 50 this formalism allows
us to calculate the light scattering resulting from all possible
excitations. We soon see, however, that in the temperature
range where the zero-temperature ground state, |{nj = n0,j =
1, . . . ,M}〉, is still significantly populated, the only states that
play a significant role determining the scattering distribution
are the states involving particle-hole excitations. These are the
states that have n0 + 1 atoms at the sites p1,p2, . . . ,pv and an
equal number of sites h1,h2, . . . ,hv with n0 − 1 atoms. There
are gv = M!/[(M − 2v)!(v!)2] states with v particle-hole pairs
and these have energy Ev = vU and site number fluctuations
of (〈n2〉v − n2

0) = 2v/M . Restricting our calculations to just
these states allows for calculations involving much larger
lattices.

In the limit T = 0 the light scattering is purely due to
the classical diffraction pattern and interband scatter, no
excitation of the lattice occurs within the lowest band, a
major difference from the superfluid phase. We can see why
this is by considering the simple two-site case. Switching
from the site basis to the lattice momentum basis using b̂q =

1√
Ns

∑
j b̂j e

iq·rj , we see that the Mott state with filling factor

1 is b̂
†
1b̂

†
2|0〉 = 1/2[(b̂†0)2 − (b̂†q)2]|0〉, where q = π

a
(r2 − r1).

Light scattering involving the wave-vector change k = q
occurs by two routes, b̂†qb̂0 and b̂

†
0b̂q. Each of these routes takes

the Mott state to the same state, but with opposite signs, and
the amplitudes cancel. The lack of excitations hence is a result
of interference due to correlations in the lattice momentum
distribution.

In Fig. 4 we plot the components of the static structure
factor for a Mott insulator at finite temperature. The classical
diffraction pattern remains the central feature and does not
change with temperature. The interband scattering leads to a
background level of scattering around the classical diffraction
peaks that scales with N , which may explain part of the
background scattering observed in Ref. [17] that has the
same scaling. The interband scattering is dominant over
the scattering resulting from the site number fluctuations,
which disappear as T → 0. In Fig. 4(c) we compare the
static structure factor for the Mott insulator with that for the
superfluid. The stronger inelastic scattering in the superfluid
case leads to higher scattering intensity away from the
diffraction maximum, although the difference is not as great
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FIG. 4. (Color online) Angular dependence of components of
the static structure factor in the Mott insulator regime for a 30 ×
30 lattice with n0 = 1 and Vx = Vy = Vz = 15ER . The temperature
is 0.033ER/kB (U = 0.42ER) at which point the zero-temperature
ground-state proportion is 0.32. (a) Dependence on θ of the structure
factor components Sg0(k) (solid blue line), Sg1(k) (dashed green line),
and Sb(k) (dotted red line) for φ = 0. (b) As in panel (a) with φ = π/4.
(c) Comparison of the Mott insulator structure factor (solid blue line)
with that for the superfluid (dashed green line). For comparison the
superfluid state is produced for the same lattice parameters as the Mott
insulator, but with the s-wave scattering length scaled by a factor of
0.0006, giving a condensate population N0 = 807.

as suggested in Łakomy et al. [15] due to the presence of the
interband scattering component.

IV. TEMPERATURE DEPENDENCE
OF LIGHT SCATTERING

In all the cases described above components of the static
structure factor depend on temperature and we can use this
dependence to observe changes in temperature [15,16]. In
their recent paper, Ruostekoski et al. [16] proposed using
nonresonant light scattered from fermions in optical lattices
to determine the temperature of the Fermi gas. It is important
to test whether their method could also be applied to bosons
in optical lattices, as an accurate in situ thermometer would
be a useful experimental tool [47]. Furthermore Ruostekoski
et al. [16] neglect excitation of atoms into higher bands in
their treatment of light scattering, and the effect of interband
scattering on the temperature measurement must be quantified
if this method is to be used in experiments.
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x

z

f1 f2f1 f2

Stop
Stop

FIG. 5. (Color online) (Left) Scheme for collecting photons
scattered from atoms in an optical lattice to measure the temperature
of the gas. A stop placed in the center of the Fourier plane of the first
lens blocks the central diffraction peak. A second lens collects the
unblocked photons which are then detected. (Right) Outline of the
stop on diffraction pattern.

Following the scheme of Ruostekoski et al. [16], scattered
photons can be collected using a system of two lenses as shown
in Fig. 5, where the number of photons detected gives a signal
dependent on temperature. As noted by Ruostekoski et al.
[16], the elastically scattered photons have little temperature
dependence and placing a stop at the center of the Fourier
plane of the first lens will improve the signal-to-noise ratio by
blocking the central diffraction peak.

In Figs. 6(a)–6(c) we plot the temperature dependence of
the total number of photons scattered per second over all angles
for our three many-body systems. Temperature dependence is
weak in all cases. We also plot the proportion of scattering that
is inelastic, which is largest for the fermion case and smallest

in the Mott insulator. In Figs. 6(d)–6(f) we plot the temperature
dependence of the number of photons collected, Nc(T ), by the
lens system described above for the three many-body systems.
We have assumed that the lens system has a numerical aperture
sin θ = 0.5 and the stop blocks light scattered with θ < 0.06.
In each case we see an increase in photon number with
temperature that could be used to measure the temperature.

As discussed by Ruostekoski et al. [16], inelastic-scattering
processes heat the sample, and to measure the tempera-
ture without perturbing the system significantly we must
limit the number of inelastic events W in a single exper-
imental realization. Following Ruostekoski et al. [16] we
take W = 0.1N . To measure the temperature to a useful
accuracy it is then necessary to do multiple repetitions
τ of the experiment. The accuracy of the measurement
then depends on the Poissonian fluctuations

√
τNc(T ) of

the number of photons collected in the τ repetitions. To
achieve an uncertainty �T in the temperature measurement
at temperature T we then require τ [Nc(T + �T ) − Nc(T )] ∼√

τNc(T ) [16].
For the experimental parameters discussed in Fig. 6,

determining the temperature with accuracy of T = 0.05TF

(TF = 0.12ER/kB) in the fermion case would require 39
repetitions at T = 0.5TF and 7 repetitions at T = 0.1TF .
The presence of the inelastic interband scattering, which is
largely temperature independent, reduces the efficiency of
the measurement, where for comparison if we had neglected
the interband scattering the required number of repetitions
would have been 22 and 4. In the superfluid case de-
termining the temperature to accuracy 0.002ER/kB would
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FIG. 6. (Color online) (a)–(c) Temperature dependence of the total number of photons scattered over all angles (solid line), the number
of inelastically scattered photons (dot-dashed line), and the number of photons scattered due to the higher bands only (dotted line) for three
many-body states on a 150 × 150 lattice. (a) Fermions in a lattice with Vx = Vy = 8ER,Vz = 15ER and filling factor f = 0.5. (b) Superfluid
state in a lattice with Vx = Vy = 3ER,Vz = 20ER and filling factor f = 1. (c) Mott insulator state with Vx = Vy = Vz = 20ER and filling
factor f = 1. Note that for the Mott state the interband scattering makes up all the inelastic scatter. (d)–(f) Number of photons collected per
second by the lens system described in the main text for the same lattices in panels (a)–(c). We also plot on the right axes, with a dashed green
line, (d) NFS/N , where NFS is the number of atoms with energies below the Fermi energy; (e) N0/N , where N0 is the condensate population for
the superfluid; and (f) NMI/N , where NMI is the proportion of atoms in the zero-temperature ground state for the Mott insulator. The scattering
rates are determined for the D2 line of 40K in the fermion case and for the D2 line of 87Rb in the boson cases, each with a detuning of 20γ from
resonance and a laser intensity of Iin = 5 Wm−2.
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require 23 repetitions at kBT = 0.02ER and 197 repetitions
at kBT = 0.004ER . If interband effects were excluded the
number of repetitions required would have been 17 and
138, respectively. The temperature-independent interband
scattering causes the greatest reduction in efficiency in the
Mott insulator case, where a temperature measurement at
T = 0.027ER/kB would take around 26 000 repetitions to
achieve an accuracy of 10%. This results from the weak
temperature dependence of the collected photon number
relative to the amount of interband inelastic scattering when
the zero-temperature Mott ground state remains significantly
populated, as shown in Fig. 6(f). In contrast without the inter-
band contribution all the remaining scattering in our model is
elastic and in the limit U/J → ∞ we would only need one
repetition.

The reduction in efficiency is due mostly to the increased
heating resulting from the interband scattering events rather
than to a decreased signal-to-noise ratio. This means that
filtering out interband photons before collection (as may
be possible due to their separation in energy by at least
the band gap from the other scattered photons) does not
increase the measurement efficiency greatly. In the Mott
case above, if we filtered out the interband photons before
photon detection the number of repetitions required would
be reduced to around 24 000. Similarly for the fermion and
superfluid cases above the increase in efficiency is 5% or
less.

V. CONCLUSIONS

We have shown how correlations between atoms in optical
lattices are reflected in the way these systems scatter light.
For the Fermi-Dirac gas we have seen that Pauli blocking
leads to angular dependence of the inelastic light scattering,
while for a bosonic superfluid a different angular dependence
occurs as a result of interference and enhancement between
scattering channels. In the bosonic Mott insulating state
inelastic scattering is strongly suppressed by correlations
between the atoms in momentum space. We have demonstrated
that interband scattering, which has been neglected in other
treatments, can significantly change the scattering patterns in
a way that is largely independent of correlations within the
lattice and temperature.

We have used our theory to test whether light scattering can
be used as a thermometer for ultracold atoms and have shown
that interband scattering reduces the efficiency of temperature
measurements based on light scattering, particularly in the
Mott insulator case. Our results suggest that using light
scattering to measure the temperature of the Mott insulator
state will be ineffective, while for the Fermi-Dirac gas and the
superfluid this remains a feasible method.
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